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Abstract—This paper considers a sub-Nyquist multiband
spectrum sensing approach that accomplishes the sensing
task using sampling rates significantly lower than those
demanded by the classical uniform-sampling-based DSP. It
deploys nonuniform randomised sampling in conjunction
with an appropriate spectral analysis tool. Réiability
guidelines that ensure the credibility of the sensing procedure
amid a sought detection performance are presented. They
demonstrate the trade-offs between the sampling rate and
sensing time. Numerical examples are provided to illustrate
the effectiveness of the introduced technique.

l. INTRODUCTION

required sampling rate and sensing time in a gssEmario to
meet sought probabilities of detection and falsera] i.e. to
ensure the reliability of the sensing procedurés #hown that
the sampling rate can be arbitrarily low at the emge of
infinitely long sensing time. From a large numbémpossible
randomised sampling schemes, here we address the
random sampling (TRS) [6] and stratified samplinithvequal
partitions (SSEP) [7].

Based on the reliability guidelines, it is showrattlihe
benefits of the adopted spectrum sensing technimpeome
more visible in low spectrum occupancy environmeings for
multiband signals with sparse spectrum. Accordinglye

to

Spectrum sensing entails scanning parts of theoradisparsity of the signal spectrum indirectly dictaties savings

spectrum in search of meaningful activity, e.g.spree of a
transmission. It has a plethora of application areach as
surveillance, interception and multichannel comroation
systems. The latter include the emerging cognitigdio
paradigm which triggered intensive research intfective
spectrum sensing techniques [1, 2]. In the scenafio
monitoring a wideband frequency range consisting aof
number of non-overlapping spectral subbands antowita

of the considered randomised-sampling-based sensing
approach in terms of the total number of processeaples.

Whilst the adopted methodology, commonly referr@éd
digital alias-free signal processing (DASP), doesfall under
the compressive sensing (CS) framework, it is seged to
sparse signals and deploys nonuniform randomisetlgzy
to ease the sampling rate requirements. HoweveSmP4does
not involve computationally demanding operationghsas

priori knowledge of the signal characteristics, spectrumyolyving certain optimisation problems. We brieflytime in

sensing methods that rely on nonparametric speatralysis
are regarded as adequate efficient candidates .[IFdis
approach is adopted here where the aforementiaresthso is
studied, i.e. multiband spectrum sensing.

Uniform-sampling-based DSP imposes a minimum™

sampling rate of twice the width of the monitoredqguency
range despite the subbands activity. Otherwisaialipcauses
irresolvable detection problems [5]. If the monédr
frequency range(s) is/are considerably wide, unifor

sampling-based spectrum sensing approaches canndema
possibly beyoneé th

excessively high sampling rates;
capability of the currently available acquisitioevite(s). In
such cases, the sampling rate requirement becomes
impeding factor to the deployment of uniform samg@IDSP
and consequently alternatives are sought [3].

In this paper, we consider a wideband spectrumisgns
approach that utilises randomised sampling in awtjan
with an appropriate periodogram-type spectral aigliool to
reliably perform the sensing operation. It usedificantly
low sub-Nyquist sampling rates that are notablydowhan
those demanded by uniform-sampling-based sensinigoahe
Most importantly, we provide prescriptive guidebnen the

Section IV the differences between the CS and DASP
methodologies in the context of spectrum sensing.

1. MULTIBAND SPECTRUMSENSING

System Model and Problem Formulation

Consider a communication system operating over
predefined contiguous disjoint spectral subbandk edwidth

B. , i.e. the overseen bandwidth #=[f , f, +B] where
B=LB. . The maximum number of concurrently active
subbands at any particular point in timelis. Hence the joint
bandwidth of the active subbands never excegdsL,B; .

@ur objective is to devise an approach that is loiepaf
scanning the monitored frequency rar§and identifying the
active subbands. Its operational sampling ratesuldhbe
significantly lower thanf,, > 2B where2B is the minimum
rate (not always achievable) that could be usechvatessical
uniform sampling is deployed [5].

B. Adopted Sensing Technique

The introduced multiband spectrum sensing method
utilizes a periodogram-type estimator defined by:
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to estimate a detectable frequency representatiorthe
incoming signal from a finite set of its irreguladistributed
noisy samplesy(t,) = x(t,) + n(t,) . Whereas, N is the number
of processed samples within the considered timdysisa
window J =[#, £ +T,]; c=N/(N-1) andc=1 for TRS and

SSEP respectively. Windowing functiom(t) is introduced to
suppress spectral leakage and= sz(t)dt . Evidently,

spectrum sensing does not require the detailedrspatape
to be determined within the monitored wide frequerange.

[ll.  RANDOMISED SAMPLING AND SPECTRAL ANALYSIS
A. Total Random and Stratified Sampling

The sampling instantgt} ", of the TRS scheme are

independent identically distributed random variabighose
probability distribution functions are given by; (t) =1/T, for

tO[ £, % +T,] and zero elsewhere. With stratified samplifig
is divided into N strata: §,S,....,S, each containing one

randomly selected sampling instant. The probabilignsity
function of the n-th sampling instant isp,(t)=1/|S, | if

tdS, and zero elsewher¢$, | is the width ofS,. Here, we
consider the case where the strata are of equgthigni.e.

This premise is exploited here where a frequency>SEP andS, F1/a . Below, we illustrate thaX[ (f) with

representation that permits detection is soughtestidnating
the signal’s exact power spectral density (PSDhas our
objective.

The standard deviation of a periodogram-type estima

such asX’ (f), is known to be of the same order as its

expected value. To reduce this uncertainly, we ayera K
number of theXZ(f) estimator in (1) calculated ovét

windows, i.e.J, for r =1,2,..K , thus:

)

This evokes shiftingg. and the repositioning/aligning of
w(t) . For simplicity, we assume that the active subbaae
of similar power levels and the incoming wide sests¢ionary

XN =23 X3 (1),

TRS and SSEP is a suitable tool for spectrum sgnsin

B. Target Freguency Representations

Given that the components of the summation in (&) a
independent with respecttjg the estimator expected value is:

_N(R +0y)

Crs()=E[ XJ (D)]= N-Do + o, (OHOWH[ /e @)

for TRS whereP, =E[x*(t)] is the power of the incoming
WSS signal, @, (f) is its PSD andl denotes the convolution
operation. Whilst, for the SSEP scheme:

1-n(f) P + 2 )
CQuwwwx(f)qwml/u (5)

where 0<77(f)< 0.5 assuming f,, >>B for simplicity, refer

(WSS) signalx(t) propagates via an additive white Gaussiarto [7] for further details.

noise channel whered?

Transmissions with non-equal power levels and statonay
signals are addressed in [6] and [7].

Non-overlapping uncorrelated signal windows
considered here. The adopted sensing proceduresdoh
spectral subband comprises two steps: 1) estimattimy
magnitude spectrum at selected frequency point(s) 2)
comparing the magnitude(s) with pre-set threshpld(s

We seek inspecting one frequency point per subliand
establish its status. This can be achieved by paifg
spectral analysis within short time windows, i.eaimtaining
relatively smooth spectrographs. The examined faqu
points are placed at the centre of the system sulshgiven
the windowing effect. The sensing problem can benédated
as a conventional detection binary hypothesisrtggiroblem:

X(F) <V
X(f)2 ¥,
where y, is the threshold,H,, hypothesis signifies the

Ho,:
Hy,:

®3)
k=12,..L

absence of an activity in subbard and H,, depicts the

presence of an activity. We show below that (3) dativer
reliable spectrum sensing routine provided appately
selectedT, , average sampling rate=N/T, and K .

denotes the noise variance.

It is noticed from (4) and (5) tha =[ X (f)] consists of
a detectable feature given by the signal windoweD P
o, (f)*|W(f)|?/u plus components that merely act as

areamplitude offsets. They do not undermine the datslity of

the spectral components @, (f) and CZ.(f) pertaining
to an active subband. The aforementioned additional
components are commonly referred to by smearediatiaa
phenomenon associated with randomised sampling and
depends on the characteristics of the used sch&mses, the
adopted estimator with TRS and SSEP poses as tarlatg
tool to sense the activity of the overseen systabands.

To save on computations, one frequency point peiasud
is examined in (3). Achieving the minimum possibensing
time T =KT, is highly desirable for any detection technique.
Accordingly, appropriately shorf, is employed in (2) to
minimize T and aid maintaining low resolution spectrographs
without overshadowing the distinguishable featuras
E=[X/(f)],i.e. &, (f)OW(f)F/u. It was noted in [6] and
[7] that T,=n/B., n=1, serves as a practical guideline .

IV. RELIABLE SPECTRUM SENSING

The reliability of a sensing approach is reflectad its
ability to meet a sought system behaviour thatosimonly
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expressed by the receiver’s operating charactesi§ROC). In  harmful effect on the detection process. The lastenore of an
this section we deploy the ROC to derive the putsueissue with SSEP due to its smeared-aliasing vanatacross

dependability conditions. # . Formulas (10) and (11) give a combined consersati
N I guideline on the required sensing time and avesagepling
A. Reliability Guidelines rate for predefined detection probabilities, maximexpected

According to central limit theorem and for a largember  spectrum occupancB, and signal to noise ratio. It is a clear
of averaged Windowsxe(f) becomes normally distributed, illustration of the trade-offs between the sampliate and the

: ; ; . sensing time in relation to achieving dependablesisg.
moderate value oK suffices in practice. Hence we have: According to (10) and (11), we can use remarkatfe $ub-

Xe(fk)NWﬂ(n.'o(fk)laoz(fk)) and Xe(fk)NW(rnl( fk)ﬂf(fk)) Nyquist sampling rates for the sensing operaticheexpense
. R . of longer sensing time. In fact the average sargpite can be

for H0~k_ and H,, respectively. We notm(.fk) = E[X (] 1s arbitrary low for TRS and SSEP. A closer look d)(and (11)
the estimator mean and equal to that in (4) orwBgreas will show that SSEP demands longer sensing timepeoed to
az(fk):Var{ Xe(fk)} is the estimator variance. The formulas JRS: However, SSEP lends itself to more practical

_ o implementations in hardware compared to TRS anaroth
for the latter were om|tteo_l due to space Ilmltaehu@n_afer to [6_] randomised schemes (see [7] for more details). |@weing
and [7] for more details). Using the detection diexi  and correlated signal windows can be easily incatedl into
described by (3), the probability of a false alanna particular  the introduced approach using existing resultstardture on
subband is given by : variance reductions, e.g. Welch periodograms.

Equations (10) and (11) clearly show that the [
vak(yk):Pr{Hl-k|H0-k}:Q[(yk_mo(fk )) loo(f, )J 6) sens?ng time (an(;/or the(z s)amplingy rate are propmiﬁl(l)]U
spectrum occupanch, , i.e. the sparsity level of the multiband
signal in the frequency domain. In fact, it cangb®wn that
P = Pr{Hl,k|H1,k} :Q[(Vk -m,(f, )) lo(f, )J (7) notable saving_can be mao!e on the total nur_nbemnfepsed
samples (function of sampling rate and sensing)tiomey for
where Q(z) is the tail probability of a zero mean and unitVery sparse signals where spectrum occupancy isBipw< B .

variance normal distrilbution. Due to nonuniform pdirjg, the g Existing Sensing Techniques
false alarm can be triggered not only by the preseise but ) ) , )
also by the present smeared-aliasing at all fretjaen Table 1 depicts a list of spectrum sensing tectesqu
highlighting their abilities to conduct multibancetdction,

sampling rate requirements and computational coxitje

[1-4]. The latter is an indicative measure where #mergy

P.<A, and P20, (8) detector is used as a benchmark. Energy detectmlvies

taking the FFT of the signal and averaging. A téghe which

for one or more of the system subbands. Givenr{@)(@), we  entails computationally demanding operations, gofving an
can write: optimisation problem, is considered high complexity

m(f)-my(f)2Q7(8,)oo(f) -Q7(¢.)oy(f) 9)

and the probability of correct detection is:

In practice, the user describes the desired pedoce of
the detector by the two probabilities:

TABLE 1. SPECTRUM SENSING APPROACHES

which defines the reliability condition of the semgprocedure. VTR _ Computational
By substituting the mean and variance values akihgaa Approach samplingrate M ultiband Cogm@dty
conservative approach, it can be shown that (@jsléa :
Energy detector Nyquist 4 Low
~ ZBANTO(1+ S\lRfl) ) ) i 2 Multitaper estimator Nyqui;t v High
Tirs 2 [Q (a)-Q 1(&)} -T.Q7(¢,)¢ (10) Wavelet-based Nyquist v Moderate
(N =1 CS-based Sub-Nyquist v High
where SNR=P,/g? . This is the combined lower limit on the ~ Adopted Method | Sub-Nyquist \ Low
sensing timeT,; and the average sampling rateof (2) to Matched filtering Nyquist X Low
. - o Feature detector Nyquist X Moderate
satisfy (8) for TRS where& =T /T,. For SSEP it is: Covariance detecto Nyquist X Moderate

From Table 1, it is noticed that only the introddiGgpproach
and compressive-sensing-based ones permit sub-dtyqui
(11) sampling rates. They furnish considerable savingstte
_ digital data acquisition and alleviate the samplinate
It is noted that (10) and (11) assume worst exgesistem |imitation of DSP for wideband signals. The simijtficand the
conditions whereL, subbands are active (i.e. maximum gy computational complexity of the adopted apphoare its
spectrum occupancy) and smeared-aliasing has thst mamain advantages over CS techniques. The latter austh

T2 {ZBAQ‘l(Ak)(h SNR-l) _Q-l(gk)[ ZBA( 0.5+ SNR-l) +a}}
(@-By/T,
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involve solving underdetermined sets of linear ¢igna. CS
methods similar to that in [4] impose a minimum gény
rate of 4B, (still sub-Nyquist in low spectrum occupancy

environments). Other CS approaches , e.g. [3]taigstimate
the signal autocorrelation function from its congsed
samples. They presume that the reconstructed eamabpiri
autocorrelation function from one signal realizatids
identical to the WSS signal exact autocorrelationcfion
assuming infinitely long sensing time. On the othand, the
introduced technique can use arbitrary low samplatgs and
explicitly provide the required sensing time to iagke certain
desired probabilities of detection using (10) ahdl)( Due to
space limitations, a detailed comparison with nucaér
examples is outside the scope of this paper.

V. SIMULATIONS

Consider a multiband system comprisibg 20 subbands
where B. =5 MHz. The system subbands are located in

f 0[1.35,1.45 GHz frequency range. A Blackman window is

1
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Figure 1. ROC of the adopted technique with TRS viarious T..s and a
threshold sweep. Asterisk {9.08,0.95); minimum sought performance.
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employed wherd, =0.8us. 16QAM signals with maximum

bandwidths and similar power levels are transmitiedr the
active subbands. A spectrum occupancy of 10% ignaesd,
i.e. L,=2 and B, =10MHz. A sampling rateos =70MHz is

used and the SNR is -0.2 dB. For the specified ghibities:

P,20.95 and P, <0.08 for all the system subbands, the

required sensing time i$..>9.6 s and K 212 in (2) for
TRS whereas for SEEP,, >11.2 s and K =14according to

SSEP =
(10) and (11). Figures 1 and 2 show the simulated Rf the
adopted method for various sensing times and ashbte
sweep (10000 independent experiments are usedqgber p
Figures 1 and 2 confirm the moderate conservatatera
of the given reliability conditions where the desir
performance is achieved fat..>9.6 us and T, 211.2us,

i.e. as recommended by (10) and (11). This affirtne
effectiveness of the derived reliability guidelinés uniform

Ps
Figure 2. ROC of the adopted technique with SSEPvamious T, and a
threshold sweep. Asterisk {8.08,0.95); minimum sought performance.
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Figure 3. Total number of processed samples foryirvgr spectrum
occupancies. TRS, SSEP and uniform sampling arersho

VI. CONCLUSION

A sub-Nyquist spectrum sensing approach was reves
simplicity and low computational complexity are argoits

sampling (US) is deployed the minimum valid bandpaskey merits. This paper serves as an impetus theuresearch

sampling rate that would avoid aliasing witt#nis 224 MHz.
Thus, by adopting the introduced randomised-samyiiased
method around 67% saving on the sampling ratehieeed in
comparison to uniform sampling. It is unambiguowdéar that
spectrum sensing with randomised sampling offergyitde
benefits in terms of the sampling rates renderingalie
reductions in the data acquisition requirements.

On the other hand, the total number of processgudaki

samplesN, is dependent not only on the sampling rate but[2

also on the sensing time. Figure 3 depil{s versus changing

spectrum occupancies for TRS, SSEP and uniform ksagnp
Cyclostationary BPSK transmissions are assumed do
present, whereas the rest of the parameters aikarsim the
above example. It can be noticed that the savingsrims of
the total number of processed samples of the rarssdain
sampling-based approach becomes more visible as
spectrum occupancy declines, i.e. the signal dpatsiel
increases. This agrees with the general framewofk
compressive sensing which capitalises on the dpgnsemise.

on randomised sampling based techniques. This deslu
looking at their applicability to areas such asaragignal
processing where reducing the sampling rate is Iyigh
desirable especially that the treated signals ypiedlly very
sparse when expressed in an appropriate basis/frame
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