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Approximation of the Bistatic Slant Range
Using Chebyshev Polynomials
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Abstract—The effectiveness of frequency domain processing
algorithms in bistatic synthetic aperture radar (SAR) focusing
depends critically on the accuracy of the bistatic slant range
function approximation. This letter presents a new Chebyshev
slant range function approximation that is shown to increase the
accuracy of the analytical approximation of the bistatic point
target spectrum. The performance of the new method is compared
to the conventional Taylor series approximation approach in the
generation of the point target spectrum. The new approach is
shown to provide a more accurate approximation of the slant
range function with negligible increase in processing requirements
compared to the traditional Taylor series approximation. The
accuracy improvement is shown to yield a more accurate spectrum
that can be exploited in bistatic SAR focusing algorithms.

Index Terms—Bistatic synthetic aperture radar, Chebyshev ap-
proximation, point target spectrum, slant range approximation.

I. INTRODUCTION

B ISTATIC synthetic aperture radar (SAR) operates with a
separate transmitter and receiver introducing new charac-

teristics compared to traditional monostatic SAR systems [1].
Some of the advantages of the bistatic configuration include
the following: 1) the reduction of vulnerability of the system
in military applications with the ability of having the trans-
mitter located at save distances from a hostile area; 2) the
capability for the bistatic system to be employed for imaging
in the flight direction or backward in flight assistance systems;
3) the reduction of costs; 4) the measurement of the bistatic
clutter characteristic; and 5) the reduction of the dihedral and
polyhedral effects in urban areas improving the image quality.
However, the bistatic flight configuration poses two critical
technological challenges. The first involves the synchronization
of the transmitter and the receiver both in space and time. Good
solutions for this issue were developed in [2] and [3].

The second critical challenge of the bistatic SAR configura-
tion is the requirement for slant range function approximation
which is significantly different from the monostatic case. The
bistatic slant range function is characterized by the sum of two
hyperbolas [1] rather than a single hyperbola in the monostatic
case. This double squared root function makes the derivation
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of a signal spectrum model for focusing algorithms in the fre-
quency domain much more challenging than in the monostatic
case. Different approaches have been proposed to address this
problem, some numerical like Numeric SAR (NuSAR) [4] and
the dip move out technique [5] and some mathematical such as
Loffeld’s bistatic formula [6] and the method of series reversion
[7], [8].

In this letter, we present a new approach to the approximation
of the slant range function using Chebyshev polynomials [9] in
order to obtain a polynomial representation that can be used
in the method of series reversion [7], [8] to obtain a more
accurate version of the point target spectrum. The proposed
approach replaces the coefficients of the polynomial Taylor
series expansion of the bistatic slant range function with the
ones obtained using the Chebyshev polynomial approximation.
The obtained coefficients are then used to obtain an analyt-
ical formulation of the bistatic point target spectrum as in
[7] and [8].

Compared to the Legendre approximation, proposed in [10],
the Chebyshev polynomials allow us to obtain a least squares
approximation of the slant range function that includes the
property of a bounded maximum error, thus minimizing the
so-called Runge effect [9]. In addition, the mathematical and
computational complexity is reduced.

The remainder of this letter is organized as follows. In
Section II, the bistatic SAR geometry and the signal model are
discussed. In Section III, the Chebyshev polynomial approxi-
mation is introduced, while in Section IV, the new method of
using Chebyshev polynomials to approximate the slant range
function is developed. Section V presents comparative results
that indicate the superior performance obtained to those ob-
tained using the conventional approximation method [7], [8].

II. BISTATIC SAR GEOMETRY AND SIGNAL MODEL

In a bistatic SAR, the transmitter and the receiver can
have different velocities, altitudes, and flight paths, leading to
the possibility of having different acquisition configurations.
The simplest case is when both transmitter and receiver have
the same velocity and parallel flight paths, while a more com-
plicated configuration exists when the platforms have different
velocities and nonparallel flight paths. Fig. 1 illustrates an
example of a bistatic configuration that comprises a separate
transmitter and receiver where it is assumed that the transmitter
and receiver platforms have different trajectories and velocities.

As in the monostatic case [11], the area to be imaged is a
collection of point scatterers. This implies that it is sufficient
to analyze the scene using the response of an arbitrary point
scatterer and then consider the superposition of the echoes
to obtain the focused image. Under the assumption that the
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Fig. 1. Acquisition geometry for bistatic SAR.

platforms generally fly with constant velocities and in a linear
path, the instantaneous slant range R(η) may be written as

R(η) =
√
V 2
T η

2 +RTcen − 2VT ηRTcen sin θsqT

+
√
V 2
Rη

2 +RRcen − 2VRηRRcen sin θsqR (1)

where η is the slow (along track) time, VT and VR are the
velocities, RTcen and RRcen are the range distances for η = 0,
and θsqT and θsqR are the squint angles for the transmitter
and the receiver, respectively. Equation (1) converts to the
monostatic case when the velocities, positions, and flight paths
for both the platforms are identical.

The monostatic and bistatic slant range functions for five
point scatterers with the same range but different azimuth
positions are shown in Fig. 2(a) and (b), respectively. The
parameters of the simulated configurations are shown in Table I.
In Fig. 2(a), the hyperbolic shape of the monostatic slant range
function can be clearly seen, and in Fig. 2(b), the slant range
function of the bistatic case is no longer a hyperbola. Instead,
it is a flat-top hyperbola which changes in shape depending on
the position of the scatterer. The minimum of this slant range
function is related to the point of stationary phase; hence, the
stationary points change with the slant range.

In the case of a transmitted linear frequency-modulated chirp
signal, the received bistatic signal model can be written as

s(τ, η) = A0wr

(
τ − R(η)

c

)
waz(η)

× exp

{
−j

2πf0R(η)

c
+ jπKr

[
τ − R(η)

c

]2}
(2)

where τ is the fast time, A0 is the complex backscatterer
coefficient, f0 is the carrier frequency, Kr is the range chirp
rate, wr(.) is the range envelope, and waz(.) is the composite
antenna pattern of the transmitter and receiver. The only differ-
ences between the expression of the signal model in the bistatic
and the monostatic case are the slant range function and the
composite antenna footprint.

The double square root shape of the slant range function in
the bistatic case makes it more difficult to form a mathematical
representation of the signal model spectrum that is required in
order to derive focusing algorithms in the frequency domain [6].

Fig. 2. Slant range for different point scatterers for the monostatic and the
bistatic case. (a) Monostatic case. (b) Bistatic case.

TABLE I
MONOSTATIC AND BISTATIC SIMULATED CONFIGURATIONS.

NOTE: FOR THE MONOSTATIC CASE, ONLY THE

Tx PARAMETERS MUST BE CONSIDERED

III. POLYNOMIAL APPROXIMATIONS

USING CHEBYSHEV POLYNOMIALS

The Weierstrass theorem [12] suggests that polynomial ap-
proximation of a continuous function in an interval [a, b] can be
always performed.

A common approach in obtaining an approximating polyno-
mial is to minimize the square residual for the approximation
of a function.

This minimization finds a solution for the least squares prob-
lem, which is solved using an interpolating polynomial family
of orthogonal polynomials. The use of this kind of polynomial
approximation facilitates convergence to the target function as
the approximation order increases.

The orthogonal Chebyshev polynomials allow us to obtain
an approximation which minimizes the error in the sense of the
least squares [12] and the infinity norm. Another property is
to reduce the so-called Runge phenomenon, meaning that the
maximum approximation error is bounded.



684 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 9, NO. 4, JULY 2012

In general, the Chebyshev polynomial approximation offers
closer approximation to the minimax polynomial which rep-
resents the polynomial with the smallest maximum deviation
from the true function [13], [14]. It was shown that the use of
Chebyshev polynomials to approximate functions outperforms
the Taylor series expansion. For these reasons, the Chebyshev
approximation was chosen in this work to replace the Taylor
series in the slant range function approximation used in [7] and
[8]. The properties of the Chebyshev polynomial approximation
lead to a better approximation of the phase history of the
signal allowing the design of a more accurate matched filter
to improve the image quality, and this result is achieved by the
reduction of the overall error and by the reduction of the Runge
effect approximating better the slant range function at the start
and at the end of the acquisition.

IV. SLANT RANGE APPROXIMATION

In this section, the Chebyshev approximation is used to
represent the double squared root range function of the bistatic
SAR geometry shown in Fig. 1. The Chebyshev approximation
is stopped at the fourth order for the computation of R(η). In
this way, our analysis is comparable with that in [7] and [8] in
order to show that using the Chebyshev polynomial, with the
same order of the expansion, results in better approximation
of the slant range function. In addition, the uncompensated
phase error should be limited to be within ±π/4, in order to
keep good image quality, and the fourth-order approximation
can guarantee this condition for a large family of acquisition
configurations for the approach used in [7] and [8]. The order
can be reduced to the third in the cases where the phase error
is already within the limits of ±π/4, while if the specific
application would require a higher phase accuracy, the order of
the approximation can be increased. We will demonstrate that
our approach leads to a better accuracy also in terms of phase
accuracy at parity of order of the approximation.

The resulting polynomial approximation of R(η) is

R̂Cheb(η) =

n∑
k=0

ckTk(η)

= c0 + c1T1(η) + c2T2(η) + c3T3(η) + c4T4(η)

= 8c4η
4 + 4c3η

3 + η2(2c2 − 8c4) + η(c1 − 3c3)

+ c0 − c2 + c4 (3)

where Ti denotes the Chebyshev polynomials of the first kind
and ci denotes the Chebyshev coefficients computed on the
Chebyshev nodes [9]. There are four kinds of Chebyshev
polynomials, and the first kind is used in this letter. However,
all the four kinds of Chebyshev polynomials share the same
properties and could be used with similar quality of the
approximation [13].

The coefficients in (3) can be grouped as follows:

g0 = c0 − c2 + c4 g1 = c1 − 3c3

g2 =2c2 − 8c4 g3 = 4c3 g4 = 8c4. (4)

Now, (3) can be written as

R̂(η)Cheb = g4η
4 + g3η

3 + g2η
2 + g1η + g0. (5)

Equation (5) is the Chebyshev approximation in polynomial
form of the bistatic slant range function. The fundamental
difference between this new approximation in (5) to that re-
ported in [7] and [8] is that the coefficients for the spectrum
are now computed starting from the coefficients gi, which are
obtained with the Chebyshev approximation rather than the
Taylor approximation.

The 2-D point target spectrum [7], [8] is derived using the
formulation in (5). Starting from the Fourier transform of the
range compressed signal, in order to obtain the 2-D point
target spectrum, the principle of stationary phase is applied.
In this, the approximated version of the slant range function
replaces the phase term of the azimuth Fourier transform. This
yields a power series expression that links the slow time with
the Doppler frequency. Inverting the power series using the
method of series reversion produces the desired 2-D point target
spectrum. The resulting 2-D point target spectrum is

S2df (fτ , fη) = Wr(fτ )Waz

(
fη + (f0 + fτ )

g1
c

)
× exp jΦ2df (fτ , fη) (6)

where

Φ2df (fτ , fη)≈− 2π

(
f0+fτ

c

)
g0

+2π
c

4g2(f0+fτ )

(
fη+(f0+fη)

g1
c

)2

+2π
c2g3

8g32(f0+fτ )2

(
fη+(f0+fη)

g1
c

)3

+2π
c3(9g23−4g2g4)

64g52(f0+fτ )3

(
fη+(f0+fη)

g1
c

)4

(7)

and gi, i = 0, 2, . . . , 4, denotes the coefficients of the Cheby-
shev polynomial approximation given in (4).

In the proposed approach, the computational cost to compute
the coefficients gi is reduced to the evaluation of the slant
range function in the Chebyshev nodes and a sum over n
real value multiplication values, where n is the approximation
order. The computation of the coefficients in the Taylor-based
approach is stopped at the fourth order. This requires the
evaluation of 4 trigonometric functions, 2 square roots, and
about 60 multiplications, while for the Chebyshev approach,
the required computations are 8 square roots and about 60
multiplications. For this reason, the computational costs of both
approaches are comparable. If the order of the approximation is
increased, the Taylor-based approach increases its complexity
more than the Chebyshev approach. This is due to the higher
number of terms required in the computation of the coefficients.
Furthermore, considering the computational burden required in
the entire image formation process that includes all the fast
Fourier transforms, matched filters, chirp scaling or range cell
migration correction, autofocus, etc., then the time required to
approximate the range history is negligible.

V. RESULTS

Azimuth-invariant and azimuth-variant configurations are
characterized by a fixed and varying baseline between the
transmitter and the receiver, respectively. Generally, it is dif-
ficult to keep the configuration azimuth invariant, and the case
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TABLE II
BISTATIC SIMULATION PARAMETERS

TABLE III
MEASURED SLL, PSLR, AND ISLR VALUES

FOR THE AZIMUTH-INVARIANT CASE

of azimuth-variant configurations is the most frequent. In the
performance analysis, both configurations were simulated. In
the first test (azimuth invariant), a point scatterer in the center
of the scene (azimuth sample = 1000 and range sample = 182)
is simulated. From the 2-D spectrum of the range compressed
received signal, the value of Φ2df (fτ , fη) is compensated,
obtaining the point target response of the bistatic SAR system.
The improvement in the quality using the Chebyshev approach
is measured using the sidelobe level (SLL), the peak sidelobe
ratio (PSLR), and the integrated sidelobe ratio (ISLR). The SLL
is defined as the level of the first sidelobe while the PSLR and
the ISLR are defined as follows:

PSLR =10 log
maximum sidelobe power

main lobe power

ISLR =10 log
total power in sidelobes

main lobe power
.

The results shown in Table III are obtained measuring the
impulse response in the case of a bistatic azimuth-invariant
configuration with parameters given reported in Table II using
the Taylor and Chebyshev coefficients for the 2-D phase of the
point target spectrum.

The results for the range and azimuth gates using the two
approaches are shown in Table III. These results show that
the proposed approach allows us to obtain an improvement in
the bulk compression in terms of power in the sidelobes. This
result is due to the more accurate approximation of the slant
range function with the Chebyshev approach leading to a more
accurate analytical solution of the point target spectrum.

A second simulation is performed using the bistatic azimuth-
variant configuration as specified in Table II. The first result
in Fig. 3 shows the approximation of the slant range function
using the Taylor and the Chebyshev polynomial. The maximum
error is of 0.06 m, while using the Chebyshev approximation,
the maximum error is 3.63× 10−11 m. These results indicate
that the polynomial coefficients obtained with the Chebyshev
approach improve the accuracy of the approximation. This
result has a direct impact on the accuracy of the point target
spectrum. Fig. 4 shows the phase error of the point target
spectrum using the Taylor and the Chebyshev approximation

Fig. 3. Approximations of the slant range function using Taylor and Cheby-
shev approximation.

Fig. 4. Phase error for the azimuth-variant configuration reported in Table II.
(a) Taylor approximation. (b) Chebyshev approximation.

TABLE IV
MEASURED SLL, PSLR, AND ISLR VALUES

FOR THE AZIMUTH-VARIANT CASE

for the bistatic configuration in Table II. The configuration
exhibits a moderate squint angle, and the phase error is seen
to be reduced by the use of the Chebyshev approximation.
This implies that the Chebyshev-based approach is more robust,
thus facilitating the processing of a wider family of bistatic
configurations. The results for the respective impulse responses
obtained using this configuration are reported in Table IV.
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TABLE V
MEASURED MAXIMUM ERROR FOR APPROXIMATION

ORDER FROM 1 TO 6

TABLE VI
MEASURED STANDARD DEVIATION (σ) OF THE ERROR

FOR APPROXIMATION ORDER FROM 1 TO 6

In this case, the advantage in using the new Chebyshev
approximation method approach is more pronounced compared
to the azimuth-invariant case. In particular, in the azimuth
direction, the power in the main lobe is observed to be sig-
nificantly increased when using the Chebyshev approximation.
This confirms the capability of the new method in handling
shape variations of the slant range function, which are more
evident in the azimuth-variant configuration.

By increasing the order of the approximation, a problem of
numerical instability can appear. This is due to the fact that
the coefficients of the Chebyshev series become very small.
This aspect has also been analyzed through simulations by
comparing the performances of the Taylor and the Chebyshev
approximation for different approximation orders. The results
of the measured approximation error obtained using the pa-
rameters in Table II are reported in Table V and Table VI:
From these results, it is evident that increasing the order of the
Chebyshev approximation reduces the capability to outperform
the Taylor series approximation, and this aspect is in contrast
with the theoretical analysis because of the numerical instabil-
ity. However, the results are still much better than the Taylor
series approximation.

VI. CONCLUSION

In this letter, a new polynomial Chebyshev approximation
of the bistatic slant range function was analytically derived.
The proposed approximation is intended to replace the Taylor
approximation of the slant range function used in [7] and [8]
to derive the analytical bistatic point target spectrum. The pro-
posed approximation is easy to compute and does not increase
the computational complexity with respect to the Taylor-based
approach.

The use of the Chebyshev polynomials leads to a least
squares approximation (minimizing the L2 norm of the error),

in addition to obtaining a bound on the maximum error (mini-
mizing the L∞ norm of the error). This means that the approx-
imated phase history will be closer to the original, allowing a
more accurate focusing stage.

The approximation errors using the Taylor and the
Chebyshev polynomials have been evaluated in this work, con-
firming the theoretical capability of the Chebyshev approach
to minimize the norm of the error. However, working with
such an accurate approximation some numerical instability may
occur, and this aspect must be considered in the choice of the
approximation order.

The new Chebyshev polynomial coefficients have been used
to replace the Taylor coefficients in the analytical bistatic
point target spectrum. The resulting point target spectrum has
been tested with an azimuth-invariant and an azimuth-variant
bistatic configuration. The results confirm that the Chebyshev
approximation provides a more accurate approximation of the
bistatic point target spectrum, leading to a more accurate and
correctly located impulse response.
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