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Abstract—The effectiveness of frequency domain processing
algorithms in bistatic SAR depends on the accuracy of approx-
imations used for the derivation of the bistatic point target
spectrum. This paper presents a modified bistatic point target
spectrum based on the 2 dimensional principle of stationary
phase with the accuracy improved by the use of a Chebyshev
polynomial approximation. The performance of the new method
is compared to the conventional Taylor series approximation
approach in the approximation of the range-azimuth frequencies
coupling variable. The new approach is shown to provide a more
accurate approximation reducing the phase error. The accuracy
improvement is shown to yield a more accurate spectrum that
can be exploited in bistatic SAR focusing algorithms, improving
their accuracy and efficiency.

Index Terms—Bistatic SAR, point target spectrum, Chebyshev
approximation

I. INTRODUCTION

Bistatic SAR operates with a separate transmitter and re-
ceiver introducing new characteristics compared to traditional
monostatic SAR systems [1]. Some of the advantages of the
bistatic configuration include i) the reduction of vulnerability
of the system in military applications with the ability of having
the transmitter located at save distances from a hostile area
ii) the capability for the bistatic system to be employed for
imaging in the flight direction or backwards in flight assistance
systems iii) reduction of costs iv) measurement of the bistatic
clutter characteristic and v) the reduction of the dihedral and
polyhedral effects in urban areas improving the images quality.
However the bistatic flight configuration poses two critical
technological challenges. The first involves syncronization of
the transmitter and the receiver both in space and time. A good
solution for this issue was developed in [2]. The second critical
challenge of the bistatic SAR configuration is the requirement
for an approximation of the bistatic point target spectrum
which is significantly different from the monostatic case. This
is principally due to the bistatic slant range function that is
characterized by the sum of two hyperbolas [1] rather than a
single hyperbola in the monostatic case. This double squared
root function makes the derivation of a signal spectrum model
for focussing algorithms in the frequency domain much more
challenging than in the monostatic case. Different approaches
have been proposed to address this problem, some numerical
like NuSAR [3] and the Dip Move Out technique [4], some
mathematical such as the Loffeld’s bistatic formula [5] the 2D
Principle of Stationary Phase (PSP) [6] and the Method of
Series Reversion [7], [8]. The Point Target Spectrum (PTS)

proposed in [6] is probably the most accurate and robust PTS
able to work in the azimuth variant case. In our previous work
[9] the accurancy of the bistatic point target spectrum based
on the method of Series reversion [7] was improved using
the Chebyshev polynomial series expansion. In this work we
propose a similar approach in order to improve the 2D PSP
based PTS [6] replacing the Taylor expansion. We will present
the improvements using the Chebyshev polynomial approxim-
ation [10] to be used for the decoupling of the range-azimuth
frequency components. The proposed approach replaces the
coefficients of the polynomial Taylor series expansion of the
azimuth-range frequency coupling term with the ones obtained
using the Chebyshev polynomial approximation. The obtained
coefficients are then used to obtain an analytical formulation
of the bistatic point target spectrum as in [6].

The remainder of paper is organized as follows. In section II
the bistatic SAR signal model and the 2D bistatic point target
spectrum are discussed. In section III the new method of using
Chebyshev polynomials is developed deriving the new bistatic
Point Target Spectrum. Section IV presents comparative res-
ults that indicate the superior performance obtained to those
obtained using the original method [6].

II. BISTATIC SIGNAL MODEL AND 2D PSP POINT TARGET
SPECTRUM

In a bistatic SAR the transmitter and the receiver can have
different velocities, altitudes and flight paths, leading to the
possibility of having different acquisition configurations. The
simplest case is when both transmitter and receiver have
the same velocity and parallel flight paths, while a more
complicated configuration exists when the platforms have
different velocities and non parallel flight paths. As in the
monostatic case [11] the area to be imaged is a collection of
point scatterers. This implies that it is sufficient to analyse
the scene using the response of an arbitrary point scatterer
and then consider the superposition of the echoes to obtain
the focused image. The received bistatic signal model can be
written as [6]:

s(τ, t, τ0R, R0R) = σ(τ0R, R0R)p

(
t− RR(τ) +RT (τ)

c

)
×exp

[
−j2πRR(τ) +RT (τ)

λ

]
w(τ − τcb)

(1)



where τ is the slow time, σ(τ0R, R0R) is the complex backs-
catterer coefficient of the point target located at (τ0R, R0R),
λ is the carrier wavelength , p(.) is the range envelope and
w(.) is the composite antenna pattern of the transmitter and
receiver centred in the azimuth time τcb. RR(τ) and RT (τ)
are the instantaneous receiver and transmitter slant ranges to
the point target.

RR(τ) =
√
R2

0R + (τ − τ0R)2v2R

RT (τ) =
√
R2

0T + (τ − τ0T )2v2T (2)

where R0R and R0T are the closest slant ranges from the
receiver and transmitter to the point target, vR and vT are the
receiver and transmitter velocity respectively. From (2) and (1)
it can be seen that the signal model is modulated in the slow
time by a double squared root (DSR) function given by the
sum of the istantaneous slant ranges. This makes the derivation
of an accurate bistatic point target spectrum a difficult problem
to solve.
In [6] a bistatic SAR point target spectrum using the two-
dimensional principle of stationary phase was proposed. It was
demonstrated the accuracy of this BPTS with simulated and
real data. The expression of the point target spectrum obtained
in [6] is:

ΨB(fτ , f, R0R) = πβaτ0Rfτ + 2π(p01 + p11R0R)kT fτ+

2π

[
R0R

c
FR +

R0T

c
FT

]
+ Φ̄RCM (f) + ΦRes(τ0R, R0R)

(3)

where P (τ0R, R0R), τ0R is the zero-Doppler time of the
receiver, the coefficients pij are obtained using the geometrical
image transformation of τ0T to obtain as a function of τ0R
and R0R. βa is the scaling factor in the azimuth domain
defined as βa = kR + p12kT , with kR and kT denoting the
receiver and transmitter azimuth modulation rate. Φ̄RCM (f)
and ΦRes(τ0R, R0R) are a component of the RCM and the
residual phase, these two are not of our direct interest and
their expression can be found in [6]. To represent the PTS
in a series of power of the range frequency and separate the
different components of the range-azimuth coupling a Taylor
series approximation of the hyperbolic frequencies coupling
variable is introduced.

FR(f) =

√
(f + f0)2 −

(
cfτR
vR

)2

FT (f) =

√
(f + f0)2 −

(
cfτT
vT

)2

(4)

where f is the range frequency, f0 is the carrier frequency, c
is the speed of light, vr and vt are the platform velocities and
fτR and fτT are the azimuth frequency variables representing
the contribute of the range equations of the receiver and
transmitter to the instantaneous Doppler frequency fτ .

As we stated before the expression of FR and FT must
be expanded in a power series to separate the different
contributions. In [6] the Taylor series is used leading to:

FR(f) ≈ DRf0 +
(1 − µR1µR2)

DR
f − (µR1 − µR2)2

2f0D3
R

f2

FT (f) ≈ DT f0 +
(1 − µT1µT2)

DT
f − (µT1 − µT2)2

2f0D3
T

f2 (5)

where :

DR =
√

1 − µ2
R1 DT =

√
1 − µ2

T1

µc =
kT vRsinθSR − kRvT sinθST

λ
× (p01 + p11R0R + p12τ0R)

+ 2π
kT vRsinθSR − kRvT sinθST

λ

µR1 =
λ

vR
(kRfτ + µc) µR2 =

λ

vR
µc

µT1 =
λ

vT
(kT fτ − µc) µT2 = − λ

vT
µc (6)

θSR and θST are the receiver and transmitter squint angle
at the composite beam center. Then substituting (5) in (3) it
is possible to obtain a form of the PTS useful to develop
focussing algorithms.

ΨB(fτ , f, R0R) = ΦRC(fτ , f) + ΦRCM (fτ , f, R0R)+

ΦAC(fτ , R0R) + ΦAS(fτ ) (7)

with:

ΦRC(fτ , f) ≈ π
f2

Kr
− π

f2

KSRC
(8)

ΦRCM (fτ , f, R0R) =
2π

c

[
R0R

DR
+
R0T

DT

]
f (9)

ΦAC(fτ , R0R) = 2π(p01 + p11R0R)kT fτ

+
2π

λ
(R0RDR +R0TDT ) (10)

ΦAS(fτ ) = 2πβaτ0Rfτ (11)

1

KSRC
=

[
RRR

(µR1 − µR2)2

cf0D3
R

+

RRT
(µT1 − µT2)2

cf0D3
T

]
(12)

RRR and RRT are the reference slant range of the transmitter
and the receiver respectively.
The spectrum in (7) is the main result in [6] that resulted to
be accurate and was tested with real data, however it can still
improved increasing its approximation accuracy. In the next
section our approach replacing the Taylor approximation with
the Chebyshev one is proposed.



III. POLYNOMIAL APPROXIMATIONS USING CHEBYSHEV
POLYNOMIALS

Weierstrass theorem [12] suggests that polynomial approx-
imation of a continuous function in an interval [a, b] can
be always performed. A common approach in obtaining an
approximating polynomial is to minimize the square residual
for the approximation of a function. This minimization finds a
solution for the least squares problem, which is solved using
an interpolating polynomial family of orthogonal polynomials.
The use of this kind of polynomial approximation facilitates
convergence to the target function as the approximation order
increases. The orthogonal Chebyshev polynomials allow us
to obtain an approximation which minimizes the error in the
sense of the least squares [12] and the infinity norm. An-
other property is to reduce the so called Runge phenomenon,
meaning that the maximum approximation error is bounded.
In general the Chebyshev polynomials approximation offers
closer approximation to the minimax polynomial which rep-
resent the polynomial with the smallest maximum deviation
from the true function [10]. In [13] it was shown that the use of
Chebyshev polynomials to approximate functions outperforms
the Taylor series expansion. For these reasons Chebyshev
approximation was chosen in this work to replace the Taylor
series used in [6]. The properties of the Chebyshev polynomial
approximation lead to a better approximation of the phase
history of the signal allowing the design of a more accurate
matched filter to improve the image quality, this result is
achieved by the reduction of the overall error. In our previous
work [9] the accuracy of the bistatic point target spectrum
based on the method of Series reversion [7] was improved
using the Chebyshev polynomial series expansion. In this work
we propose a similar approach in order to improve the 2D PSP
based PTS replacing the Taylor expansion in (5). We then
approximate (4) using the Chebyshev polynomial of the first
kind stopping the approximation at the second order as in (5):

FR(f) ≈
2∑
j=1

gjRTj(f) − 1

2
g0R = −1

2
g0R+

g1RT1(f) + g2RT2(f) =

−
(

1

2
g0R + g2R

)
+ g1Rf + 2g2Rf

2 =

F̂0R + g1Rf + 2g2Rf
2

FT (f) ≈
2∑
j=1

gjTTj(f) − 1

2
g0T = −1

2
g0T+

g1TT1(f) + g2TT2(f) =(
−1

2
g0T + g2T

)
+ g1T f + 2g2T f

2

F̂0T + g1T f + 2g2T f
2 (13)

the Chebyshev coefficients gjR and gjT are computed as:

g0R =
1

3

2∑
k=0

FR(fk)T0(fk) gjR =
2

3

2∑
k=0

FR(fk)Tj(fk)

g0T =
1

3

2∑
k=0

FT (fk)T0(fk) gjT =
2

3

2∑
k=0

FT (fk)Tj(fk)

(14)

where fk are the Chebyshev nodes obtained as:

fk =
fmin + fmax

2
−
[
fmax + fmin

2
cos

((
2k + 1

6
π

))]
(15)

with fmin and fmax representing the maximum and the
minimum of the range Doppler spectrum. The term in (3)
that will be affected from our approximation is the third term
χ(f, fτ ) = π

[
R0R

c FR + R0T

c FT
]

, that becomes:

χ(f, fτ ) ≈2π

[
R0R

c
F̂R +

R0T

c
F̂T

]
=

2π

[
R0R

c
(F̂0R+ g1Rf + 2g2Rf

2)

+
R0T

c
(F̂0T + g1T f + 2g2T f

2)

]
=

2π

c
(R0RF̂0R +R0T F̂0T )+

2πf

c
(R0Rg1R +R0T g1T )+

4πf2

c
(R0Rg2R +R0T g2T ) (16)

From (17) the different contributes can be separated and
grouped with the remaining from (3) as:

Φ̂RC(fτ , f) =
πf2

kR
+

4πf2

c
(R0Rg2R +R0T g2T )

Φ̂AC(fτ , R0R) =2π(p01 + p11R0T )kT fτ

+
2π

c
(R0RF̂0R +R0T F̂0T )

Φ̂RCM (fτ , f) =
2πf

c
(R0Rg1R +R0T g1T ) + Φ̄RCM (f)

(17)

The resulting bistatic point target spectrum is then :

Ψ̂B(fτ , f, R0R) = Φ̂RC(fτ , f) + Φ̂RCM (fτ , f, R0R)+

Φ̂AC(fτ , R0R) + ΦAS(fτ ) (18)

In the next section the results on the phase error due to the
approximation using Chebyshev and Taylor polynomials for
airborne and space-borne configurations are shown.

IV. RESULTS

In this section we present the results obtained simulating
both airborne and space-borne bistatic SAR configurations.
The results refers to the resulting approximation phase error
for Taylor and Chebyshev approaches. In Table I the two



Table I: Simulation parameters for the airborne and spaceborne
configurations

Airborne Spaceborne
Transmitter Receiver Transmitter Receiver

Carrier Frequency 9.65 GHz 9.65 GHz
Range Bandwidth 2 GHz 600 MHz

Squint Angles 0◦ − 85◦ 0◦ − 45◦

Velocity 110 m/s 100 m/s 7600 m/s 7630 m/s
R0 13.1 km 23.1 km 754 km 666 km

simulated configurations are reported, these configurations are
similar to those used in [6].

The phase error for the airborne configuration is shown
in Figure 1. Figure 1-a shows the phase error using the
Taylor approximation while Figure 1-b shows the phase error
using the Chebyshev approximation. The phase error obtained
with the Chebyshev polynomial approximation resulted to be
smaller than that obtained using the Taylor polynomial. The
maximum error using Chebyshev resulted to be 74.6% less
than that using the Taylor polynomial. The average absolute
phase error resulted to be of 0.002 rad for the Taylor case
while of 0.0012 rad for the Chebyshev approximation.
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Figure 1: Phase Error for the airborne configuration for the a)
Taylor and b) Chebyshev case.

The phase error for the spaceborne configuration is shown
in Figure 2 Figure 2-a shows the phase error using the
Taylor approximation while Figure 2-b shows the phase error
using the Chebyshev approximation. The phase error obtained
with the Chebyshev polynomial approximation resulted to be
smaller than that obtained using the Taylor polynomial. The
maximum error using Chebyshev resulted to be 75% less than
that using the Taylor polynomial. The average absolute phase
error resulted to be of 4.16 × 10−6 rad for the Taylor case

while of 2.57 × 10−6 rad for the Chebyshev approximation.
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Figure 2: Phase Error for the spaceborne onfiguration for the
a) Taylor and b) Chebyshev case.

With these results we can state that it will be possible
to improve the overall accuracy of the bistatic focussing
algorithms, in particular monostatic focussing algorithms can
be generalized to the bistatic case as in [6]. The main issue
coming from the phase error is the constrain on the amount
of data to process contemporary, in order keep an acceptable
accuracy in [6] the processing was constrained to be done in
blocks. With our approach this constrain still exists but with
the same limit in terms of error bigger blocks can be adopted,
improving the overall efficiency of the algorithms.

V. CONCLUSION

In this paper an improvement of the bistatic point target
spectrum based on the 2D principle of stationary phase has
been proposed. In our approach the double squared root
bistatic frequency coupling term is expanded as series of
Chebyshev polynomial, replacing the Taylor one proposed in
literature. The new approach is easy to implement in existing
algorithms exploiting this kind of model for the bistatic
PTS. In addition the computational overload is negligible
considering the general amount of computation required in
the focussing process [9].
The resulting phase error using the Chebyshev based approach
is reduced of about the 75% for both airborne and space-borne
configurations. The direct advantage of this is the possibility
to obtain a more efficient processing increasing the size of the
data blocks keeping an acceptable phase error. Further analysis
will be carried on analysing the improvement in focussing
and efficiency of the bistatic RDA and CSA proposed in



[6] and the analysis of the residual range-azimuth coupling
present in ΦRC(fτ , f) and that will result probably reduced
in Φ̂RC(fτ , f)
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