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Analog Compressive Sampling 

Random Demodulator 
[Tropp et al. 2009] 

Multi-coset sampler 
[Feng and Bressler 1996] 

Modulated Wideband  

Converter 
[Mishali and Eldar 2009] 

Signal reconstruction 

Signal detection 
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• CS was originally introduced for 

the acquisition of the digital 

signals. 

• The sparsity of the signal helps 

to recover it from small number 

of measurements. 

• We saw efficient techniques for 

the signal recovery. 

• What about Analogue CS? 

• Which signal models can be 

used in an analog setting? 

Fundamentals of Compressed Sensing (CS) 

xy ii 

Measurements 
Measurement 

Matrix 

Sparse Signal 

K nonzero elements 

M x1 M x N N x1 
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Random Demodulator 

Ideal integrator Random +/- 1’s 

• Sub-Nyquist strategy for sparse multitone signals [Tropp et al. 2009] 

– Bandlimited W/2 Hz 

– Periodic in time-domain Tx = N/W 

– Discrete, finite Fourier representation  

 

• p(t) periodic extension of random signal taking values ±1 

– “Chipping” rate equal to Nyquist rate (W Hz) 

– Period equals period of x(t) 

 

• Sample uniformly every Tx /M = N/(MW) sec   

 

4 of 20 



IDCOM, University of Edinburgh 

• Linear relationship between time domain samples y(k) and Fourier 
series coefficients of x(t) 

– CS interpretation: Measurement matrix     and sparsifying matrix  

– Want to solve for Fourier coefficients of x(t) from samples y(k)  

– But we have an underdetermined linear system 

– Because of x(t)’s sparsity, nonlinear optimization (CS) techniques can 
recover the original spectrum of x(t) (under certain conditions for M,N, 
and K)   

 

Inverse Fourier  

matrix 

Inverse Fourier  

matrix 

M x1 M x N N x N N x1 

±1’s 
Scaled Fourier series 

coefficients of x(t) 
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• Noiseless case 

– Optimisation problem 

 

• Several existing methods solve these optimisation problems 

– Orthogonal Matching Pursuit (OMP) [Tropp 2006] 

–    - minimisation (for the convex relaxed formulation) 

– Iterative Hard Thresholding [Blumensath and Davies 2008] 

 

• For    - minimisation, one can recover    with high probability if 

 

 

• Noisy case 

– Optimisation problem  

– To obtain an estimate comparable to best K approximant 
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• RD components from CS perspective 

– p(t) and integrator provide measurement (sensing) mechanism 

– Sparsifying (Fourier) matrix results from signal model 

– Sampling simply provides discrete time-domain output 

 

• No useful frequency domain interpretation 

– Multiplication by p(t) and sub-Nyquist sampling alias (mix) the signal but 

frequency domain analysis does not provide the insight it traditional 

does 

– Unlike Multi-coset sampler 
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Random Demodulator Example 

• Sampled sparse multitone signal (10 tones) bandlimited to 500 Hz 

• Random amplitudes and spectral locations 

• Sampling rate: 1/10 of Nyquist (100 Hz) 

• Recovered signal using orthogonal matching pursuit (OMP) 
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Multi-Coset Sampling (MC) 

• Non-uniform sampling technique for sparse multiband signals 
[Feng and Bressler 1996] 

 

• Sparse multiband signals 

– Bandlimited to W/2 Hz 

– K occupied bands of maximum bandwidth B Hz 

– Sparse – spectral occupancy small 

 

• Sample x(t) at time instances 
W
)c(kLt i

1


WKB

– Set of time delays          is called the 

sampling pattern 

– Collect q samples from every L 

Nyquist periods 

 q
ii

c
1
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Fourier sub-matrix Fourier sub-matrix 

L x1 q x1 q x L 

• Conceptually, MC sampling can 
be thought of as a multichannel 
system 

– Branch i delays x(t) by ci 

– Each channel samples at the 
same rate W/L Hz 

 

• Linear relationship between the 
DTFT of yi(k), i=1,…q, and the 
spectral slices of x(t) 

– L controls spectral resolution 
(width of slices in s(f))  

– Underdetermined linear system 

 

• System involves linear 
combination of functions not 
scalar values 

FT slices of x(t) 
DTFT slices 

of yi(k) 

A

s(f)

z(f)
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• To reconstruct, we need to identify unoccupied spectral slices (or 
equivalently spectral support of x(t)) 

– Reduces problem dimension so that linear system can be inverted 

 

• Reduce dimension using a modified MUSIC algorithm 

– Relies on estimating covariance matrix R of output samples 

– Eigen-decomposition of R divides ambient space into two orthogonal 
subspaces (noise and signal+noise) 

– Columns of A that lie in the null space of noise subspace identify 
occupied slices (“MUSIC spectrum”) 

 

• Different delays create linear system that allows one to undo 
destructive aliasing caused by sub-Nyquist sampling 

– Conditions on when this is possible depends on properties of A and the 
sampling pattern 
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Multi-Coset Example 

• Sampled simulated sparse multiband signal bandlimited to 1.1 GHz 

• 5 bands 

• Sampling pattern randomly chosen (uniformly) 

• Sampling rate: 440 MHz (2.5 times slower than Nyquist) 

“MUSIC spectrum” 

Original spectrum 

Reconstructed spectrum 
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Modulated Wideband Converter (MWC)  

• Sub-Nyquist sampling technique for 

sparse multiband signals [Mishali/Eldar 

2009] 

• Multichannel system 

• Each channel multiplies x(t) by a 

periodic random square wave pi(t) taking 

values ±1 

• The products x(t)pi(t) are filtered by ideal 

low pass filters each with cut-off 

frequency 1/2Ts  (Ts is sampling 

frequency)  

• Each channel samples uniformly at rate 
1/Ts 

• Overall system sampling rate q/Ts  
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• Like MC sampler, linear relationship between DTFT of yi(k) and 

slices of the FT of x(t)  

• Spectral resolution depends on the period of p
i 
(t) 

• CS interpretation: Measurement matrix     and sparsifying matrix 

 

L x L q x1 q x L L x 1 

Fourier matrix Fourier matrix 



 

±1’s DTFT slices 

of yi(k) 
FT slices of x(t) 

z(f)

s(f)
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• To reconstruct, identify spectral support, reduce dimension of linear 

system, and invert  

– Eigen-decomposition of covariance yields signal subspace 

– Solve associated linear system to find support  

 

 

– where               and V is column matrix of eigenvectors that span the 

signal subspace   

 

• Conceptually, MWC relies on the same principles as MC 

– Both systems alias the spectrum of x(t) (MC uses sampling to alias, 

MWC uses multiplication by pi(t)) 

– Both linearly relate the spectral slices of x(t) to the DTFT of yi(k)  

– Both schemes invert the linear system by reducing the problem 

dimension (finding the support of s(f)) 
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Support of U same as 

support of s(f) 

A

15 of 20 



IDCOM, University of Edinburgh 

A Practical Application:  

Sub-Nyquist Electronic Surveillance 

• Needs a wide-bandwidth ADC for the front end. 

• A single unit ADC to cover whole bandwidth is not practical. 

• Rapid Swept Superheterodyne Receiver is based on time-sharing technique. 

• The goal is to have a low SWAP alternative. 16 of 20 
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Low Complexity Multicoset Sampling 

• MC has a simple analog front end.  

• It uses a subspace method for signal reconstruction, i.e. high computation. 

• A low-complexity algorithm can be presented using TF thresholding method. 

• While T/H is working in the sub-Nyquist rate, T part should be able to work in 

Nyquist rate. 

• TF here is STFT and it is jointly implemented with the Fractional delay. 

• Subband Classifier is a simple linear plus a comparator operator.  
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Radar Surveillance Signal Reconstruction 
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Comparison with MUSIC and RSSR 
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Summary 

• Random demodulator  

– Directly inspired by CS 

– Sparse multitone signals 

– Formulation and signal reconstruction directly rely on standard CS 
algorithms 

 

• Multi-coset sampler 

– Sub-Nyquist scheme that predates CS 

– Sparse multiband signals 

– Formulation and signal reconstruction have many close ties to CS 

 

• Modulated Wideband Converter 

– Sub-Nyquist scheme based on the principles of MC sampling but 
leverages and incorporates CS and random demodulator ideas  

– Sparse multiband signals 
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