

## Compressed Sensing for Analog-to-Information Processing





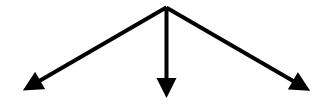


Engineering and Physical Sciences Research Council

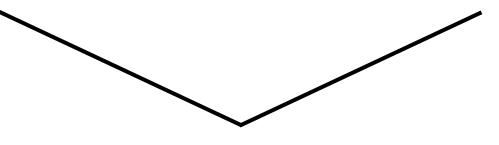
Mehrdad Yaghoobi In collaboration with Michael Lexa, Bernie Mulgrew and Mike Davies *Institute of Digital Communications* University of Edinburgh



### Analog Compressive Sampling



Random Demodulator [Tropp et al. 2009] Multi-coset sampler [Feng and Bressler 1996] Modulated Wideband Converter [Mishali and Eldar 2009]

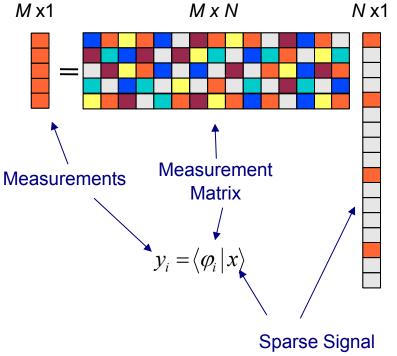


Signal reconstruction Signal detection



## **Fundamentals of Compressed Sensing (CS)**

- CS was originally introduced for the acquisition of the digital signals.
- The sparsity of the signal helps to recover it from small number of measurements.
- We saw efficient techniques for the signal recovery.
- What about Analogue CS?
- Which signal models can be used in an analog setting?

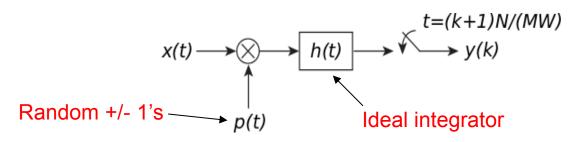


K nonzero elements



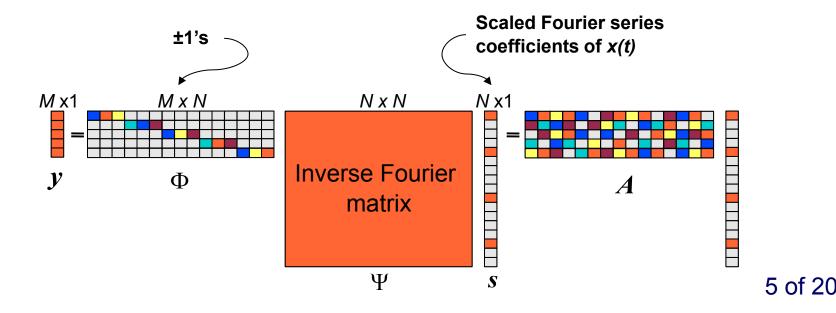
## **Random Demodulator**

- Sub-Nyquist strategy for **sparse multitone signals** [Tropp et al. 2009]
  - Bandlimited W/2 Hz
  - Periodic in time-domain  $T_x = N/W$
  - Discrete, finite Fourier representation
- *p(t)* periodic extension of random signal taking values ±1
  - "Chipping" rate equal to Nyquist rate (WHz)
  - Period equals period of x(t)
- Sample uniformly every  $T_x/M = N/(MW)$  sec





- Linear relationship between time domain samples *y*(*k*) and Fourier series coefficients of *x*(*t*)
  - CS interpretation: Measurement matrix  $\Phi$  and sparsifying matrix  $\Psi$
  - Want to solve for Fourier coefficients of x(t) from samples y(k)
  - But we have an underdetermined linear system
  - Because of *x(t)*'s sparsity, **nonlinear optimization (CS)** techniques can recover the original spectrum of *x(t)* (under certain conditions for M,N, and K)





- Noiseless case
  - Optimisation problem  $\hat{s} = \operatorname{argmin} \|v\|_0$  subject to Av = y
- Several existing methods solve these optimisation problems
  - Orthogonal Matching Pursuit (OMP) [Tropp 2006]
  - $-\ell$  minimisation (for the convex relaxed formulation)
  - Iterative Hard Thresholding [Blumensath and Davies 2008]
- For  $\ell_1$ -minimisation, one can recover s with high probability if  $M \ge c \Big( K \log WT_x + (\log WT_x)^3 \Big)$
- Noisy case
  - Optimisation problem  $\hat{s} = \operatorname{argmin} \|v\|_0$  subject to  $\|Av y\| \le \varepsilon$
  - To obtain an estimate comparable to best K approximant

$$M \ge cK \log^6 WT_x$$



- RD components from CS perspective
  - p(t) and integrator provide measurement (sensing) mechanism
  - Sparsifying (Fourier) matrix results from signal model
  - Sampling simply provides discrete time-domain output
- No useful frequency domain interpretation
  - Multiplication by *p(t)* and sub-Nyquist sampling alias (mix) the signal but frequency domain analysis does not provide the insight it traditional does
  - Unlike Multi-coset sampler

$$x(t) \longrightarrow \bigotimes h(t) \longrightarrow y(k)$$

$$p(t)$$

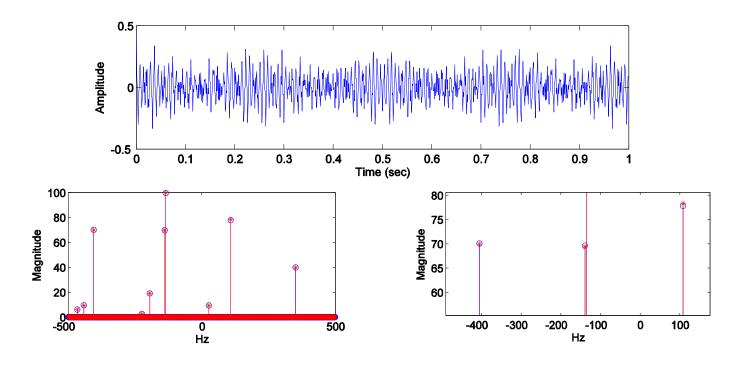
$$t = (k+1)N/(MW)$$

$$y(k)$$



### **Random Demodulator Example**

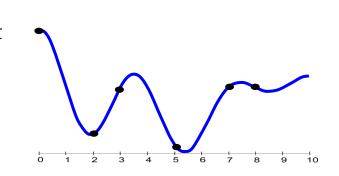
- Sampled sparse multitone signal (10 tones) bandlimited to 500 Hz
- Random amplitudes and spectral locations
- Sampling rate: 1/10 of Nyquist (100 Hz)
- Recovered signal using orthogonal matching pursuit (OMP)





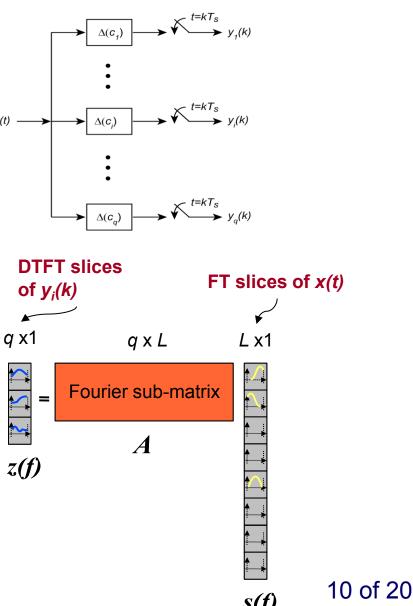
# Multi-Coset Sampling (MC)

- Non-uniform sampling technique for sparse multiband signals [Feng and Bressler 1996]
- Sparse multiband signals
  - Bandlimited to W/2 Hz
  - K occupied bands of maximum bandwidth B Hz
  - Sparse spectral occupancy small  $KB \ll W$
- Sample *x*(*t*) at time instances  $t = (kL + c_i) \frac{1}{W}$ 
  - Set of time delays  $\{C_i\}_{i=1}^q$  is called the sampling pattern
  - Collect *q* samples from every *L* Nyquist periods



#### IDCOM, University of Edinburgh

- Conceptually, MC sampling can be thought of as a multichannel system
  - Branch *i* delays x(t) by  $c_i$
  - Each channel samples at the same rate W/L Hz
- Linear relationship between the DTFT of y<sub>i</sub>(k), i=1,...q, and the spectral slices of x(t)
  - L controls spectral resolution (width of slices in *s(f)*)
  - Underdetermined linear system
- System involves linear combination of **functions** not scalar values





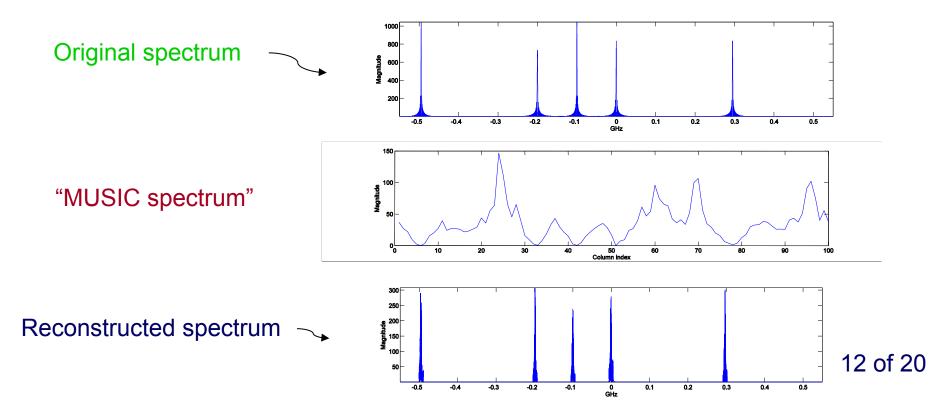


- To reconstruct, we need to identify unoccupied spectral slices (or equivalently spectral support of x(t))
  - Reduces problem dimension so that linear system can be inverted
- Reduce dimension using a modified MUSIC algorithm
  - Relies on estimating covariance matrix *R* of output samples
  - Eigen-decomposition of *R* divides ambient space into two orthogonal subspaces (noise and signal+noise)
  - Columns of A that lie in the null space of noise subspace identify occupied slices ("MUSIC spectrum")
- Different delays create linear system that allows one to undo destructive aliasing caused by sub-Nyquist sampling
  - Conditions on when this is possible depends on properties of A and the sampling pattern



## **Multi-Coset Example**

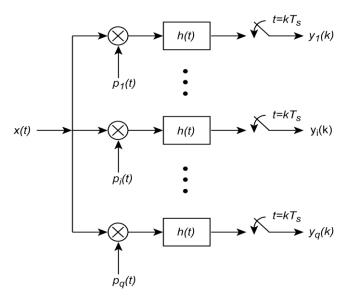
- Sampled simulated sparse multiband signal bandlimited to 1.1 GHz
- 5 bands
- Sampling pattern randomly chosen (uniformly)
- Sampling rate: 440 MHz (2.5 times slower than Nyquist)





## Modulated Wideband Converter (MWC)

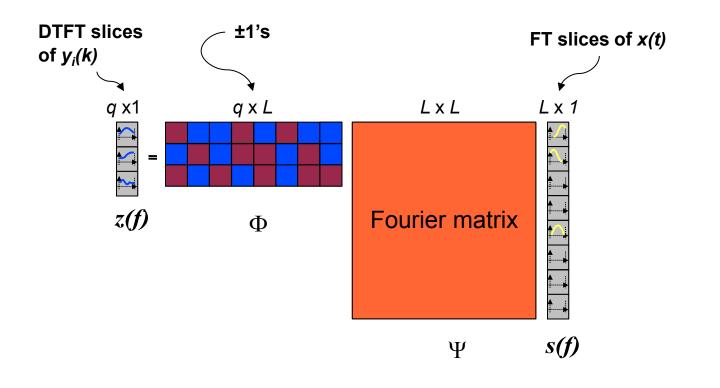
- Sub-Nyquist sampling technique for sparse multiband signals [Mishali/Eldar 2009]
- Multichannel system
- Each channel multiplies x(t) by a periodic random square wave p<sub>i</sub>(t) taking values ±1
- The products  $x(t)p_i(t)$  are filtered by ideal low pass filters each with cut-off frequency  $1/2T_s$  ( $T_s$  is sampling frequency)
- Each channel samples uniformly at rate  $1/T_s$
- Overall system sampling rate  $q/T_s$



#### IDCOM, University of Edinburgh



- Like MC sampler, linear relationship between DTFT of y<sub>i</sub>(k) and slices of the FT of x(t)
- Spectral resolution depends on the period of  $p_i(t)$
- CS interpretation: Measurement matrix  $\Phi$  and sparsifying matrix  $\Psi$



- To reconstruct, identify spectral support, reduce dimension of linear system, and invert
  - Eigen-decomposition of covariance yields signal subspace
  - Solve associated linear system to find support

 $V(\lambda) = AU(\lambda) +$ 

Support of *U* same as support of *s(f)* 

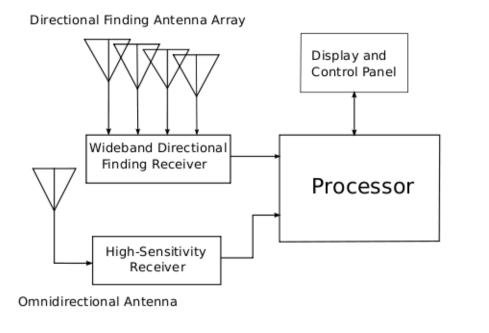
- where  $A = \Phi \Psi$  and V is column matrix of eigenvectors that span the signal subspace
- Conceptually, MWC relies on the same principles as MC
  - Both systems alias the spectrum of x(t) (MC uses sampling to alias, MWC uses multiplication by  $p_i(t)$ )
  - Both linearly relate the spectral slices of x(t) to the DTFT of  $y_i(k)$
  - Both schemes invert the linear system by reducing the problem dimension (finding the support of *s*(*f*))



#### IDCOM, University of Edinburgh



## A Practical Application: Sub-Nyquist Electronic Surveillance





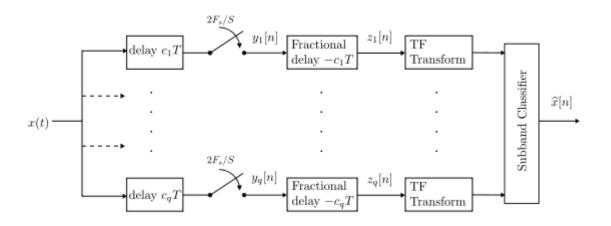
- Needs a wide-bandwidth ADC for the front end.
- A single unit ADC to cover whole bandwidth is not practical.
- Rapid Swept Superheterodyne Receiver is based on time-sharing technique.
- The goal is to have a low SWAP alternative.

16 of 20



## Low Complexity Multicoset Sampling

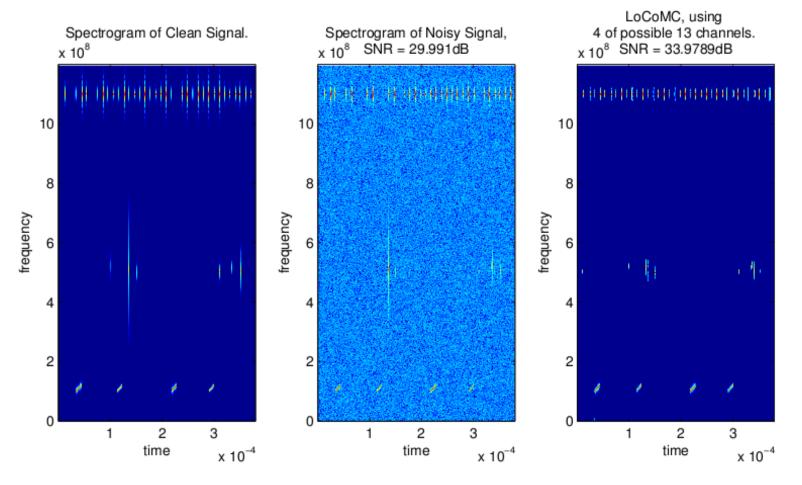
- MC has a simple analog front end.
- It uses a subspace method for signal reconstruction, *i.e.* high computation.
- A low-complexity algorithm can be presented using TF thresholding method.



- While T/H is working in the sub-Nyquist rate, T part should be able to work in Nyquist rate.
- TF here is STFT and it is jointly implemented with the Fractional delay.
- Subband Classifier is a simple linear plus a comparator operator.



### **Radar Surveillance Signal Reconstruction**

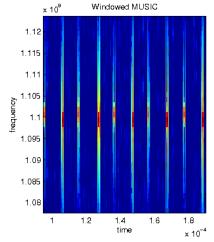


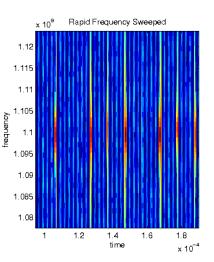
18 of 20

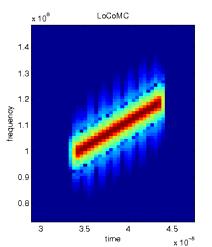


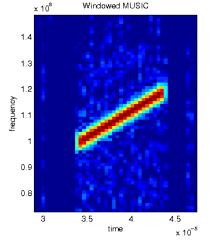
### **Comparison with MUSIC and RSSR**

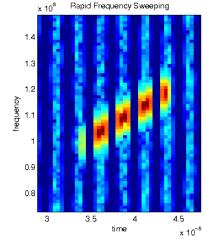












### 19 of 20



## Summary

- Random demodulator
  - Directly inspired by CS
  - Sparse multitone signals
  - Formulation and signal reconstruction directly rely on standard CS algorithms
- Multi-coset sampler
  - Sub-Nyquist scheme that predates CS
  - Sparse multiband signals
  - Formulation and signal reconstruction have many close ties to CS
- Modulated Wideband Converter
  - Sub-Nyquist scheme based on the principles of MC sampling but leverages and incorporates CS and random demodulator ideas
  - Sparse multiband signals