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Sparse Representation

linear model noise effect

`0 Sparse Representation

argmin
x
‖x‖0 s. t. y = Φx

`0 Sparse Approximation

argmin
x
‖x‖0 s. t. ‖y − Φx‖2 ≤ ε
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Why Sparse Approximation Is Difficult?

Difficulties?

Combinatorial optimisation → Non-polynomial time solvers.

Non-Smooth objective → No (direct) Gradient Descent method.

Possible Approaches?

Relaxation of the objective, e.g. convex surrogate objective
`p, 1 ≤ p

Approximate solution finding, e.g. greedy and iterative methods.

Combination of two, e.g. surrogate objective `pp, 0 ≤ p < 1
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What would be covered in this session?

1 Convex relaxation and optimisation techniques.

2 Broader range sparse approximation methods.

3 Greedy optimisation techniques.

4 Iterative thresholding methods.
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Convex Relaxation

Bounded K-Sparse Vectors

X = {x : ‖x‖0 ≤ k, ‖x‖∞ ≤ 1}

Assumption in This Talk

Φ has normalised columns.
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Convex Relaxation

Bounded K-Sparse Vectors

X = {x : ‖x‖0 ≤ k, ‖x‖∞ ≤ 1}

Assumption in This Talk

Φ has normalised columns.

Convex Hull of K-Sparse Vectors: `1-ball

C ={λx1 + (1− λ)x2 : 0 ≤ λ ≤ 1, x1, x2 ∈ X}

={x : ‖x‖1 =
∑
i

|xi | ≤ τ}
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`1 Convex Optimisation: A Geometric View

`1 Convex Optimisation Formulation

Basis Pursuit (BP):[Chen et al. 98]

argminx ‖x‖1 s. t. y = Φx

Noisy `1 Convex Formulations

Basis Pursuit Denoising (BPDN): [Chen et al. 98]

argminx ‖x‖1 s. t. ‖y − Φx‖2
2 ≤ ε

Least Absolute Shrinkage/Selection Operator (LASSO):
[Tibshirani 96]

argminx ‖y − Φx‖2
2 s. t. ‖x‖1 ≤ τ

Regularised Sparse Approximation:
argminx ‖x‖1 + λ ‖y − Φx‖2

2
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Convex Optimisation Techniques for Sparse
Representation

Properties

Smooth but non-differentiable objectives. (instead of LASSO)

Often, no need to solve it with the machine precision.

Medium to large scale problems.

Optimisation techniques

Interior point methods.

First order methods, i.e. Gradient descent methods.

Forward-Backward techniques.

Augmented Lagrangian method.

.... many more!!!
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Iterative Soft Thresholding: Motivation

The unconstrained optimisation:

argminx ‖x‖1 + λ ‖y − Φx‖2
2

Non-differentiable objective: subgradient descent method.

Convergence is very slow.

Idea

We know how to solve,
x∗ = argminx ‖x‖1 + λ ‖z − x‖2

2

x∗i = S(zi ,
1

2λ
) =


0 |zi | ≤ 1

2λ
zi − 1

2λ zi >
1

2λ
zi + 1

2λ zi <
−1
2λ

The solution is called Soft-thresholding.
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Majorization Minimisation

Decoupling the Minimisation Objective

The objective has some coupling between elements of x ⇒ a single
soft-thresholding does not find the solution.

Majorization Minimisation (MM) can be used to decouple the
optimisation problem around current solution.

Majorization Minimisation

Problem: x∗ = argminx f (x)

Q(x , x [n]) majorizes f (x) at x [n] if,
Q(x , x [n]) ≥ f (x), Q(x [n], x [n]) = f (x [n]).

Majorization Minimisation Technique:
x [n+1] = argminx Q(x , x [n])

MM monotonically decreases the original
objective value.
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Iterative Soft Thresholding: Algorithm

Taylor’s approximation for deriving majorizing function.

‖y − Φx‖2
2 ≤

∥∥∥y − Φx [n]
∥∥∥2

2

+2(x − x [n])TΦT (Φx − y) + L/2
∥∥∥x − x [n]

∥∥∥2

2

We derive a new optimisation problem which can be solved using
soft thresholding [Daubechies et al. 03],

x [n+1] = argmin
x
‖x‖1 +

L

2

∥∥∥∥x − (x [n] − 2

L
ΦT (Φx [n] − y))

∥∥∥∥2

2

=S(x [n] − 2

L
ΦT (Φx [n] − y),

1

2λ
)

Convergence

Iterate to achieve ε residual error or for K times.

Converges linearly O( 1
n ) → slow convergence!
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Accelerated First Order Methods

Linear convergence O( 1
n ) v.s. O( 1

n2 )

As the objective is not differentiable, we can not expect quadratic
convergence rate, i.e. similar to Newton’s method.

We can still accelerate using optimal first order methods, i.e. O( 1
n2 ).

Idea: using the information of two recent iterations.

Different approach to achieve such a goal, e.g. FISTA [Beck and
Teboulle 09], NESTA [Becker et al. 11], Nesterov’s method [Nestrov
83].

FISTA

1 t [n+1] =
1+
√

1+(2t [n])2

2

2 z [n+1] = x [n] + t [n]−1
t [n+1] (x [n] − x [n−1])

3 x [n+1] = S(z [n]−βΦT (Φz [n]−y), β/λ)
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Gradient Projection for LASSO Problem

argminx ‖y − Φx‖2
2 s. t. ‖x‖1 ≤ τ

LASSO problem has a smooth objective and convex constraint.

Projection onto the `1 ball, P`1 (x , τ), can be done efficiently, i.e.
O(n log n).

Projected Gradient method is suitable for this problem, e.g. SPGl1
[Van Den Berg and Friedlander 08].

SPGl1

1 G (x [n+1]) = −2ΦT (Φx [n] − y)

2 x [n+1] = P`1 (x [n] − βG (x [n+1]), τ)

Converges linearly, but much faster than IST.

O(n) projection onto `1 ball for large scale problems.
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Gradient Projection for Basis Pursuit and
Basis Pursuit Denoising Problems

LASSO solution for a given τ

x∗(τ) = argminx ‖y − Φx‖2
2 s. t. ‖x‖1 ≤ τ

x∗(τ) is a differentiable convex function.

x∗(τ) is the solution of BP or BPDN if
‖y − Φx∗(τ)‖2 = 0 or

√
ε respectively.

A root finding problem ⇒ Newton’s
method to solve x∗(τ) = 0 or
x∗(τ)− ε = 0

0 1 2 3 4 5 6 7
0

5

10

15

20

25

Gradient Projection for BP(DN)

1 x∗(τ [n]) by solving LASSO problem.

2 τ [n+1] from Newton’s update step.
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Broader Range Sparse Approximation
Methods

Analysis sparsity: Ωx is sparse or compressible with a
linear operator Ω,

argminx ‖Ωx‖1 + λ ‖y − Φx‖2
2

Total Variation (TV) norm: sparsity in the gradient
domain,

argminx ‖∇x‖1 + λ ‖y − Φx‖2
2

Weighted `1 norm: non-normalised dictionaries and
iterative re-weighting

argminx

∑
i wi |xi |+ λ ‖y − Φx‖2

2
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Augmented Lagrangian Method

Problem: argminx f (x) s. t. y = Φx

Augmented Lagrangian (AL)

Surrogate objective:
Lµ(x , λ) = f (x) + λT (Φx − y) + µ

2 ‖Φx − y‖2
2

The aim is to solve argminx maxλ Lµ(x , λ)

Augmented Lagrangian Method is a practical approach to find
such a saddle point.

The convergence of the iterative method is guaranteed for some f ’s.

Augmented Lagrangian Method

1 x [n+1] = argminx Lµ(x , λ[n])

2 λ[n+1] = λ[n] + µ(Φx [n+1] − y)
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Augmented Lagrangian for Variable Splitting

minx ‖Ωx‖1 + λ ‖y − Φx‖2
2 ⇐⇒ minx ,z=Φx ‖z‖1 + λ ‖y − Φx‖2

2

Introducing auxiliary parameter z = Φx and solving the constrained
problem.

The technique is also called Alternating Directions Method of
Multipliers (ADMM) [Eckstein and Bertsekas 92].

For parameter update:

x [n+1], z [n+1] = argminx,z ‖z‖1 + λ ‖y − Φx‖2
2 + µ

2

∥∥Φx − z − d [n]
∥∥2

2

ADMM

1 x [n+1] = argminx ‖Φx − y‖2
2 + µ

2

∥∥Φx − z [n] − d [n]
∥∥2

2

2 z [n+1] = argminz ‖z‖1 + µ
2

∥∥Φx [n+1] − z − d [n]
∥∥2

2

3 d [n+1] = d [n] − (Φx [n+1] − z [n+1])
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Iterative Re-weighting For Sparse
Approximation

Problem: argminx ‖x‖
p
p + λ ‖y − Φx‖2

2, ‖x‖pp =
∑

i |xi |
p, 0 < p < 1

Non-convex and hard to exactly solve it.

It is sometimes practically preferred as an alternative to the convex
formulation.

A local minimum can be found by MM method using Taylor’s first
order approximation, |α|p ≤ | 1

(|α[n]|+ε)1−pα| with small positive ε

[Candes et al. 08].

Iterative Re-weighted `1

1 x [n+1] = argminx

∑
i w

[n]
i |xi |+ λ ‖y − Φx‖2

2

2 w
[n]
i = 1

(|x [n+1]
i |+ε)1−p
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Greedy Methods for Sparse Approximations

Finding a support Λ by iteratively adding
one or more new atoms to the support.

xΛ = Φ†Λy

Computationally cheaper than convex
optimisation methods.

It can be easily modified to consider
extra structures in the representations.
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Matching Pursuit

Adding the atom which is the most fit to the remaining signal
r [n] = y − ΦxΛ[n] [Mallat and Zhang 93].

It is guaranteed to reduce the energy of the remaining signal energy.

Iterates until the energy of r [n] becomes small or for certain number
of iterations.

MP converges exponentially, with the incoherent dictionaries.

Matching Pursuit (MP)

1 Λ[n+1] = Λ[n] ∪ {j∗}, j∗ = argmaxj |(ΦT (y − Φx [n]))j |

2 x [n+1] = x [n+1] + (ΦT (y − Φx [n]))j∗ej∗

ej∗ is the canonical basis for the j∗th coordinate.
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Orthogonal Matching Pursuit

No mechanism to not reselect already selected atom in MP.

The convergence rate can be very slow with coherent dictionaries.

Orthogonal MP [Pati et al 93] finds the best signal representation,
given the support, at each iteration.

Orthogonal Matching Pursuit (OMP)

1 Λ[n+1] = Λ[n] ∪ {j∗}, j∗ = argmaxj |(ΦT (y − Φx [n]))j |

2 x [n+1] = argminz ‖y − Φz‖2
2 , s. t. supp(z) = Λ[n+1]

The minimisation step can be done using the pseudo-inverse of
ΦΛ[n+1]

Matrix inversion can be done with efficient matrix factorisation
techniques, e.g. QR, Cholesky factorsation.
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Compressive Sampling Matching Pursuit

No deselection strategy in MP or OMP.

Compressive Sampling MP (CoSaMP) [Tropp and Needell 09] is
a variant of MP which has a backward deselection step.

It relies on the best K -term approximation operator HK (·), which
selects the largest K coefficients and lets the rest be zero.

CoSaMP

1 Λ̂[n+1] = Λ[n] ∪ supp(H2K (ΦT (y − Φx [n])))

2 x̂ [n+1] = argminz ‖y − Φz‖2
2 , s. t. supp(z) = Λ̂[n+1]

3 x [n+1] = HK (x̂ [n+1])

4 Λ[n+1] = supp(x [n+1])
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Iterative Hard Thresholding: K-sparse
Approximation

argminx ‖y − Φx‖2
2 s. t. ‖x‖0 ≤ K

Differentiable objective

Projection onto the K sparse set is easy, i.e. HK (·).

Projected Gradient technique for finding a good solution.

The quality of solution depends on the initial point and gradient
step.

IHT(K) [Blumensath and Davies 08]

1 G (x [n+1]) = −2ΦT (Φx [n] − y)

2 x [n+1] = HK (x [n] − βG (x [n+1]))

β can be fixed, e.g. β ≤ 1
‖Φ‖ , or be adaptively selected.
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Iterative Hard Thresholding: Lagrangian
Formulation

argminx ‖x‖0 + λ ‖y − Φx‖2
2

We know the solution of the decoupled problem,

x∗ = argmin
x
‖x‖0 + λ ‖z − x‖2

2

⇒ x∗i =H(zi ,
1√
λ

) =

{
0 |zi | ≤ 1√

λ

zi |zi | > 1√
λ

MM technique for decoupling the parameters.

IHT(λ) [Blumensath and Davies 08]

x [n+1] = argmin
x
‖x‖0 +

L

2

∥∥∥∥x − (x [n] − 2

L
ΦT (Φx [n] − y))

∥∥∥∥2

2

=H(x [n] − 2

L
ΦT (Φx [n] − y),

1√
λ

)
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Algorithm Selection

Convex optimisation ! Greedy/Iterative

Computational power?

Online v.s Offline computation?

Sparsity v.s. Compressibility?

Accuracy of the solution?

Guarantee of the recovery?
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