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Corrections

Corrections to “On the Existence and Uniqueness of the Eigenvalue
Decomposition of a Parahermitian Matrix”

Stephan Weiss , Jennifer Pestana , Ian K. Proudler , and Fraser K. Coutts

In [1], we stated that any positive semi-definite parahermitian matrix
R(z) : C → CM ×M that is analytic on an annulus containing at least
the unit circle will admit a decomposition with analytic eigenvalues and
analytic eigenvectors. In this note, we further qualify this statement,
and define the class of matrices that fulfills the above properties yet
does not admit an analytic EVD. We follow the notation in [1].

I. RELLICH’S ANALYTIC EVD ON THE UNIT CIRCLE

For a self-adjoint matrix A(x), x ∈ R, Rellich [2] has shown that
eigenvalues and eigenvectors exist that are analytic in x. If R(z) is eval-
uated on the unit circle, z = ejΩ , R(ejΩ ) is self-adjoint s.t. R(ejΩ ) =
RH (ejΩ ). Further, R(ejΩ ) is 2π-periodic in Ω. In [1], we incorrectly
assumed that the analytic eigenvalue decomposition (EVD) of R(ejΩ )
is also 2π-periodic, but provide the following correction below.

Theorem 1 (Analytic EVD on the unit circle): For a self-adjoint an-
alytic R(ejΩ ), Rellich’s EVD on the unit circle is given by

R(ejΩ ) = Q(ejΩ/N )Λ(ejΩ/N )QH (ejΩ/N ), (1)

where the diagonal Λ(ejΩ/N ) and unitary Q(ejΩ/N ) can be analytic in
Ω for some N ∈ N.

Proof: The EVD of R(z) on the unit circle can be generally written
as R(ejΩ ) = U (Ω)Γ(Ω)UH (Ω), whereby Rellich [2] guarantees the
existence of eigenvalues and eigenvectors in Γ(Ω) and U (Ω), respec-
tively, that are analytic in Ω ∈ R without making any assumption about
their periodicity. We initially focus on the diagonal elements of Γ(Ω),
i.e. the analytic eigenvalues γm (Ω), m = 1 . . . M , only.

Let {γm (Ω0 )} be the set of M eigenvalues of R(ejΩ0 )
at a specific frequency Ω0 . Because of its 2π periodicity,
R(ejΩ0 ) = R(ej(Ω0 +2π ) ), and the sets {γm (Ω0 )|m ∈ {1 . . . M}} and
{γμ (Ω0 + 2π)|μ ∈ {1 . . . M}} must contain the same values. There-
fore γm (Ω0 ) = γμ (m ) (Ω0 + 2π) for some μ(m) ∈ {1 . . . M}, but
μ(m) = m cannot be assumed. Inspecting segments of analytic eigen-
values γm (Ω) over a 2π interval, therefore we see that the end point of
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Fig. 1. Example for 4π-periodic analytic eigenvalues of R1 (ejΩ ).

one eigenvalue segment, γm (Ω0 + 2π), must coincide with the starting
point of another eigenvalue segment, γμ (Ω0 ), for some μ.

Because of the above ‘chain’ rule, analytic eigenvalues must be
functions that are shifted in frequency by at least 2πN , for some
N ∈ N. Therefore, they are 2πN -periodic and can be denoted as
Λ(ejΩ/N ) = Γ(Ω). Eigenvectors can only be analytic when eigen-
values are analytic, and due to this association have to exhibit the same
periodicity, s.t. Q(ejΩ/N ) = U (Ω). �

Example 1: The matrix R1 (z) = [2, 1 + z−1 ; z + 1, 2] from [3],
[4] has the eigenvalues λ1 ,2 (z) = 2 ± (z1/2 + z−1/2 ). On the unit
circle, λ1 ,2 (Ω) = 2 ± 2 cos(Ω/2) is 4π-periodic, as shown in Fig. 1.
Note that values for e.g. Ω0 = π

2 and Ω0 = π
2 + 2π are identical but

belong to different functions that are analytic in Ω.
An analytic continuation z = ejΩ is only possible if N = 1; other-

wise expressions in the variable z1/N result, which are not analytic.
Therefore, in the case N > 1 an analytic EVD of R(z) does not ex-
ist. Nonetheless, it is possible to approximate non-analytic functions
by Laurent polynomials; e.g. polynomial EVD algorithms in [8] will
converge towards 2π-periodic, spectrally majorised eigenvalues for
R1 (z).

II. MODULATED EIGENVALUES AND PSEUDO-CIRCULANT

MATRICES

To characterise analytic matrices R(z) that do not admit an analytic
EVD, we consider as a basic building block a parahermitian matrix
Rλ(z) : C → CN ×N , whose eigenvalues at an N -times oversampled
rate are N frequency-shifted or modulated versions of a single function
λ(z),

Λ(z) = diag
{
λ(z), λ(zej 2 π

N ), . . . , λ
(
zej(N −1) 2 π

N
)}

. (2)

These eigenvalues will remain invariant under any paraunitary simi-
larity transform. We are specifically interested in paraunitary matrices
W (z) that yield

Rλ(zN ) = W (z)Λ(z)W P(z), (3)
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Fig. 2. Subband coding problem of finding a paraunitary V (z) to optimally
compact the signals yi [n], i = 1 . . . N [6], [7].

such that when undersampled by a factor N and evaluated on the unit
circle, will possess a structure equivalent to (1). This is the case for
W (z) = D(z)T, with D(z) = diag

{
1, z−1 , . . . z−N +1

}
and T an

N -point DFT matrix scaled to be unitary [5], [6]: T creates a matrix
TΛ(z)TH , which is circulant and possesses elements that are N -times
oversampled but time-shifted and thus offset against each other [7];
D(z) then removes these shifts such that the non-zero entries are
aligned.

With the above choice for W (z), the parahermitian matrix Rλ(z)
in (3) can be viewed as arising from the subband coding problem in
Fig. 2. The signal v[n] is modelled by an uncorrelated zero-mean and
unit-variance noise process u[n] and an innovation filter h[n]. For this
problem, the cross-spectral density matrix Rλ(z) of the signals xi [n],
i = 1 . . . N , is pseudo-circulant [6], [7],

Rλ(z) =

⎡
⎢⎢⎢⎢⎣

φ0 (z) φ1 (z) . . . φN −1 (z)

z−1φN −1 (z) φ0 (z)
...

...
. . .

. . .
...

z−1φ1 (z) . . . z−1φN −1 (z) φ0 (z)

⎤
⎥⎥⎥⎥⎦

. (4)

The terms φn (z), n = 0 . . . (N − 1), are the N polyphase com-
ponents of the power spectral density (PSD) of v[ν]. Based on
the innovation filter H(z) •—◦ h[ν] in Fig. 2, we therefore have
λ(z) = H(z)HP(z) =

∑N −1
ν =0 φν (zN )z−ν .

Thus any problem with modulated eigenvalues can be brought into
pseudo-circulant form by a similarity transform (3). Conversely, any
pseudo-circulant matrix has modulated eigenvalues. Hence (3) and (4)
are equivalent. Therefore shifted eigenvalues are directly connected to
pseudo-circulant matrices and the subband coding problem.

Example 2: The earlier example, R1 (z), arises from a subband
coding problem for N = 2 with innovation filter H(z) = 1 + z−1 and
therefore PSD λ(z) = z + 2 + z−1 .

III. GENERAL PARAHERMITIAN MATRICES

A parahermitian matrix R(z) : C → CM ×M can potentially consist
of blocks of pseudo-circulant matrices Rλi

(z) : C → CN i ×N i , i =
1 . . . I , each of the type characterised in (4) and created by the structure
in Fig. 2, originating from a single Ni -times oversampled eigenvalue
λi (z) as in (2),

R(z) = V (z)diag
{
Rλ1 (z), Rλ2 (z), . . . , RλI

(z)
}

V P(z). (5)

Note that these eigenvalues remain invariant under a similarity trans-
form by an arbitrary paraunitary V (z). The maximally possible funda-
mental period 2Nm axπ of the analytic eigenvalues of any R(z), given
its dimension M , when evaluated on the unit circle is

Nm ax = max
N i ∈N
i=1 . . .I

lcm{N1 , N2 , . . . NI } s.t.
I∑

i=1

Ni = M,

Fig. 3. Example for 2π-periodic analytic eigenvalues λm (Ω), m = 1, 2,
algebraically calculated from the perturbed R1 (ejΩ ).

where lmc{·} is the least common multiple of its arguments. Note that
while the individual blocks RN i

(z) are pseudo-circulant, the overall
matrix R(z) likely loses this property due to both its block structure
as well as the mixing by the paraunitary operation V (z).

Example 3: The matrix

R2 (z) =

⎡
⎢⎣

2 −jz j

jz−1 2 −jz

−j jz−1 2

⎤
⎥⎦

is pseudo-circulant and can be tied to a subband coder according to
Fig. 2 with N = 3 and H(z) = 1 + jz−1 such that λ(z) = −jz +
2 + jz−1 . As a result, the eigenvalues λm (Ω) of R2 (ejΩ ), are 6π-
periodic. For R3 (z) = diag{R1 (z), R2 (z)}, we have N1 = 2, N2 =
3 and therefore N = Nm ax = 6, i.e. the eigenvalues will have the
combined periodicity of 12π.

IV. EXISTENCE OF ANALYTIC EIGENVALUES

In Section III we have established that for a parahermitian analytic
matrix R(z) a paraunitary similarity transform V (z) exists such that
(5) results with pseudo-circulant blocks on the main diagonal. If any
of these I blocks has a dimension Ni > 1 (i.e. if I < M ), then the
eigenvalues λm (z) associated with these blocks do not exist as analytic
functions. This motivates an amendment to Theorem 3 in [1]:

Theorem 2 (Existence and Uniqueness of Eigenvalues of a Para-
hermitian Matrix EVD): For an analytic parahermitian matrix R(z) :
C → CM ×M , eigenvalues λm (z), m = 1 . . . M , exist as absolutely
convergent Laurent series if these are selected to be spectrally ma-
jorised on the unit circle. Analytic eigenvalues λm (z) exist unless a
paraunitary similarity transform exists that brings R(z) into the form
(5) with pseudo-circulant blocks on the diagonal, with at least one of a
dimension greater than one. For cases where analytic eigenvalues do not
exist, a spectrally majorised solution can be found for the eigenvalues,
which is absolutely convergent on the unit circle.

Proof: See [1] and above. �
From a practical point of view, there currently is no algebraic mech-

anism to check condition (5). Therefore, only if R(z) arises from a
subband coding-type application as depicted in Fig. 2 are we able to
say that eigenvalues do not exist as analytic functions in z. Note that
while analytic eigenvalues would be favoured for almost all appli-
cation of a parahermitian matrix EVD, it is subband coding which re-
quires spectrally majorised eigenvalues in order to maximise the coding
gain [6], [7].

In terms of impact, in subband coding, its pseudo-circulant structure
is ideally exploited when estimating R(z) [6]. If the pseudo-circulant
property is not enforced for an estimate R̂(z), then estimation errors
will likely mask this property, such that R̂(ejΩ ) will subsequently
possess 2π-periodic eigenvalues on the unit circle, and can have eigen-
values that are analytic in z.
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Example 4: If R1 (z) is perturbed by a parahermitian error term
at −100dB, then the eigenvalues of this perturbed, no longer pseudo-
circulant system, as shown in Fig. 3, are 2π-periodic on the unit circle,
and now exist as analytic functions in z.

V. CONCLUSION

In this note, w.r.t. [1], a corrected condition for the existence of
analytic eigenvalues of a parahermitian matrix R(z) has been derived.
The main results in [1] on the existence of analytic eigenvalues and
eigenvectors still hold; however, analytic eigenvalues do not exist if
R(z) can be brought into block-diagonal form containing pseudo-
circulant blocks by means of a paraunitary similarity transform.
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