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Abstract—We investigate the detection of broadband weak
transient signals by monitoring a projection of the measurement
data onto the noise-only subspace derived from the stationary
sources. This projection utilises a broadband subspace decompo-
sition of the data’s space-time covariance matrix. The energy in
this projected ‘syndrome’ vector is more discriminative towards
the presence or absence of a transient signal than the original
data, and can be enhanced by temporal averaging. We investigate
the statistics, and indicate in simulations how discrimination can
be traded off with the time to reach a decision, as well as with the
sample size over which the space-time covariance is estimated.

I. INTRODUCTION

In a number of problems, it is paramount to detect the

emergence of a signal whose power may be significantly lower

than other sources that are already active in the environment.

This is the case e.g. in a cognitive radio scenario [1], where

secondary users may be utilising a specific frequency band,

but where the arrival of a distant and therefore quiet primary

user must be detected in order to instigate the secondary users

to vacate this part of the spectrum.

The detection of transient signals is generally based on

energy criteria, and can involve a fixed transform such as

a wavelet or short-time Fourier transform-type operation to

reveal particular patterns of the transient source [2]–[4].

Particularly when multiple measurements are available, data-

dependent transforms exploiting the eigenvalue decomposition

(EVD) of the covariance matrix of the data can generally attain

an optimum compaction of energy into a lower-dimensional

subspace in the sense of the Karhunen-Loeve transform [5];

therefore subspace-based methods have emerged that exploit

particular partitioning of the space spanned by eigenvectors of

the EVD [6]–[10]. While this work has peaked two decades

earlier, developments of energy-based subspace detectors are

still afoot [11].

The above methods [2]–[4], [6]–[11] operate on narrowband

data and calculate an instantaneous covariance matrix that will

only capture phase shifts between elements of the data vector.

To address the detection of broadband transient signals, it is

possible to operate with tapped delay lines or in frequency bins

created by a discrete Fourier transform (DFT), where problems
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can be treated as narrowband ones. However, when addressing

the problems in different bins independently, e.g. for the

purpose of parallelisation, generally the coherence between

bins is lost, leading to generally suboptimal solutions [12].

This paper investigates the detection of broadband weak

transient sources via broadband subspace-based methods [13],

which are afforded via a space-time covariance matrix that

takes both spatial and temporal correlations in the data into

account. Similar to narrowband subspace methods, a diago-

nalisation of this space-time covariance is required. For the

broadband problem, we are looking towards polynomial EVD

methods that can decouple the space-time covariance for every

lag value [14] — such decompositions have been shown to

exist in most case [15], [16] and a number of algorithms

have been developed to solve this diagonalisation often with

guaranteed convergence [14], [17]–[21].

In the following, we review the broadband signal scenario

and the description of the data’s second order statistics by

a space-time covariance in Sec. II. The broadband subspace

decomposition based on the space-time covariance is outlined

in Sec. III, leading to the proposed broadband subspace

detector in Sec. IV, including an investigation of the subspace

energy. The temporal correlation of the latter prohibits the

direct description of the subspace energy, but a decorrelation

via a decimated processor allows us to exploit some known

statistical results for generalised χ2 distributions [22]–[26],

and to subsequently define metrics such as the discrimination

and decision time in Sec. V. Following some numerical

simulations, Sec. VI draws conclusions.

II. WIDEBAND SIGNAL MODEL

A. Source Model

We assume that M sensors acquire a measurement vector

x[n] ∈ C
M over discrete time n ∈ Z, consisting of time

series x[n] = [x1[n], . . . , xM [n]]
T
∈ C

M . This sensor array

is illuminated by L < M sources sℓ[n] ℓ = 1, . . . , L via

transfer paths with impulse responses am,ℓ[n], m = 1, . . . ,M ,

ℓ = 1, . . . , L, whereby am,ℓ[n] describes the impulse response

of the path from the ℓth source to the mth sensor. This

path could be a simple delay in the case of a free-space

propagation environment, but can equally describe dispersive,

i.e. multipath, channels. For the contribution of the ℓth source,

this scenario is illustrated in Fig. 1; the source signal sℓ[n],
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Fig. 1. Source model for a signal sℓ[n], ℓ = 1, . . . , L, contributing to the
sensor data. The source is characterised by an innovation filter hℓ[n] excited
by zero-mean unit-variance uncorrelated Gaussian noise uℓ[n] that generates
its desired PSD [27], and a broadband steering vector consisting of transfer
functions.

ℓ = 1, . . . , L, is generated by an innovation filter hℓ[n] ex-

cited by zero-mean unit-variance uncorrelated Gaussian noise

uℓ[n] [27].

If we place the M transfer paths for the ℓth source into a

vector

aℓ[n] =







a1,ℓ[n]
...

am,ℓ[n]






, (1)

then the data can be modelled as

x[n] =

L
∑

ℓ=1

aℓ[n] ∗ sℓ[n] + v[n] , (2)

with v[n] being additive white zero mean uncorrelated Gaus-

sian noise, and ∗ denoting the convolution operator. In par-

ticular, we assume that all source signals sℓ[n] as well as

the noise in v[n] are mutually independent. This scenario is

depicted in Fig. 1 for the case of a single source in a noise-free

environment. For L sources, the data vector x[n] is obtained

by superposition of L models as in Fig. 1.

B. Space-Time Covariance Matrix

To define problems based on cost functions such as the

mean square error, we require access to the second order

statistics of the data in x[n]. This is captured by the space-time

covariance matrix R[τ ] = E
{

x[n]xH[n− τ ]
}

, where E{·}
is the expectation operator, {·}H a Hermitian transposition,

and τ ∈ Z a lag parameter. This matrix contains auto-

and cross-correlation sequences, and satisfies the symmetry

R[τ ] = RH[−τ ]. The z-transform R(z) =
∑

τ R[τ ]z−τ ,

or in short R(z) • ◦ R[τ ], is known as the cross-spectral

density (CSD) matrix and satisfies the parahermitian property,

s.t.. RP(z) = RH[1/z∗] = R(z), whereby R(z) is identical to

its parahermitian transpose RP(z), with {·}P the parahermitian

transpose operator [28].

From (2) and Hℓ(z) • ◦ hℓ[n], and with γℓ(z) =
Hℓ(z)H

P
ℓ(z), we can also express the CSD matrix R(z) as

the expansion

R(z) =

L
∑

ℓ=1

aℓ(z)a
P
ℓ(z)γℓ(z) + σ2

vIM . (3)

In (3), a vector aℓ(z) is referred to as the broadband steering

vector of the ℓth source. A steering vector is used in the

beamforming terminology to describe the signature of the

source arriving from a specific direction. In the simplest case,

aℓ(z) can be a vector of fractional delays [29], [30], but can

also be a vector of general, rational transfer functions.

III. BROADBAND SUBSPACE DECOMPOSITION

A. Parahermitian Matrix Eigenvalue Decomposition

If R(z) arises from a source model such as in Fig. 1 with

stable and causal filters hℓ[n], and transfer paths am,ℓ[n], ℓ =
1, . . . , L, m = 1, . . . ,M , then R(z) is analytic. As a result,

the parahermitian matrix R(z) admits a parahermitian matrix

EVD (PhEVD) [15]

R(z) = Q(z)Λ(z)QP(z) (4)

=

M
∑

m=1

qm(z)qP
m(z)λm(z) , (5)

provided that the data vector x[n] is unmultiplexed [16]. In (4),

Q(z) contains in its columns the eigenvectors qm(z), m =
1, . . . ,M of (5). It is a paraunitary matrix such that

Q(z)QP(z) = QP(z)Q(z) = IM , (6)

representing a lossless filter bank [28]. The matrix Λ(z) is

diagonal and parahermitian, containing the eigenvalues

Λ(z) = diag{λ1(z), λ2(z), · · · , λM (z)} . (7)

Both Q(z) and Λ(z) are potentially transcendental but ana-

lytic functions, i.e. their time domain equivalents converge at

least exponentially and can be well-approximated by Laurent

polynomials.

B. Uniqueness and Ambiguity

Assuming that the M eigenvalues of R(z) are distinct

and only intersect in a finite number of points, then there is

only one solution for the functions λm(z), m = 1, . . . ,M
apart from a permutation. The latter can be addressed by

ordering the eigenvalues according to their power, similar how

in an ordered EVD eigenvalues are arranged in descending

order [31].

For distinct eigenvalues, the associated eigenvectors each

exist in uniquely defined 1-d subspaces, but can be multiplied

by arbitrary allpass functions. Therefore, w.r.t. the decompo-

sition in (4), the factor Λ(z) is unique, but there is an am-

biguity w.r.t. the paraunitary matrix holding the eigenvectors

in its columns: if Q(z) contains valid eigenvectors, then so

does Q(z)Φ(z), where Φ(z) is a diagonal matrix containing

arbitrary allpass filters.

C. Broadband Subspace Partitioning

The PhEVD in (4) admits a subspace decomposition,

R(z) = [U(z) U⊥(z)]

[

Λs(z) 0

0 Λs̄(z)

] [

UP(z)

UP
⊥(z)

]

, (8)
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where the eigenvalues are grouped into two submatrices

Λs(z) : C → C
R×R and Λs̄(z) : C → C

(M−R)×(M−R).

The eigenvectors associated with the eigenvalues in Λs(z)
are the columns of the matrix U(z) : C → C

M×(R, which

therefore span the subspace within which any components

related to these eigenvalues reside. This subspace is orthogonal

to its complement, spanned by the columns of U⊥(z) : C →
C

M×(M−R).

A common partitioning of Q(z) in (5) in both the narrow-

band [31] or the broadband cases [13] is a subspace decompo-

sition that defines signal-plus-noise and noise-only subspaces,

where Λs(z) contains the R signal-related, principal eigen-

values, and U(z) all associated eigenvector components. In

contrast, the eigenvalues Λs̄(z) define the noise floor, and the

columns of U⊥(z) span the associated noise-only subspace.

IV. COMPLEMENTARY BROADBAND MATCHED SUBSPACE

DETECTOR

A. Approach

We assume that a number of L sources have been stationary

for a period of time, over which a space-time covariance matrix

R̂[τ ] has been estimated, using e.g. the procedures outlined

in [32], [33] for the estimation and the optimum support

length of this estimate. Using an approximation of the PhEVD

in (4) by algorithms of the second order sequential best

rotation (SBR2) [14], [17] or sequential matrix diagonalisation

(SMD) [18], [34] families to factorise R̂(z) • ◦ R[τ ], we

establish the broadband signal-plus-noise subspace spanned

by the columns of U(z) and its complement, the noise-only

subspace, spanned by the columns of U⊥(z), as defined in

(8) with R = L.

If a new source enters the scene, then some of its compo-

nents may protrude into the noise-only subspace, where a step

change in energy can be detected more easily than directly

from the measurement x[n], since the energy contribution

of the stationary sources will be removed. We therefore

calculate a type of syndrome vector y[n] ∈ C
M−L based on

U⊥[n] ◦ • U⊥(z),

y[n] =
∑

ν

UH
⊥ [−ν]x[n− ν] . (9)

This is a type of projection onto a reduced (M−L)-dimensional

space, and yields the same energy in E
{

‖y[n]‖2
}

as a pro-

jection using the projection operator P (z) = U⊥(z)U
P
⊥(z),

which can be shown via a polynomial singular value decompo-

sition of UP
⊥(z) [14]. Therefore, the energy of the syndrome

y[n] can be used in a hypothesis test to detect the absence or

presence of a transient signal.

B. Signal Statistics

In the absence of a transient signal, let the CSD matrix of

x[n] be R(z) as in (3). Therefore the CSD of the syndrome

vector is

Ry(z) = σ2
vIM−L . (10)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

2

2.5

Fig. 2. Example of measured and theoretical generalised χ2 distributions of
the energy ‖y[n]‖2

2
in the absence and presence of a transient signal.

If x′[n] is a modified data vector that in addition to the

stationary sources captured in x[n] includes a transient signal

with PSD γ′(z) and steering vector a′(z), then a modified

CSD matrix R′(z) arises

R′(z) = R(z) + a′(z)γ′(z)a′P(z) , (11)

and the modified syndrome has the CSD matrix

R′

y(z) = U⊥(z)a
′(z)γ′(z)a′P(z)UP

⊥(z) + σ2
vIM−L . (12)

The first term on the r.h.s. of (12) creates the offset in power

that allows us to potentially detect the presence of a transient

signal.

To examine the statistics of ‖y[n]‖22, we assume that the

noise components of x[n] are zero-mean and identically dis-

tributed Gaussian random variables. However, in the presence

of transient components, or subspace leakage of the stationary

sources, the elements of the syndrome vector will have Gaus-

sian distributions with different variances. Therefore, ‖y[n]‖22
will adhere to a generalised χ2 distribution [24], [25]. For

an example with M = 6, L = 3, and broadband steering

vectors of order 10 drawn from uncorrelated complex Gaussian

distributions, Fig. 2 shows the measured distributions in the

presence and absence of a transient component in comparison

to the theoretical values of a generalised χ2 distribution based

on the implementation in [26].

The discrimination between the cases of a transient source

being present or absent can be increased through temporal

averaging of energy terms ‖y[n]‖22. However, the generalised

χ2 distribution assumes a summation over squared Gaussian

distributed, uncorrelated variables. From (12), it is clear that

the terms contributed by the transient source will be correlated.

Therefore, direct temporal averaging leads to a distribution that

will no longer be covered by a generalised χ2 distribution.

C. Decimated Subspace Detector

In order to deal with large data volumes acquired at a

high sampling rate, and to concurrently temporally decorrelate

successive syndrome vectors in case of temporal averaging, it

is possible to sum over decimated syndrome vectors, such that

ξ
(K)
n,D =

1

K

K
∑

µ=0

‖y[n−Dµ]‖22 (13)
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K

Fig. 3. Flow graph of decimated averaging of syndrome energy.
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Fig. 4. Example of measured and theoretical generalised χ2 distributions of
the energy ‖y[n]‖2

2
in the absence and presence of a transient signal.

can be used as a criterion for a hypothesis test. The processor

is outlined by the flow graph in Fig. 3, where the syndrome

energy is decimated by a factor D prior to averaging by a

sliding window of length K. It is possible to change the order

in which the decimator and the processor matrix U⊥(z) appear

in Fig. 3 by means of noble identities [28], thus achieving

a computationally efficient polyphase implementation of the

arrangement in Fig. 3.

The decorrelation, which may be achieved through a deci-

mation by D of the polynomial order of the processor matrix

U⊥(z), ensures that ξ
(K)
n,D follows a generalised χ2 distribution,

which permits theoretical predictions for a hypothesis test on

ξ
(K)
n,D. As an example, to highlight both the fit of the distribu-

tion but also the increase in discrimination by averaging over

a number of syndrome energies, Fig. 4 shows the scenario of

Fig. 2 for the case of averaging over K = 10 with a decimation

by D = 10.

V. SIMULATION AND RESULTS

A. Performance Metrics

We define two metrics for the detection of a transient

signal. The first is the discrimination of the variable ξ
(K)
n,D

in (13), which can be assessed independently of a specific

threshold e.g. by measuring the area under a receiver operating

characteristic (ROC) derived from the type of distribution

plots in Figs. 2 and 4 [35]. If A is the area under the

ROC curve, then its extreme values are A = 1
2 if the two

distributions coincide, and A = 1 in case the distributions

completely separate. Therefore, we have 1
2 ≤ A ≤ 1 and

measure the discrimination D = 2(1 − A), which tends to

zero as the distributions increasingly separate. Summing over

K terms, and potentially including a decimation by D takes

time to evaluate; therefore, a second metric is the decision

time T = (K−1)D+1, which is required to reach the above

discrimination D. We therefore assess discrimination D(T ) as

a function of the decision time T below.

TABLE I
POWER OF CONTRIBUTIONS FOR REALISTIC CHANNEL SCENARIO.

signal power

source 1 0.0000 dB
source 2 -4.3494 dB
source 3 -13.2865 dB
noise -16.2865 dB

B. Test Scenario

Based on multipath propagation responses determine by

a radio planning tool in the ISM band with a bandwidth

of 20MHz, we have generated transfer functions of order

40 for the case of three sources and M = 6 receivers in

a dense urban environment. The transfer functions are such

that the total power at the receivers for the various sources

is as given in Table I. Spatially and temporally uncorrelated

additive Gaussian noise corrupts each receiver at 3dB below

the weakest source.

We will work with two stationary sources, with the remain-

ing third source — either the medium-powered source 2 or

the weakest source 3 — contributing a transient signal. The

CSD matrix is either estimated from a finite amount of N
samples [32], [33], or calculated based on the ground truth

steering vectors and power spectral densities of the stationary

sources, i.e. for N −→ ∞.

C. Discrimination vs Decision Time

Fig. 5 shows two groups of curves. For a first group, sources

1 and 3 from Tab. I make up the stationary signals, and source

2 — of medium power — mimics the transient signal. In

this case, the distributions with the transitory source 2 being

absent or present separate well, and drop to close to machine

accuracy for a only a few number of summation terms K.

The estimation of the CSD matrix leads to some subspace

leakage [36], but with almost no performance degradation for

sample sizes of N = 10000 and N = 1000, where working

with an estimate is almost as good as operating with the ground

truth CSD matrix. Still very good discrimination is achieved

even when estimating R̂(z) over a very small sample size

of N = 100. The discrimination time T here refers to a

sampling rate of 20MHz, with a value of 5µs being equivalent

to averaging over K = 10 samples at a decimation ratio

D = 10.

A second group of curves in Fig. 5 refers to sources 1 and

2 forming the group of stationary signals, and the weakest

source 3 is taken as the transient signal. In this case, a larger

value K for temporal averaging is required to achieve better

discrimination, i.e. small values of D. The subspace leakage

experienced in the estimation process is now more pronounced

for low sample sizes N , such that the approach still works for

larger samples sizes but breaks down for N = 100, where

the low power of the source and the comparatively high noise

level lead to no discernible differences in the distributions.
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Fig. 5. Plots showing discrimination D vs decision time T for detecting
sources of different strength, and based on estimates of the space-time
covariance relying on various sample sizes N .

VI. CONCLUSION

In this paper we have proposed a broadband subspace-

based processor for the detection of weak transient signals.

By identifying the subspace of stationary sources, we monitor

a ’syndrome vector’ that gives access to the energy in the

noise-only subspace, and can be indicative of emerging source

signals. The discrimination of the processor can be enhanced

by temporal averaging, whereby a decimation stage reduces

the computation complexity as well the correlation in the data,

permitting to use generalised χ2 statistics in assessing the

distribution of the data. A simulation has demonstrated that

good discrimination is possible, whereby weaker sources can

be reliably detected as long as the space-time covariance is

estimated with sufficient accuracy, i.e. over a sufficiently long

time window.

The evaluation of the discrimination is threshold-

independent, and future work will focus on setting a suitable

detection threshold for a hypothesis test on the absence or

presence of a transient signal.
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