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In this work we present an alternative to sonar based underwater mine coun-
termeasures (MCM) using an active optical system based on light detection
and ranging (LiDAR) sensor. Multi-spectral (MS) full-waveform (FW) sin-
gle photon (SPC) data is analysed for material and structural discrimination.
Terrestrial and aerial LiDAR has enabled researchers to explore the third
dimension, depth; this has advantages in bathymetric mapping [2] and de-
fence and security [1]. Commercial and academic focus [2] on bathymetric
LiDAR has only been on shallow waters and uses either monochromatic
laser sources or a maximum of two wavelengths. This work is the first to
report signal analysis for foliage penetration and discrimination of underwa-
ter LiDAR data. The multi-spectral depth imaging system [4] used in this
study is based on the time-of-flight (ToF) approach using time-correlated
single photon counting (TCSPC). The TCSPC module (Hydraharp in Fig-
ure 2) time-stamps each photon event reflecting from a target and records it
using a single-photon detector. The photon counts can then be time gated to
form a histogram, a full-waveform, whose inherent nature depends on sev-
eral factors, e.g., the laser wavelength, surface geometry and transmission
medium.

1 Multi-spectral Depth Feature Encoding and Learning

The proposed target signatures embed the full-waveform properties, i.e. spec-
tral reflectance and their geometric properties. For N acquired sets of wave-
forms at Λ wavelengths, N×Λ waveforms are processed and the echo prop-
erties are extracted. The transmitted time signature of the super-continuum
laser source is an exponential pulse and the degree of modulation on the
backscattering beam depends on the surface geometry and its spectral re-
flectance. We use the RJMCMC approach [3], which uses several piece-wise
exponential functions as an initial estimate and refines the peak position(β ),
background photon count and peak amplitude (A) parameters using a Bay-
esian approach. In this work we use the peak amplitudes and relative peak
positions as spectral features. Four local 3D surface features, Anisotropy,
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Figure 1: Extracted peak locations (red) over the original histogram (black)
using the RJMCMC approach.

AE , Planarity, PE , Sphericity, SE and Linearity, LE are computed within a
neighbourhood, governed by radius r, of each 3D point. The final represen-
tation with βmax = max({β}Λ

λ=1) looks like

Fv =

 βmax︸︷︷︸
spectralresponse

,{Aλ }Λ

λ=1 , Aε , Pε , Sε , Lε︸ ︷︷ ︸
depth f eatures

 (1)

Table 1 illustrates how these properties are computed, provided the Eigen-
values E1 > E2 > E3. The Eigenvalues computed are invariant to 3D rotation
and view-point since they are computed locally.

Given the feature vector Fv, we propose a learning algorithm that learns
a basis, dictionary. Our learnt dictionary not only generates a sparse low-
dimensional encoding of our feature vector Fv but also maximises discrim-
inatory properties of its coefficients. A K-NN classifier model is learnt for
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Figure 2: a) A schematic of the experimental set-up; b) (left) several targets
were hidden behind marine plans; (middle) 3D point cloud extracted us-
ing the RJMCMC approach c) 16 full LiDAR waveforms at different wave-
lengths for a single pixel.

Table 1: Depth Representations using Eigenvalues

Linearity LE (E1−E2)/E1 Sphericity SE E3/E1

Planarity PE (E2−E3)/E1 Anisotropy AE (E1−E3)/E1

the coefficients which is then used for classification. Table 2 illustrates
the impact our depth representation has on material classification. Point
cloud segmentation based on target signature encodings is shown in Figure
2b(center).

Table 2: Impact of Depth Representation (DR) on accuracy

Plastic 1 Plastic 2 Metal 1 Metal 2

Without DR(%) 92.65 95.65 97.62 98.10

With DR(%) 97.55 99.05 99.46 98.91
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