
Fast Givens Rotation Approach to Second Order

Sequential Best Rotation Algorithms

Faizan Khattak, Stephan Weiss, Ian K. Proudler

Department of Electronic & Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, Scotland

{faizan.khattak,stephan.weiss,ian.proudler}@strath.ac.uk

Abstract—The second order sequential best rotation (SBR2)
algorithm is a popular algorithm to decompose a paraher-
mitian matrix into approximate polynomial eigenvalues and
eigenvectors. The work horse behind SBR2 is a Givens rotation
interspersed by delay operations. In this paper, we investigate and
analyse the application of a fast Givens rotation in order to reduce
the computation complexity of SBR2. The proposed algorithm
inherits the SBR2’s proven convergence to a diagonalised and
spectrally majorised solution for the polynomial eigenvalues. We
provide some analysis and examples for the execution speed
of this fast Givens-based SBR2 compared to a standard SBR2
implementation.

I. INTRODUCTION

For broadband signals x[n] ∈ C
M acquired by an M -

element sensor arrays in discrete time n ∈ Z, the space-time

covariance matrix R[τ] = E
{
x[n]xH[n− τ]

}
captures the

complete second order statistics of the data. The explicit lag

parameter τ ∈ Z is capable of characterising the correlation

between sensor signals by relative time delays, and hence

bears information on aspects such as the angle of arrival of a

particular source signal. This is different from the narrowband

case, where e.g. AoA is resolved simply by phase shifts, and it

suffices to consider the instantaneous covariance R[0]. To gen-

eralise narrowband optimal solutions, which often are based on

the eigenvalue decomposition of R[0], to the broadband case,

techniques have been developed to diagonalise R[τ] for every

value of τ . Because its z-transform R(z) =
∑

τ R[τ]z−τ ,

or abbreviated R(z) • ◦ R[τ], is a polynomial matrix, such

techniques are referred to as polynomial matrix EVDs [1]–[3].

A polynomial matrix EVD exists in the case of an analytic

R(z) that emerges from unmultiplexed data [2], [4], and two

main families of algorithms with proven convergence have

arisen over the last decade — sequential matrix diagonalisation

(SMD, [5], [6]) and the second order sequential best rotation

algorithm (SBR2, [1], [7]). Since applications such as subband

coding [8], [9], beamforming [10], source separation [11], [12]

or speech enhancement [13], [14] depend on low computation

cost, various efforts have been directed at numerical [15]–[19]

and implementational enhancements [19], [20].

Amongst the numerical enhancements of polynomial matrix

EVD algorithms, the Givens rotation has attracted particular

We gratefully acknowledge support through Commonwealth Scholarship
PKCS-2020-518. This work was also supported in parts by the Engi-
neering and Physical Sciences Research Council (EPSRC) Grant number
EP/S000631/1 and the MOD University Defence Research Collaboration in
Signal Processing.

attention. The cyclic-by-row approach in [15] limited the

number of rotation steps to only implement an approximate

EVD within the SMD family of algorithms. Divide-and-

conquer schemes [18], [19] have been aiming at reducing the

spatial dimension by breaking R[τ] into sub-blocks, and hence

reducing the cost of matrix multiplications.

In this paper, we employ the idea of fast Givens rotations.

Typically a similarity transform by a Givens rotation requires

the modification of two rows and two columns of the matrix

to be transformed. It is well known that square root- and

division-free approaches [21]–[23] lead to simplifications and

effectively split the unitary Givens rotation into a simple

diagonal matrix and a simplified matrix that will only require

to have the multiplications and additions of a Givens operation.

In [24], this simplification is extended to successive real-

valued Givens rotations and is beneficially applied to EVD and

QR calculations. Here, we employ a complex-valued extension

of this approach in the context of the SBR2 algorithm to reduce

the SBR2’s complexity.

Therefore, in the following, Sec. II will first briefly outline

the SBR2 algorithm, followed by the introduction of fast

Givens rotations — both as single operations and in sequence

— in Sec. III. This approach then drives a fast SBR2 version

introduced in Sec. IV, which is evaluated in a numerical

example and simulations in Sec. V. Finally, conclusions are

drawn in Sec. VI.

II. POLYNOMIAL EVD ALGORITHMS

A. Polynomial EVD

The cross-spectral density (CSD) matrix R(z) satisfies

the parahermitian property RP(z) = RH(1/z∗) = R(z),
and admits a parahermitian matrix EVD (PhEVD) R(z) =
Q(z)Λ(z)QP(z), if R(z) is analytic and the measurement

vector x[n] does emerge from multiplexed data [2], [4]. In

this case, the factor Q(z) is paraunitary, i.e. Q(z)QP(z) = I,

and contains analytic eigenvectors in its columns. The corre-

sponding analytic eigenvalues form the diagonal parahermitian

matrix Λ(z).
A polynomial eigenvalue decomposition [1] is a modified

version of the PhEVD,

R(z) ≈ U(z)Γ(z)UP(z) , (1)

where the potentially transcendental factors Q(z) and Λ(z)
of the PhEVD are replaced by a polynomial paraunitary U(z)
and a Laurent polynomial, diagonal, and parahermitian Γ(z).

978-1-6654-3314-3/21/$31.00 ©2021 IEEE

20
21

 S
en

so
r S

ig
na

l P
ro

ce
ss

in
g

fo
r D

ef
en

ce
 C

on
fe

re
nc

e
(S

SP
D

) |
 9

78
-1

-6
65

4-
33

14
-3

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

SS
PD

51
36

4.
20

21
.9

54
14

30

Authorized licensed use limited to: University of Edinburgh. Downloaded on October 19,2021 at 09:06:58 UTC from IEEE Xplore. Restrictions apply.

Specifically, the analytic Λ(z) is replaced by a spectrally

majorised Γ(z) = diag{γ1(z), . . . , γM (z)}, such that on the

unit circle

γm+1(e
jΩ) ≥ γm(ejΩ) ∀Ω ∈ R, m = 1, . . . , (M − 1) . (2)

This spectral majorisation yields eigenvalues that are different

from the PhEVD if the analytic eigenvalues intersect. In this

case, the polynomial EVD in (1) will require a high polyno-

mial order for a satisfactory approximation, but is important in

applications such as subband coding, where the majorisation

property in (2) guarantees the maximisation of the coding

gain [7], [25].

The PEVD can be calculated by a number of algorithms

with guaranteed convergence. A family of second order se-

quential best rotation (SBR2) algorithms [1], [7], [26] aims

to iteratively eliminate the largest off-diagonal component at

every iteration step, whereby spectral majorisation has been

shown to be enforced [27]. More recently, sequential matrix

diagonalisation (SMD) algorithms [5], [6] iteratively diago-

nalise a time-shifted version of the space-time covariance,

which converges faster per iteration but at an overall higher

computational cost than SBR2.

B. Second Order Sequential Best Rotation Algorithm

SBR2 is a generalisation of the Jacobi method, whereby

successive Givens rotations are interspersed by delay opera-

tions in order to move maximum off-diagonal elements to the

lag zero component, where they subsequently are eliminated.

Starting from S0(z) = R(z), at the ith iteration SBR2 finds

the maximum off-diagonal element

{τi,mi, ni} = arg max
τ,m,n

m 6=n

|si−1,m,n[τ]| , (3)

where si−1,m,n[τ] is the element in the mth row and nth

column of Si−1[τ], whereby Si−1[τ] ◦ • Si−1(z). A delay

(or advance, for τi < 0) operation

∆i(z) = diag{1, . . . , 1
︸ ︷︷ ︸

ni−1

, z−τi , 1, . . . , 1
︸ ︷︷ ︸

M−ni

} (4)

then ensures that si−1,mi,ni
[τi] as well as si−1,ni,mi

[−τi] =
s∗i−1,mi,ni

[τi] are moved to lag zero by the similarity transform

Si− 1

2

(z) = ∆i(z)Si−1(z)∆
P
i(z).

The energy of the terms si−1,mi,ni
[τi] and si−1,ni,mi

[−τi]
is then transferred onto the diagonal via a Givens rotation Vi,

Vi =

I1

ci ejγisi
I2

−e−jγisi ci
I3

, (5)

with elements ci = cos(θi) and si = sin(θi) only at

the intersection of the mith and nith rows and columns,

and Ii, i = 1, 2, 3, identity matrices of appropriate dimen-

sions. The values of θi and γi depend on Si− 1

2

[0], with

Si− 1

2

[τ] ◦ • Si− 1

2

(z) [1], [5]. When completing the ith
SBR2 iteration step, therefore

Si(z) = ViSi− 1

2

(z)VH
i . (6)

If after I iterations, the off-diagonal components are sup-

pressed below some given threshold or a maximum number of

iterations has been reached, w.r.t. (1) we obtain Γ(z) = SI(z)
and

U(z) = VI∆I(z) · · ·V2∆2(z) ·V1∆1(z) . (7)

Note that in every iteration step, while energy at lag zero is

transferred into the diagonal, Givens rotations are also applied

at lags τ 6= 0, where some energy may leak back into the

off-diagonal components. Nonetheless, SRB2 has been proven

to converge [1], [5], [27]. Since the Givens operation is the

central algebraic operation in SBR2, in the following we will

investigate a fast version derived for the real-valued case

in [24].

III. FAST GIVENS ROTATION

A. Givens Rotation

Within SBR2, the Givens rotation is applied in (6), which

alternatively in the time domain requires

Si[τ] = V
H
i Si− 1

2

[τ]Vi . (8)

If the support of Si− 1

2

[τ] is restricted to |τi| ≤ Ti, such that

Si− 1

2

[τ] = 0 ∀|τ | > Ti, then we require to perform 2Ti + 1
such similarity transforms. Due to the parahermitian nature

of Si− 1

2

(z), T of these transforms will be redundant. With

the exception of the lag zero matrix Si− 1

2

[0], the remaining

coefficients Si− 1

2

[τ] will generally not be Hermitian matrices

for τ 6= 0. However, it is only the Hermitian zero-lag matrix

Si− 1

2

[0] where a pair of off-diagonal components must be

eliminated.

If initially we focus on a single operation out off the above

T + 1 similarity transforms for (8) and drop all subscripts,

we typically face the problem S
′ = V

H
SV. The similarity

transform based on a Givens rotation will modify the mth

and the nth rows and columns of S to obtain S
′, and

therefore require approximately 4M complex-valued multiply

accumulate (MAC) operations, which translates to 16M real-

valued MACs.

B. Fast Approach

For a faster implementation of the Givens rotation, termed a

fast Givens rotation (FGR), [24] contains two interesting ideas.

The first is a reduction of computations for a single Givens

rotation; a second step, which will be elaborated in Sec. III-C,

exploits subsequent savings if several Givens rotations are

iterated. The basic idea is to factorise the orthogonal Givens

operation into two non-orthogonal ones, where as many ele-

ments as possible are set to unity, hence not requiring explicit

multiplications.

We first consider a Givens rotation that is applied to a

square matrix B0 such that B1 = V
H
1 B0V1, with V1 a

Authorized licensed use limited to: University of Edinburgh. Downloaded on October 19,2021 at 09:06:58 UTC from IEEE Xplore. Restrictions apply.

Givens rotation matrix as in (5). Then, according to [24] it

is possible to find diagonal matrices D0 and D1, such that

B0 = D0A0D0, and B1 = D1F1A0F
H
1 D1. One particular

and numerically stable choice according to [24] is such that

D1 and D0 only differ in the mth and nth elements, leading

to

F1 =

I1

1 f1,1
I2

f1,2 1
I3

. (9)

The angles ϑ and γ that determine V1 (i.e. (5)) would be

calculated from A0 = D
−1
0 B0D

−1
0 in the standard Givens

fashion, whereby [24] advocates the selection

p =
|d2ma2mm − d2na

2
nn|

√

(d2ma2mm − d2na
2
nn)

2 − 4d2md2n|amn|2
, (10)

with 0 ≤ p ≤ 1, amn the element in the mth row and nth

column of A0, and di the ith diagonal element of D0, such

that e.g.

cosϑ =

√

1 + p

2
. (11)

Overall, we may select D0 = I. Then for F 1 to take the

form in (9), we require that D1 matches D0, but that the

mth and nth elements are modified to dm cosϑ and dn cosϑ,

respectively. For the complex-valued case, it can be shown that

γ = ∠amn [1]. Further, we have

f1,1 = ejγ
dn
dm

sinϑ

cosϑ
, f1,2 = −e−jγ dm

dn

sinϑ

cosϑ
(12)

for the simplified matrix F1.

The application of F1 requires only half the number of

MACs compared to V1, but the above approach involves

some overheads since V1 = D1F1D
−1
0 , even if D0 = I.

Nonetheless, computational saving arise [24], and the tech-

nique becomes even more powerful in case several Givens

rotations need to be executed successively, such as part of an

EVD or QR decomposition [28].

C. Successive Application of Fast Givens Rotations

If a number of Givens rotations Vk, k = 1, . . . ,K, need to

be executed successively, then note from above that [24]

VK . . .V2V1 = DKFK . . .F2F1D
−1
0 . (13)

Particularly with D0 = I, the evaluation is simple, and the

only overhead is to track the modifications of Dk, k =
1, . . . ,K which requires a multiplication of the mth and nth

element, as indicated above.

IV. FAST GIVENS ROTATION-BASED SBR2

A. Modified Fast SBR2 Algorithm

Even though the SBR2 algorithm does not comprise of a

simple consecutive application of Givens rotations, we can ap-

ply the idea of (13). This is due to the fact that the interspersed

Algorithm 1: Fast Givens Rotation-Based SBR2

1: inputs: R(z), δmax, Imax

2: initialise: S′

0(z) = R(z); D0 = I; U′

0 = I; i = 0;

3: repeat

4: i← i+ 1;

5: find maximum off-diagonal element δ of

Di−1S
′

i−1(z)D
H
i−1 via (3);

6: determine ∆i(z);
7: calculate S′

i− 1

2

(z) = ∆i(z)S
′

i−1(z)∆
P
i(z);

8: determine fi,1 and fi,2 based on S
′

i− 1

2

[0];

9: calculate S
′

i(z) = FiS
′

i− 1

2

(z)FH
i ;

10: calculate U ′

i(z) = Fi∆i(z)U
′

i−1(z);
11: update Di based on Di−1 and S

′

i− 1

2

[0];

12: until (|δ| < δmax) ∨ (i ≥ Imax).

13: outputs: U(z) = DiU
′

i(z) and Γ(z) = DiS
′

i(z)D
H
i

delay operations D(z) in (7) are diagonal matrices, and hence

substituting Vℓ = DℓFℓD
−1
ℓ−1, ℓ = 1, · · · , I , into (7) leads to

U(z) = DIFID
−1
I−1∆I(z) · · · · ·D1F1D

−1
0 ∆1(z) (14)

= DIFI∆I(z) · · ·F2∆2(z)F1∆1(z)D
−1
0 . (15)

Therefore, the overall operation now consists of a sequence of

delay operations ∆ℓ(z) and simplified matrix operations Fℓ,

whereby a multiplication with Fℓ only requires approximately

half the MACS compared to a matrix multiplication with Vℓ.

Some book keeping is required to update D0, D1 all the way

up to DI , but these changes only ever affect two components

of these diagonal quantities at a time.

This results in the modification of the SBR2 algorithm to its

fast Givens rotation-based version, with its algorithmic steps

outlined in Algorithm 1. The modifications are reflected in

the variables S′

i(z) and U ′

i(z), which differ from Si(z) and

U i(z) in the standard SBR2 algorithm. The steps 8–11 and

13, to determine, apply and propagate the diagonal correction

matrix, apply the reduced-cost matrix Fℓ, and to finally correct

the output also differ from the standard SBR2 method.

B. Convergence

For the convergence of Algorithm 1, the essential

detail is that the maximum search in step 5 within

Di−1S
′

i−1(z)D
H
i−1 = Si−1(z) is performed over the same

quantity as in the SBR2 algorithm in (3). Therefore the

convergence proof of the SBR2 algorithm in [1], [7] holds

equally for the fast Givens rotation-based SBR2 version. This

also implies that Algorithm 1 is guaranteed to converge to a

spectrally majorised solution as defined in (2) [27].

Note that it is not necessary to multiply out

Di−1S
′

i−1(z)D
H
i−1 in Step 5 of Algorithm 1 explicitly;

a maximum modulus search can first be performed over the

temporal dimension of S
′

i−1[τ], and the matrix-valued result

Amax,τ can be weighted by Di−1Amax,τD
H
i−1, which due to

the Hermitian nature of Amax,τ and the exclusion of diagonal

terms only takes 1
2
M(M − 1) MACs. The remainder of the

Authorized licensed use limited to: University of Edinburgh. Downloaded on October 19,2021 at 09:06:58 UTC from IEEE Xplore. Restrictions apply.

-1 0 1

0

20

40

-1 0 1

0

20

40

-1 0 1

0

20

40

-1 0 1

0

20

40

-1 0 1

0

20

40

-1 0 1

0

20

40

-1 0 1

0

20

40

-1 0 1

0

20

40

-1 0 1

0

20

40

R
[τ
]

lag τ

Fig. 1. Plots showing R[τ] ∈ R3×3 used as a numerical example; each
subplot represents one polynomial entry of R[τ].

maximum search can then be performed over either the lower

left or upper right triangular part of Di−1Amax,τD
H
i−1.

V. SIMULATION AND RESULTS

A. Numerical Example and Convergence

As a numerical example, we utilise the matrix R(z) : C→
C

3×3 of order 2, such that R(z) = R[−1]z + R[−0] +
R[1]z−1. For the matrix-valued coefficients, we have

R[0] =

14.7 0.3 2.2
0.3 19.1 −8.0
2.2 −8.0 39.0

 (16)

R[1] =

0.3 4.6 −7.3
−0.4 −6.0 −1.1
2.5 5.9 −.3.7

 . (17)

Further note that R[−1] = R
H[1]. This matrix is also

characterised in Fig. 1.

Operating on the above R(z), the fast Givens rotation-based

SBR2 algorithm converges in I = 238 iterations, and for

a maximum off-diagonal component threshold δmax = 10−5

yields the eigenvalues shown in Fig. 2. The extracted eigenval-

ues Γ[τ] ◦ • Γ(z) are Laurent polynomial that decay in both

positive and negative lag directions, and Fig. 2 only provides

values for the central lags |τ | ≤ 10. The spectral majorisation

of the eigenvalues as defined in (2), and to which according

to [27] and Sec. IV-B the fast Givens rotation-based SBR2

algorithm is guaranteed to converge, is demonstrated in Fig. 3.

These power spectral density terms are non-negative real and

ordered in power, satisfying (2).

In comparison, for the above R(z), the standard SBR2

algorithm [1], [7] converges in I = 235 iterations. The

obtained eigenvalues ΓSBR2(z) are near-identical to those

of the proposed algorithm in Figs. 2 and 3, with an error
∑

τ ‖ΓSBR2[τ] − Γ[τ]‖2F of −96.9dB, whereby ‖ · ‖F is

the Frobenius norm. The small difference in the number of

iterations and in the obtained eigenvalues—which according

to [2], [4] are unique—is likely due to to the numerical

differences between the two algorithm versions, even though

the fast Givens approach is claimed to be robust to over-and

-10 0 10

0

20

40

-10 0 10

0

20

40

-10 0 10

0

20

40

-10 0 10

0

20

40

-10 0 10

0

20

40

-10 0 10

0

20

40

-10 0 10

0

20

40

-10 0 10

0

20

40

-10 0 10

0

20

40

Γ
[τ
]

lag τ

Fig. 2. Approximately diagonalised matrix Γ[τ], obtained from R[τ] in Fig. 1
by the fast Givens rotation-based SBR2 algorithm.

0 /4 /2 3 /4 5 /4 3 /2 7 /4 2

6

8

10

12

14

16

18

Fig. 3. Eigenvalues Γ(z) as obtained by the fast Givens rotation-based SBR2
algorithm evaluated on the unit circle, z = ejΩ.

underflow [24]. The extracted eigenvalues differ by a some-

what larger amount due to their ambiguity w.r.t. multiplications

by arbitrary allpass functions [2], [16], and are therefore not

shown here.

B. Computational Complexity

In a standard Matlab implementation, matrix-valued oper-

ations are favoured and often there is no relation between

the sparseness of a matrix and the execution time for its

multiplication. Therefore, the run time difference (averaged

over 500 runs) for the example in Sec. V-A is only 98.1 ms for

the standard SBR2 and 92.6 ms for the proposed fast Givens

rotation-based SBR2 version. To investigate the potential of

the fast Givens approach for speeding up an implementation

in a non-Matlab environment, the fast and standard Givens

rotation operations have been explicitly implemented in C and

operated from within Matlab through pre-compiled MEX files.

Using Matlab’s profiler, the MEX-routines are specifically

called to perform I = 150 iterations on a matrix R(z)
calculated from a ground truth with a diagonal Γ(z) of order

100 and an arbitrary paraunitary matrix U(z) determined from

randomised elementary paraunitary operations [29] of order

50. The execution time averaged over 5000 runs for different

Authorized licensed use limited to: University of Edinburgh. Downloaded on October 19,2021 at 09:06:58 UTC from IEEE Xplore. Restrictions apply.

TABLE I
EXECUTION TIME COMPARISON BETWEEN STANDARD AND FAST GIVENS

ROTATION-BASED SBR2 IMPLEMENTATIONS, SHOWING MEAN

PLUS/MINUS ONE STANDARD DEVIATION.

computation time / [ms]

method M = 3 M = 5 M = 10 M = 20

standard 1.03±0.02 2.67±0.04 5.18±0.29 14.56±0.22
FGR 0.99±0.03 2.35±0.04 4.66±0.26 13.03±0.26

spatial dimensions M is summarised in Tab. I. The execution

includes memory allocation, maximum searches and various

book keeping, and therefore is not as dramatic a reduction

as direct comparison in MAC operations might suggest. Nev-

ertheless, as M increases, a substantial gap between the run

times of the standard and proposed SBR2 implementations

emerges, with the computation time shrinking in excess of

10% for the largest matrix size of M = 20 that is employed

here.

VI. CONCLUSION

This paper has exploited a fast Givens rotation trick to

reduce the number of multiply-accumulate operations, par-

ticularly when operating on a sequence of Givens rotations.

This trick has been adopted for a polynomial matrix eigen-

value decomposition technique known as the second order

sequential best rotation algorithm, where the interspersing

by delay elements can be absorbed. The modified algorithm

will minimise the same cost function as the standard SBR2

algorithm, which in every iteration step will eliminate the

maximum off-diagonal component. We have shown that due

to the maintenance of the cost function and maximum search,

the proposed algorithms inherits the convergence proof and

properties of the standard SBR2 algorithm to a diagonalised

and spectrally majorised solution for the polynomial eigen-

values. Particularly as the spatial dimension—i.e. the number

of sensors recording the data—increases, the computational

savings can become significant.

REFERENCES

[1] J. G. McWhirter, P. D. Baxter, T. Cooper, S. Redif, and J. Foster, “An
EVD Algorithm for Para-Hermitian Polynomial Matrices,” IEEE Trans

SP, 55(5):2158–2169, May 2007.
[2] S. Weiss, J. Pestana, and I. K. Proudler, “On the existence and unique-

ness of the eigenvalue decomposition of a parahermitian matrix,” IEEE

Trans SP, 66(10):2659–2672, May 2018.
[3] S. Weiss, I. K. Proudler, and F. K. Coutts, “Eigenvalue decomposition of

a parahermitian matrix: Extraction of analytic eigenvalues,” IEEE Trans

SP, 69:722–737, Jan. 2021.
[4] S. Weiss, J. Pestana, I. Proudler, and F. Coutts, “Corrections to “on

the existence and uniqueness of the eigenvalue decomposition of a
parahermitian matrix”,” IEEE Trans SP, 66(23):6325–6327, Dec. 2018.

[5] S. Redif, S. Weiss, and J. McWhirter, “Sequential matrix diagonalization
algorithms for polynomial EVD of parahermitian matrices,” IEEE Trans

SP, 63(1):81–89, Jan. 2015.
[6] J. Corr, K. Thompson, S. Weiss, J. McWhirter, S. Redif, and I. Proudler,

“Multiple shift maximum element sequential matrix diagonalisation for
parahermitian matrices,” in IEEE SSP, Gold Coast, Australia, pp. 312–
315, June 2014.

[7] S. Redif, J. McWhirter, and S. Weiss, “Design of FIR paraunitary
filter banks for subband coding using a polynomial eigenvalue
decomposition,” IEEE Trans SP, 59(11):5253–5264, Nov. 2011.

[8] S. Weiss, S. Redif, T. Cooper, C. Liu, P. Baxter, and J. McWhirter,
“Paraunitary oversampled filter bank design for channel coding,”
EURASIP J. Advances Signal Processing, vol. 2006, pp. 1–10, 2006.

[9] N. Moret, A. Tonello, and S. Weiss, “Mimo precoding for filter bank
modulation systems based on PSVD,” in IEEE 73rd Vehicular Technol-

ogy Conference, May 2011.
[10] S. Weiss, S. Bendoukha, A. Alzin, F. Coutts, I. Proudler, and J. Cham-

bers, “MVDR broadband beamforming using polynomial matrix tech-
niques,” in EUSIPCO, Nice, France, pp. 839–843, Sep. 2015.

[11] S. Redif, S. Weiss, and J. McWhirter, “Relevance of polynomial
matrix decompositions to broadband blind signal separation,” Signal

Processing, 134:76–86, May 2017.
[12] S. Weiss, C. Delaosa, J. Matthews, I. Proudler, and B. Jackson, “Detec-

tion of weak transient signals using a broadband subspace approach,”
in Int. Conf. Sensor Signal Processing for Defence, Edinburgh, UK,
Sept. 2021.

[13] V. W. Neo, C. Evers, and P. A. Naylor, “Speech enhancement using
polynomial eigenvalue decomposition,” in 2019 IEEE Workshop on

Applications of Signal Processing to Audio and Acoustics (WASPAA),
New Paltz, NY, pp. 125–129, Oct. 2019.

[14] A. Hogg, V. Neo, S. Weiss, C. Evers, and P. Naylor, “A polynomial
eigenvalue decomposition music approach for broadband sound source
localization,” in Proc. IEEE Workshop on Applications of Signal Pro-

cessing to Audio and Acoustics, New Paltz, NY, Oct. 2021.
[15] J. Corr, K. Thompson, S. Weiss, J. McWhirter, and I. Proudler, “Cyclic-

by-row approximation of iterative polynomial EVD algorithms,” in
Sensor Signal Processing for Defence, Edinburgh, Scotland, pp. 1–5,
Sep. 2014.

[16] J. Corr, K. Thompson, S. Weiss, I. Proudler, and J. McWhirter, “Row-
shift corrected truncation of paraunitary matrices for PEVD algorithms,”
in EUSIPCO, Nice, France, pp. 849–853, Sep. 2015.

[17] ——, “Reduced search space multiple shift maximum element sequential
matrix diagonalisation algorithm,” in IET/EURASIP Intelligent Signal

Processing, London, UK, Dec. 2015.
[18] F. Coutts, J. Corr, K. Thompson, I. Proudler, and S. Weiss, “Divide-and-

conquer sequential matrix diagonalisation for parahermitian matrices,”
in Sensor Signal Processing for Defence Conference, London, UK, pp.
1–5, Dec. 2017.

[19] F. K. Coutts, I. K. Proudler, and S. Weiss, “Efficient implementation
of iterative polynomial matrix evd algorithms exploiting structural
redundancy and parallelisation,” IEEE Transactions on Circuits and

Systems I: Regular Papers, vol. 66, no. 12, pp. 4753–4766, Dec. 2019.
[20] S. Kasap and S. Redif, “Novel field-programmable gate array archi-

tecture for computing the eigenvalue decomposition of para-hermitian
polynomial matrices,” IEEE Transactions on Very Large Scale Integra-

tion (VLSI) Systems, vol. 22, no. 3, pp. 522–536, Mar. 2014.
[21] R. W. Stewart, R. Chapman, and T. S. Durrani, “The Square Root In

Signal Processing,” in Real-Time Signal Processing XII, J. P. Letellier,
Ed., vol. 1154, International Society for Optics and Photonics. SPIE,
pp. 89 – 101, 1989.

[22] J. Götze and U. Schwiegelshohn, “A square root and division free
givens rotation for solving least squares problems on systolic arrays,”
SIAM Journal on Scientific and Statistical Computing, vol. 12, no. 4,
pp. 800–807, 1991.

[23] M. Moonen and I. Proudler, “Generating ’fast qr’ algorithms using signal
flow graph techniques,” in Conference Record of The Thirtieth Asilomar

Conference on Signals, Systems and Computers, vol. 1, pp. 410–414,
Nov. 1996.

[24] W. Rath, “Fast Givens rotations for orthogonal similarity transforma-
tions,” Numerische Mathematik, vol. 40, no. 1, pp. 46–56, 1982.

[25] P. Vaidyanathan, “Theory of optimal orthonormal subband coders,” IEEE

Transactions on Signal Processing, vol. 46, no. 6, pp. 1528–1543,
Jun. 1998.

[26] Z. Wang, J. G. McWhirter, J. Corr, and S. Weiss, “Multiple shift second
order sequential best rotation algorithm for polynomial matrix EVD,”
in 23rd European Signal Processing Conference, , pp. 844–848, Nice,
France, Sep. 2015.

[27] J. G. McWhirter and Z. Wang, “A novel insight to the SBR2 algorithm
for diagonalising para-hermitian matrices,” in 11th IMA Conference on

Mathematics in Signal Processing, Birmingham, UK, Dec. 2016.
[28] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed.

Baltimore, Maryland: John Hopkins University Press, 1996.
[29] P. P. Vaidyanathan, Multirate Systems and Filter Banks. Englewood

Cliffs: Prentice Hall, 1993.

Authorized licensed use limited to: University of Edinburgh. Downloaded on October 19,2021 at 09:06:58 UTC from IEEE Xplore. Restrictions apply.

