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Abstract—Graph filters (GFs) have attracted great interest
since they can be directly implemented in a diffused way. Thus
it is interesting to investigate GFs to implement signal processing
operations in a distributed manner. However, in most GF models,
the input signals are assumed to be time-invariant, static, or
change at a very low rate. In addition to that, the GF coefficients
are usually set to be node-invariant, i.e. the same for all the
nodes. Yet, in general, the input signals may evolve with time
and the underlying GF may have parameters dependent on
the nodes. Therefore, in this paper, we consider dynamic input
signals and both types of GF coefficients, node-variant, i.e. vary
on different nodes, and node-invariant. Then, we apply LMS
and RLS algorithms for GF design, along with two others
called adapt-then-combine (ATC) and combined RLS (CRLS)
to estimate the GF coefficients. We study and compare the
performance of the algorithms and show that in the case of
node-invariant GF coefficients, CRLS gives the best performance
with lowest mean-square-displacement (MSD), whereas, for node-
variant case, RLS represents the best results. The effect of bias
in the input signal has also been examined.

Index Terms—Graph Signal Processing, Graph Filtering, Dis-
tributed Processing, Adaptive algorithms

I. INTRODUCTION

In order to infer information from sensor networks, con-
ventional centralized processing is often used but may require
high transmission power, large communication bandwidth, and
costly energy consumption in the central unit. Therefore, a
distributed approach has been suggested where each node only
communicates with its neighbouring nodes, exchanging the
information locally, and has its own light processing unit [1]–
[4].

A sensor network can be modelled as a graph where the
sensors are represented as graph nodes and the inter-sensor
communications links are denoted as graph edges. As such,
we can apply graph signal processing (GSP) methods, which
has emerged recently to extend the classical signal processing
concepts to the signals on the vertices of a graph [5]. Spectra
of graphs, graph filters (GFs) and other tools to process graph
signals are defined accordingly [6], [7]. A practical benefit of
GFs is that they may be directly implemented in a distributed
manner [8]–[12].

This work was supported by the Engineering and Physical Sciences
Research Council (EPSRC) Grant number EP/S000631/1 and the MOD
University Defence Research Collaboration in Signal Processing.

GSP has been applied to various applications ranging from
social media webs, brain activity connections and wireless
sensor networks, to power grids and transportation networks
[6]. For defence applications, one can imagine situations where
a number of sensors, such as sonobuoys or disposable RF
connected sensors, are deployed to communicate and infer
information based on the observations and measurements.
These sensors can be considered as the nodes in a graph and
then GSP methods, such as GF, can be applied to analyse the
data more efficiently in a distributed fashion.

Graph filtering is one of the core tools in GSP, which can
be exploited to represent a transformation of the graph input
signals.In the general case, a GF is a transformation matrix
mapping the input signal, x, to the output. Therefore, any
linear transformation, T(x) = Bx, can be implemented by a
GF. Since the structure of the network, the graph topology,
is fundamental in distributed processing, it is required to
incorporate the graph shift operator, S (a matrix representing
the graph structure) in the GF design. In this paper, we
assume that B is shift invariant with respect to S and can
be represented as a polynomial of S, i.e. S is shift enabled
[11].

In most models such as [12]–[14], the input signals on the
nodes are assumed to be static, i.e. time-invariant, which is not
always true. Therefore, in [9], a GF model is introduced which
incorporates the time-varying behaviour of the signals. Even
though this model is more general, the authors still assume
that the GF coefficients are node-invariant, i.e. are the same
on different nodes. On the other hand, in [13], node-variant
filters are proposed such that the coefficients vary from node
to node. It gives more flexibility which enables the design of
more general filters with lower orders. Nevertheless, the model
is for time-invariant inputs. Therefore, to be more generic, we
consider a node-variant GF model, with time-variant inputs.

Having decided on the GF model, we need an algorithm
to estimate the GF coefficients. Given the reference system
we then use adaptive GF algorithms to estimate the coeffi-
cients. First, we consider an adapt-then-combine (ATC) least
mean squares (LMS) algorithm which combines the estimated
coefficients on the neighbouring nodes [9]. We compare this
to an LMS algorithm that operates independently on each
node, which is equivalent to ATC without its combine step,
and therefore permits a node-variant solution. In addition to
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that, we apply the recursive least square (RLS) algorithm in
[14] to use it for graph filter design by integrating the graph
shift operator (GSO) in the model. As in [14], we also add
a combine step to RLS, called combine RLS (CRLS), which
makes it comparable to ATC. Ultimately, we implement these
approaches and compare their performance with biased and
unbiased time-variant input signals.

In the following, we start with a review of graph filter design
in Section II. Then in Section III we explain adaptive filters on
graphs. Section IV is dedicated to experimental results, while
conclusions are drawn in Section V.

II. GRAPH FILTER DESIGN AND IMPLEMENTATION

Various approaches to designing a distributed system are
possible. Here we envisage finding the coefficients off-line
for the GF design. Then the GF and hence T(x) can be
implemented in a distributed manner.

A. Graph Filter Models

Let us consider an undirected graph G with a set of N nodes
or vertices, N , and a set of edges or links, E , such that if node
i is connected to node j, then (i, j) ∈ E . The neighbourhood
of node i is defined as the set of nodes Ni = {j|(i, j) ∈ E}
connected to i including node i itself. For any given graph, an
adjacency matrix, A, is defined as an N × N square matrix
with non-zero elements aji ∈ R if and only if (i, j) ∈ E . For
each graph, there exists a GSO, S, which can be chosen as A,
the adjacency matrix, or L, the Laplacian matrix [6], [7]. In
this paper we will be using the adjacency matrix as the shift
operator.

In GSP applications, one is interested in the analysis of
signals on the graph, defined by x = [x1, x2, ..., xN ]T ∈ RN ,
where xk represents the value of the signal at node k. The
graph signal at discrete time t is denoted by x(t). In distributed
processing problems, we have a transform, T, which maps
the input graph signals, x(t), to the desired outputs on the
nodes, y(t) = T(x(t)). Recall that T(x) can be represented
as a polynomial in the shift matrix. Our goal is to model this
transform as a GF.

In this section we start with node-variant GFs with time-
varying inputs. We also assume that the shift operation takes
a non-negligible amount of time with the same delay as the
sampling period of the input signal. In this node-variant case,
the GF coefficients are different on each node, k, and can
be put in an M ×N matrix D with each element D(m, k) =
hom,k, being the optimal mth coefficient on the kth node. Then,
an N element vector h(m) can be defined as the mth row of
D, while the kth column of D can be symbolized by an M×1
vector ho

k. The filter model can be then described as:

y(t) =

M−1∑
m=0

diag(h(m))Smx(t−m) + v(t), (1)

where M is the order of the graph filter, and v(t) =
[v1(t), v2(t), ..., vN (t)]T is multivariate Gaussian distributed
noise which may not be always present, but we include that
to be comparable to the model in [9].

For the simplest case where the coefficients are node-
invariant, all the N elements of h(m) will be the same on
different nodes, and so diag(h(m)) = INh

o
m, hom ∈ R.

Thus for the time-invariant input and node-invariant filter, the
equation can be written as:

y(t) =
M−1∑
m=0

homSmx(t) + v(t). (2)

In other words, the general model (1) becomes time-
invariant just by setting x(t − m) = x(t) for all m, and
node-invariant by setting hom,k = hom for all k, enforcing the
coefficients to be the same on different nodes as in (2).

III. ADAPTIVE FILTERS ON GRAPHS

Based on (1) for the general node-variant case, the output
signal on each node, say kth node, yk(t), can be modelled
separately as:

yk(t) =
M−1∑
m=0

hom,k[S
mx(t−m)]k + [v(t)]k, (3)

where [.]k represents the kth row of a vector.
Similar to [9], we define vector z(t −m) , Smx(t −m),

and then an M × 1 vector zk(t) as:

zk(t) , col{[z(t)]k, [z(t− 1)]k, ..., [z(t−M + 1)]k}. (4)

Then (3) can be written alternatively as:

yk(t) = zTk (t)h
o
k + vk(t), t ≥M − 1. (5)

where the optimum ho
k is the kth column of D, and the

adaptive filter model is zTk (t)hk. We then define a global cost
function:

J(D) =
N∑

k=1

Jk(hk), (6)

where Jk(hk) is the local cost function at node k which can
be mean square error for LMS based algorithms:

Jk(hk) = E{|yk(t)− zTk (t)hk|2}, (7)

or weighted least squares error function for RLS based algo-
rithms:

Jk(hk) =
t∑

i=1

λt−i|yk(i)− zTk (i)hk|2, (8)

where λ is a forgetting factor. This optimization problems
are to be solved using adaptive methods as described in the
following sections.
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A. LMS-Based Algorithms

In [9] the ATC approach is proposed to estimate the filter
coefficients iteratively:{
ψk(t+ 1) = hk(t) + µkzk(t)(yk(t)− zTk (t)hk(t)),
hk(t+ 1) =

∑
l∈Nk

clkψl(t+ 1),
(9)

where hk(t) is the vector of filter coefficients updated at
time t, µk the step-size, and clk are non-negative combination
factors:

clk > 0,
N∑
l=1

clk = 1 and clk = 0 if l /∈ Nk. (10)

In other words, C , [clk] is a left-stochastic matrix and
ψk(t+1) is an M×1 intermediate vector to represent the two
step algorithm. As a result, the coefficients will be averaged
over the nodes, converging to the same values on different
nodes. Thus, the ATC is intended for a problem with node-
invariant coefficients.

To modify this algorithm to be node-variant we effectively
remove the combine step by setting the combination matrix C
to an identity matrix I.

B. RLS-Based Algorithms

In this section, we apply the RLS algorithm for use with a
graph. We incorporate the structure of the underlying graph of
the network by including the GSO, S. Moreover, we estimate
distinctive parameters (GF coefficients) on each node. Even
though the RLS algorithm has previously been applied to a
sensor network problem in [14], the authors did not include
the shift operator in the model.

To perform an RLS algorithm, the weighted sample covari-
ance matrix at each time is required:

R̂zk
(t) =

t∑
i=1

λt−izk(i)z
T
k (i) + λtδIM , (11)

where zk(t) is the vector defined in (4) which can also be
represented as:

zk(t) , [x(t),Sx(t− 1), ...,SM−1x(t−M + 1)]Tk . (12)

The parameter, λ, is the forgetting factor and δ is a small
positive number that serves as a regularization parameter.
We need the inverse matrix Pk(t) = R̂−1zk

(t) which is not
feasible to calculate in a compact form. Therefore, we update it
iteratively along with the coefficients. The following algorithm
is RLS with a combine step which we call CRLS. This is a
modified version of Diffusion BC-RLS algorithm in [14], but
with the GSO, S, incorporated in the regressor, zk(t), and no
compensation step:

Pk(t+ 1) = λ−1
(
Pk(t)−

λ−1Pk(t)zk(t)z
T
k (t)Pk(t)

1 + λ−1zTk (t)Pk(t)zk(t)

)
φk(t+ 1) = hk(t) +Pk(t)zk(t)(yk(t)− zTk (t)hk(t)),

hk(t+ 1) =
∑
l∈Nk

cklφk(t+ 1). (13)

Similar to ATC, CRLS has a combine step with combination
matrix C, which averages the coefficients across the neigh-
bouring nodes. Therefore, it is also a node-invariant algorithm.
For the node-variant case we effectively remove the combine
step by setting the C to an identity matrix I. This results in a
node-variant RLS algorithm.

C. Effect of Biased Graph Signals

The data that has been addressed in various other publica-
tions [9], [13], [14], are often assumed to be zero-mean. It
is possible that the graph signal, x(t), is not zero mean [9].
Therefore, we briefly investigate the effect that a bias term in
the data has on the above algorithms. In this case there is a bias
term, b ∈ RN added to the data, such that xb(t) = x(t) + b.
We have E{xb} = b, so that, Rb = R + bbH , where bbH

is a rank-one matrix. As a result, the bias term changes the
eigenvalues of the covariance matrix, and generally increases
both the signal power and the condition number. Since every
value in Rb is larger than the equivalent values in R, we
find that the covariance matrix of non-zero-mean data will
contain a larger estimation error [15]. As the bias increases
the condition number, it will deform the mean-squared-error
(MSE) cost function, and gradient-based methods such as the
LMS may converge slower. For RLS-type algorithms, this
difference in convergence will be less pronounced due to the
gradient correction via the estimate of the inverse covariance
matrix.

IV. EXPERIMENTAL RESULTS

Similar to [9], we generated random connected Erdös-Renyi
graphs, with N = 20 nodes; and example of which is shown in
Fig. 1. Using a similar construction as in [9], “this graph was
obtained by generating an N ×N symmetric shift matrix, S,
whose entries were governed by Gaussian distribution N (0, 1)
and then threshold edges to be between 1.2 and 1.8 in absolute
value to yield an effective probability of an edge p ≈ 0.07.
The edges were soft thresholded by 1.1 to be between 0.1 and
0.7 in magnitude.” The shift matrix, S, was then normalized
by 1.1 times its largest eigenvalue to prevent instability. It
ensures that Sm contracts for increasing m, and hence does
not cause stability issues.

In [9], the authors assumed that the graph signal, x(t),
is i.i.d Gaussian with zero-mean and covariance matrix Rx,
where Rx was chosen as the solution of the Lyapunov equa-
tion SRxS

T−Rx+I = 0. This is equivalent to generating the
signals through a Gauss-Markov model with the shift operator,
S, as its transfer function. The logic behind this choice is that
usually in real situations the input signals on the neighbouring
nodes are somehow related.

To investigate the effect of bias, we added a DC compo-
nent to the input signal, which was chosen to be 2.5 times
the input variance σ2

x. The factor 2.5 is selected based on
the convergence behaviour of the algorithms. In order to
be comparable to [9],“the noise v(t) was also set to zero-
mean Gaussian with covariance Rv = diag{σ2

v,k}Nk=1, where
the variances σ2

v,k were randomly generated from uniform
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Fig. 1. A random Erdos-Renyi graph with N = 20 nodes.

distribution U(0.1, 0.15). The filter order M was set to 3
and the coefficients hom,k of the target filter, i.e T(x) were
randomly drawn from a uniform distribution U(0, 1).”

For LMS and ATC algorithms, the step-size, µ, was chosen
as 1/ζmax, where ζmax is the maximum eigenvalue of the
covariance matrix R̂zk

as in (11) with i = t, λ = 1 and
δ = 0. For RLS and CRLS algorithms, the forgetting factor,
λ, was selected as 0.9999. The combine factors for ATC [9],
and CRLS were set to clk = 1/|Nk| for l ∈ Nk, where |.|
denotes the cardinality of its entry.

We ran 200 Monte-Carlo simulations and for each simula-
tion a new random Erdös-Renyi graph was generated. Since
the explained procedure does not guarantee the connectivity
of the generated random graphs, we discarded all the graphs
that were not connected. Along with that, at each simulation,
a new input signal was generated based on the new shift
matrix. The ground truth filter coefficients were also randomly
generated at each run. After each simulation the mean-squared-
displacement (MSD)s, E{||ho

k − hk||2}, between the ground
truth coefficients and the estimated parameters were calculated
for each node, k, and then after 200 runs, averaged over all
the simulations. This MSD metric calculates the deviation of
each estimated parameter from the ground truth coefficients
and so demonstrates how well a system has been identified.

We set the ground truth coefficients, ho
k, to be either node-

invariant or node-variant. Then we ran the algorithms for
both biased and unbiased input signals. Fig. 2 shows an
example MSD of the estimated coefficients on all the nodes,
k = 1, . . . , N , for one of the coefficients, m, where the ground
truth was node-invariant and input was biased. We can see that
CRLS and ATC show the best performance with the lowest
MSD, while RLS has moderate performance, and LMS results
are not very appealing. It is not surprising since ATC and
CRLS combine the coefficients at each iteration steps which
results in an average value on different nodes, or in other
words, it results in node-invariant estimations. The algorithms
typically suffer from gradient noise, in particular the LMS type

ones. Additional averaging over the graph dimension helps to
reduce its effect.

0 5 10 15 20
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-60
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-40
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LMS

ATC
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Fig. 2. MSD between the node-invariant ground truth GF coefficients and
the estimated values applying, LMS, ATC, RLS, and CRLS algorithms with
biased input on all the nodes k = 1, . . . , N , averaged over 200 Monte-Carlo
simulations in dB.

Table I represents the averaged MSD over all the nodes for
the four different scenarios, node-invariant and node-variant
ground truths with unbiased and biased inputs. We can see that
for node-invariant ground truth, ATC and CRLS show better
performance with lower MSD, while LMS shows the worst
results. This is reasonable as in the ATC and CRLS there
is a combine step which gets the average of the coefficients
to be the same on all the nodes. On the contrary, for node-
variant case, ATC and CRLS display higher, worse, MSDs,
while RLS gives the lowest MSD. It is also noticeable that
the performance of LMS for both node-variant and invariant
cases are more or less the same. Similar behaviour can also
be observed for RLS algorithm. Therefore, for real data and
applications, where the nature of underlying GF model is not
necessarily known, RLS, can be a better choice since it shows
robustness under four different conditions.

By looking at Table I, we can also see that the bias has
considerable effect on LMS, increasing its MSD. However,
the main impact of the bias is the convergence speed of the
error shown in Fig. 3, which is calculated on each node as:

ek(t) = E{|yk(t)−
M−1∑
m=0

hm,k[S
mx(t−m)]k|2}, (14)

where E{} here represents an ensemble average over 200
Monte-Carlo simulations. As seen in Fig. 3, the LMS and
ATC algorithms, converge considerably faster when the input
signal is unbiased. Bias also increases the convergence time
for RLS and CRLS, but it is not that pronounced.

V. CONCLUSION

In this paper a general graph filter (GF) model has been
considered, which can be applied for both time-invariant and
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TABLE I
MSD VALUES BETWEEN THE GROUND TRUTH AND THE ESTIMATIONS

AVERAGED OVER ALL THE NODES, k, AND COEFFICIENTS, m, AFTER 200
MONTE-CARLO SIMULATIONS IN [DB].

node-invariant node-variant

unbiased biased unbiased biased

LMS -22.72 -15.81 -22.26 -15.76

ATC -39.39 -42.33 (-10.74) (-8.78)

RLS -31.38 -32.60 -30.82 −32.79

CRLS -46.37 −48.03 (-10.91) (-10.89)
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Fig. 3. Error between the desired output and the estimated output after each
iteration on a random node, with node-invariant coefficients for (a) unbiased
and (b) biased inputs.

time-varying inputs. In other words, it integrates the dynamic
behaviour of the input signal. In addition to that, the model
is modified to be compatible for both node-invariant, where
the parameters are the same on different nodes, and node-
variant, where the parameters are node dependent. Then, four
different adaptive algorithms, namely LMS, ATC, RLS and,
CRLS, have been applied to estimate the model parameters,
GF coefficients, by minimizing a cost function. By comparing
the algorithms, CRLS has shown the best performance for
node-invariant case, while the RLS has given the lowest MSD
for node-variant coefficients. The impact of bias in the input
signal has also been examined, showing the most deterioration
for LMS algorithms. The bias has also shown a considerable

effect on the convergence of LMS and ATC algorithms by
decreasing their convergence speed. Having considered all the
factors, RLS seems to be a better choice as it shows robust
performance under different conditions.
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