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Abstract—Object detection in modalities such as synthetic
aperture sonar (SAS) is affected by the difficulty of acquiring
a large number of training samples. If object classes not present
in the training dataset are detected during testing, they can be
mis-classified as one of the training classes. This increases overall
false alarm rate and affects operator reliability and trust in
the detection algorithm. Previous work showed that classification
algorithms are often overconfident in their predictions and hence
cannot reliably flag image regions about which the algorithm is
uncertain or which need further sampling or processing. This
paper describes object detectors based on SVMs and Gaussian
Processes for SAS imagery, followed by probabilistic calibration
of detector confidence scores. The entropy or uncertainty of these
scores is then used to identify low-confidence regions and indicate
the presence of previously unseen or anomalous objects.

I. INTRODUCTION

Many algorithms for detection of objects in challenging
environments rely on the use of training data involving a large
set of positive and negative samples. These algorithms are used
to perform automatic classification and detection. In situations
where either (i) a limited number of samples are available
for training or (ii) objects present in the test set are from
classes not represented in the training set, misclassifications
of test samples may occur. In this paper we study synthetic
aperture sonar (SAS) imagery [1]. Collection of images like
this is expensive in terms of equipment and time; this limits
the quantity of data which can be used for training, and hence
the robustness of individual detectors.

SAS is often deployed from unmanned platforms. Ideally
these would be as autonomous as possible, capable of mak-
ing decisions based on the environment that they perceive
and detections within it. In these cases, decision making
is hampered by classifiers which are overconfident in their
predictions [2]. In classifier training, the usual objective is to
minimise misclassifications (false positives and negatives), and
reliable indications of uncertain classifications are less of a pri-
ority. We use existing definitions of accuracy (the proportion
of samples which are classified correctly) and reliability (how
well the classifier’s confidence prediction agrees with ground
truth observations) [3]. These two quantities are not the same
and for a given problem, the most accurate detector may not
be the most reliable; an accurate classifier which is over- or
under-confident will not be reliable.

Fig. 1: Test-time detection of an object from an unseen class
using detection uncertainties from two other object types. The
large light blue rectangle represents ground truth information
of the untrained cylinder object. The purple bounding box
(confidence 0.97) of the uncertainty detector is shown. A false
positive from a wedge shape detector (yellow, probability 0.74)
also appears.

Ideally, if we have a detector which is not confident in the
quality of the detections it returns, this should be reflected
in its own output. In many situations we would arguably
value reliable detections over accurate ones, especially if this
allows the use of a robust method for selecting low-confidence
detection regions and improving them. In surveillance or
monitoring situations where the output of a detection algorithm
is viewed directly by human operators, this can be resolved by
asking the operator for a decision on the uncertain region. For
autonomous systems where having a human in the loop would
be impractical, regions containing low-confidence detections
can be re-classified with a more accurate but more computa-
tionally intensive algorithm which would be too slow to apply
throughout the entire scene. This uncertainty approach also
helps when the penalty for false positives and false negatives
is not equal; e.g. in mine-clearing operations, a false positive
means time is wasted, while failing to detect a mine can have
severe consequences. Accepting some level of ambiguity in
initial detections is, we argue, an acceptable tradeoff.

Many classification algorithms use a hyperplane to separate
one class from another. Support Vector Machine (SVM) clas-
sifiers assign more confident outputs to test samples further
away from the hyperplane, but this results in classification
predictions which are extremely overconfident [4]. When



evaluated on a feature vector x representing a region a SVM
will return a score f(x); from this the sign sgn(f(x)) gives the
class label. N classification categories are used, k = 1, . . . , N ,
and the score can be converted to a probabilistic prediction
p(Ck = 1|x) using a sigmoid function:

p(Ck|x) =
1

1 + exp(−2f(x))
. (1)

In various vision applications, the probability distribution has
been shown to be biased towards 0 and 1 [4], [5]. In situations
where multiple classifications are performed, however, sam-
ples for which no confident classification can be made have a
higher uncertainty or entropy measure. As we show, this may
indicate the presence of a class not present in the training data.
Figure 1 shows detection of a cylinder (blue ground truth) at
test time. We have not trained a cylinder classifier and thus
this is an example of an anomalous object. It is detected using
an uncertainty detector relying on the output of two trained
classifiers (wedge and truncated cone shapes). This is shown
in purple, and a false positive from the wedge detector is
included too. Test samples distant from the clusters formed
by training samples may also be an indication of the presence
of an object class which is present at test time but was not
included at training time. Related work follows in Section II.
Next, in Section III we describe the classification method for
individual detectors, followed by the uncertainty detector. We
then describe the dataset and present and analyse results in
Section IV. Conclusions are given in Section V.

II. RELATED WORK

A. Detection with Uncertainty

We use a sliding-window approach to detection, common
in the computer vision domain. In a traffic sign detection
application, Grimmet et al. proposed the use of entropy infor-
mation to identify sample windows which, after a classification
stage, had high uncertainty [2]. This approach thus produced
an introspective detector. Support vectors were compared to
Gaussian Process Classifiers (GPCs) and Logitboost-based
classifiers. For an application with sufficient training data to
ensure all detectors were discriminative enough to be usable
(i.e. precision, recall and F1-score were all > 0.9), GP
classifiers were found to have the highest average entropy
when presented with samples of unknown classes at test time.

Gaussian Process classifiers produce probabilistic classi-
fications directly from the best-fitting distribution using an
activation function [6]. However, if probabilistic classifications
are required from SVMs and Adaboost-based classifiers, these
must be produced by converting the classifier score using an
activation function. This ‘squashes’ all values far from the
hyperplane into [0, 1]; (1) is an example. Platt described an
improved method for fitting a parameterised sigmoid using
a holdout data set [7]. Niculescu-Mizil and Rich describe
isotonic regression (IR). This is a similar method, essentially
a lookup table for converting classifier scores into a nonde-
creasing [0, 1]-valued distribution [8].

Blair et al. used a similar approach to [2] for a single-class
pedestrian detection problem [5]. SVMs, GPs and Adaboost-
based classifiers were applied following a robust gradient-
and colour-based feature extraction stage. They showed that
SVMs with Platt- or IR-based probabilistic classification were
as reliable as GP-based classifiers for that application, while
requiring considerably reduced processing time. This approach
has also been shown to perform well in other remote sensing
classification tasks [9].

B. Detection in SAS imagery

A common approach to object detection in SAS imagery
is to use manual feature extraction to pick out features
characterised by highlights and shadows in the generated im-
agery [1], [10]. Williams [1] has made a comprehensive study
of many existing SAS datasets involving multiple different
object types. He constructs a multi-stage detector comprising
a shadow detector, a stage for removing seabed ripples (as they
have a similar highlight-shadow pattern to underwater objects,
they are a major source of false positives) and an highlight
strength estimation stage. However, his work concentrates on
automatic detection of all objects and does not take into
account situations when we may wish to discriminate between
different object classes, or locate and classify the presence of
a previously unseen class.

Identification of previously unseen objects is a form of
anomaly detection. Here we borrow a definition from Loy,
who classifies anomalies in video data as “observed behaviour
which is absent or rarely present in the training data” [11].
This can be subdivided into three types; events or objects
which are strongly different from the training data, those which
are ambiguous or rarely present in training, or those with
weak visual evidence. In this case we define a new class as
something strongly different from the training data.

C. Operator Trust and Human Factors

Let us consider situations where an object classification will
be used directly by a human operator, such as a military or
security-oriented surveillance task. Work in the human factors
domain has established the effect of trust of a human operator
in an automated system. Disuse (under-use of automation) and
misuse (overuse of automation) [12] are both problems in this
case. A high rate of false alarms will often cause a system
to be under-used. Similarly, algorithm detection failures on
‘easy’ examples will cause disuse of a system [13]. Dzindolet
et al. showed that, when operators were assisted in a detection
task by an algorithm, they were more likely to trust the
algorithm’s decision when given reasons why the automated
detection might fail [13]. This helped the users to arrive at an
appropriate degree of reliance. This was reinforced in a later
study by Madhavan et al., who note that when operators rely
on a machine to complete a task, it is initially expected to
perform nearly perfectly [14]. They also found that machine
errors when performing simple tasks reduce reliance and cause
humans to rely on their own perceptual abilities more. This
must be balanced against innate human overconfidence in their
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Fig. 2: Sample cone images in the training set, before normal-
isation.

own abilities, resulting in reduced algorithm-assisted overall
performance. Thus, in the absence of ‘perfect’ detection algo-
rithms, here we argue that providing information on overall
algorithm reliability and reliable confidence measures on a
per-detection basis, may improve operator trust in situations
where an existing algorithm may be disused.

D. Contributions

In this work we describe the application of existing clas-
sification approaches to a challenging SAS data set where
limited training data is available, and demonstrate the ability to
identify regions where anomalous or previously unseen object
classes are present. In doing so we extend the work of Grimmet
et al. [2] and Blair et al. [5] on uncertain classifications and
Niculescu-Mizil and Rich [8] to reliability, and apply it to
multiple object classes.

III. METHOD

Given a dataset of training and testing images, the classi-
fication algorithms we describe in this section perform three
separate tasks:

• detect locations of cones in the test dataset & provide
confidence output

• detect locations of wedges in the test dataset & provide
confidence output

• use uncertainty information (classifier disagreement) to
identify image regions where an unseen class may be
present. In this case we use cone and wedge detectors to
flag areas where cylinders may possibly be located.

A. SVM Training

SVMs evaluate a feature vector x with a weight vector w.

f(x) =

N∑
i=1

αiK(x,wi) + b (2)

This can be obtained with the linear kernel:

K(xi,xj) = xi · xT
j (3)

An alternative, the radial basis function (RBF) kernel, can also
be used. This is generally more complex to evaluate but can
have greater discriminative ability, as it can represent non-
linear decision boundaries:

K(xi,xj) = exp
(
−γ‖xi − xj‖2

)
(4)

SVM-RBF and SVM-Linear classifiers were trained in a
1-vs-1 manner, on truncated cones, wedges and backgrounds
using a 58 × 36 pixel window size and a window stride of
1/4 of the window size. Each window was extracted then
feature vectors were generated by normalising each one so
that they had mean 0 and standard deviation of 1. No further
preprocessing was performed. Three rounds of hard training
were performed, where the classifier was evaluated on all the
training data and retrained on failing samples. As the training
images contained examples of three object types, for any
image containing the “unknown” cylinder shapes, the windows
which overlapped the cylinder area were removed, ensuring
that cylinder shapes were completely unseen throughout the
training process.

The LIBSVM library1 was used throughout, and a GPU-
accelerated implementation of the RBF kernel2 was used to
speed up training and testing.

B. Probabilistic Classification

The SVM output is reinterpreted probabilistically, using the
fitting algorithm described by Platt [7]. This was used to obtain
the a and b constants in (5):

p(Ck|x) =
1

1 + exp(−af(x) + b)
(5)

The holdout set used to learn the constants was obtained from
a 4:1 split of the training data.

C. GPC Training

Gaussian Process Classifiers (GPCs) allow probabilistic
prediction P (y = +1|x∗) of a new data sample x∗, given
a set of training data x and corresponding labels y ∈ {0, 1}.
This is a two stage process. First a latent set of functions f(x)
is defined. This is assumed to have a Gaussian distribution, and
thus can be described by its mean µ(x) = 0 and covariance
function k(x,x∗). For a set of training and test points (x,x∗),
this is formulated:[

y
f∗

]
∼ N

(
0,

[
K(x, x) K(x, x∗)
K(x∗, x) K(x∗, x∗)

])
. (6)

The best-fitting distribution f∗ is found, and this is bounded
using an activation function with range [0, 1] such as the
logistic mapping function: σ(x) = 1/(1 + e−f(x)). The mean
and covariance of f∗ can then be used to find:

p(y = +1|x, y,x∗) =

∫
σ(f∗) , p(f∗|x, y,x∗)df∗ . (7)

This operation is O(n2) for test cases and produces a proba-
bilistic prediction value or ‘soft’ classification [15]. As GPCs

1www.csie.ntu.edu.tw/∼cjlin/libsvm/
2wmii.uwm.edu.pl/∼ksopyla/projects/cusvm-for-cuda-5-0-and-matlab-x64/



perform probabilistic classification directly, the extra conver-
sion step in (5) is not needed. In a similar manner to SVMs,
the covariance matrix when using linear kernels is:

kij(x) = σ2
0 + xi · xj

T . (8)

We also trained with squared error kernels but these proved
to be unable to discriminate between classes when training;
results are therefore not included here. The GPML library3

was used throughout.

D. Entropy

Uncertainty or entropy H can be measured using:

H = −
M∑
k=1

[p(Ck|x) logM (p(Ck|x))] (9)

It operates on the probabilistic classifications obtained by
(1), (5) or (6). This is normally expressed using base-2
logarithms [16, Ch.2]. Here we use base-M logarithms so that,
for M discrete classes, H is bounded between 0 and 1. A
larger H represents greater uncertainty in a classification and
is maximised when p(Ck|x) = 0.5 for all k ∈ M classes.
Entropy is therefore greatest when all individual classifiers
are most unable to provide a confident prediction.

IV. RESULTS

We measure classifier performance on two datasets in terms
of misclassification rate and reliability in §IV-A. Following
this, in §IV-B we use this information to evaluate our uncer-
tainty detector.

Comprehensive synthetic aperture sonar datasets were gath-
ered by NATO and first described in the literature by Groen et
al. in 2009 [10]. MUSCLE SAS was used to gather Colossus 2
and Catharsis 2 datasets, of which a portion is used here.
These datasets contain a number of simple shapes lying on the
seabed and are used to test classifier performace at detecting
man-made objects. Subsets from the Colossus 2 B and D sets
(comprising 132 large 4000 × 1000 seabed images in total)
were used for training. For testing we use subsets of the
Colossus 2 C and Catharsis 2 image sets, with 69 and 168
images respectively. The images contain objects labelled as
wedges, truncated cones, and cylinders, in a variety of different
seabed conditions: flat and sandy, rippled or muddy, or covered
in seagrass. Some example training cone shapes are shown in
Figure 2.

A. Detection of Cones and Wedges

Detection performance for classifying cones and wedges is
given in Table I for the Colossus 2 C set and in Table II for the
Catharsis 2 set. We show true positives (TP), false negatives
and positives (FN, FP), precision p = TP/(TP +FP ), recall
(r = TP/(TP + FN)) and F1-score:

F 1 =
(α+ 1)rp

r + αp
, α = 1 (10)

3www.gaussianprocess.org/gpml/code

TABLE I: Test set classification performance for Colossus2C
dataset. 61 images, seafloor complexity similar to training data.

Classifier Object TP FN FP p(%) r(%) F1

SVM-RBF cone 35 19 91 28 65 0.389

SVM-RBF wedge 44 16 4655 0.93 73 0.018

SVM-Linear cone 39 15 18879 0.21 72 0.004

SVM-Linear wedge 0 60 203 0 0 0

GPC-Linear cone 40 14 15569 0.26 74 0.004

GPC-Linear wedge 54 6 15330 0.015 90 0.003

Each instance of the object in a separate view is counted
independently.

We also give ROC curves for cones in Figure 3 and for
wedges in Figure 4. From these, the RBF classifiers always
outperform the linear ones. The wedge detectors also per-
form relatively poorly; cones (with their rotationally invariant
appearance) are more consistently detected when compared
to wedges. As expected, radial basis function SVMs also
perform better than their linear equivalents. In some cases (e.g.
Figure 4a) the linear SVM provides no discriminative ability.
The limited performance for all detectors on the Catharsis
dataset is due to the lower number of ground-truth detections.

The linear GPC outperforms the linear SVM, but both
provide an unacceptable number of false positives. The linear
GPC does not outperform the non-linear kernel SVM, how-
ever, showing the limitations of a linear decision boundary.
The major problem with all detection approaches is that a
high number of false positives are produced, such as for the
rippled seabed in Figure 5. These are (i) mainly present in
Colossus 2 C and not in B and D – hence only in the testing
data – and (ii) particularly a problem when the highlight and
shadow size of the ripples is the same size as the cone and
wedge features. See Section V for one possible approach to
this problem. Table III shows a comparison of the AUC results
from the subsets of each dataset that we use, against existing
work from 2015 which covers the mine-like object detection
over the complete datasets [1]. Our results do not improve
on existing work, but (i) we are instead concerned with the
problem of detector reliability and detection of novel classes
and (ii) not explicitly setting out to build a replacement object
detector. Williams uses a seabed ripple detector to remove
false positive classifications as a middle stage, but does not
discriminate between object classes [15].

In Figure 6 and Figure 7 we show reliability diagrams of
all detection approaches. Here, a ‘well-calibrated’ or perfectly
reliable detector would lie on the black line, i.e. of all the
detections it predicts with 60% confidence, 60% will be
evaluated as true. The RBF classifier is always more reliable
than the linear version. The wedge detectors are unreliable,
again due to the rotationally variant properties of the shape.
However, all detectors are significantly overconfident and
further post-processing of the results is required for any of
these detectors to be considered well-calibrated. This is again
the result of a high number of false positives dues to ripples.
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(a) Cone Colossus2c
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(b) Cone Catharsis2

Fig. 3: ROC curves for the cone detector.
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(a) Wedge Colossus2c
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(b) Wedge Catharsis2

Fig. 4: ROC curves for the wedge detector.

Fig. 5: Seabed ripples in the test set produce many false
positives from cone and wedge detectors.
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(a) Cone Colossus2c
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(b) Cone Catharsis
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(c) Cone all data

Fig. 6: Reliability diagrams for the cone detector.

TABLE II: Test set classification performance for Catharsis2
dataset. 168 images, seafloor more complex than training data.

Classifier Object TP FN FP p(%) r(%) F1

SVM-RBF cone 7 1 149 4.9 100 0.085

SVM-RBF wedge 1 0 836 0.11 100 0.002

SVM-Linear cone 8 0 3916 0.20 100 0.004

SVM-Linear wedge 0 1 5 0 0 0

GPC-Linear cone 8 0 3267 0.24 100 0.005

GPC-Linear wedge 1 0 15330 0.007 100 .0001

TABLE III: Area Under Curve (AUC) performance of our de-
tectors on the subsets of Colossus2C and Catharsis2, compared
to other work on the entire datasets.

Dataset Object Classifier AUC

Colossus2C cone SVM-RBF 0.502

cone SVM-Linear 0.383

wedge SVM-RBF 0.518

wedge SVM-Linear 0

cone GPC-Linear 0.493

all Williams [1] 0.803

Catharsis2 cone SVM-RBF 0.836

cone SVM-Linear 0.837

wedge SVM-RBF 0.679

wedge SVM-Linear 0

cone GPC-Linear 0.966

all Williams [1] 0.960

B. Unknown Object Classes

We now consider capability for detection of previously
unseen classes. Using the entropy information from each
detector, we expect this to be maximised where the SVMs
are ‘uncertain’ and have very little discriminative ability;

(a) Wedge Colossus2c (b) Wedge Catharsis

(c) Wedge all

Fig. 7: Reliability diagrams for the wedge detector.



TABLE IV: Test set classification performance: Using uncer-
tainty to detect unseen cylinders in the Colossus2C dataset.
Uncertain detections are those with H > 0.9 and not overlap-
ping a known detected object.

Classifier “TP” “FN” “FP” p(%) r(%) F1-score

SVM-RBF 12 15 17 41.4 44.4 0.42857

SVM-Linear 24 3 2804 0.84 88.9 0.01681

TABLE V: Test set classification performance: Using uncer-
tainty to detect unseen cylinders in the Catharsis2 dataset. Un-
certain detections are those with H > 0.9 and not overlapping
a known detected object.

Classifier “TP” “FN” “FP” p(%) r(%) F1-score

SVM-RBF 1 0 57 1.72 100 0.03389

SVM-Linear 1 0 2640 0.03 100 0.00057

i.e. where for both the detection probabilities are p ∼ 0.5.
Thus, for every image we threshold H from (9) at 0.9, and
discard those bounding boxes which overlap with existing
detections. Entropy thresholding removes many of the FPs
caused by seabed ripples, leaving behind the unknown objects.
See Table IV; in the “TP”, “FN” and “FP” columns we list
detections of ground-truth cylinder locations with a detector
which has never been trained to detect them. With a SVM-
RBF classifier, the recall rate of samples of an unknown
class is 44%; arguably enough to signify to an operator or
autonomous system that there is potentially an additional
object class present which merits further investigation. We
also express this in a ROC curve for Colossus2C in Figure 8.
For the Catharsis set given in Table V, only one ground-
truthed cylinder was present, and this was detected with
numerous false positives. There are examples of this detector
in Figure 1 and failure modes are shown in Figure 9, where
the uncertainty detector also identifies a wedge missed by
the wedge detector. Interestingly, the RBF-based uncertainty
detector is less susceptible to false positives caused by the
seabed ripples than the original object classifiers; we speculate
that this is because each object detector responds differently
to the same area of seabed.

V. CONCLUSION

We have described SVM- and GPC-based detectors for two
object types in synthetic aperture sonar data. While these do
not achieve state-of-the-art detection results, we are able to
compute a a probabilistic prediction of detection performance
then use the uncertainty arising from this to identify samples
from a previously unseen class at test time. In the best case
we can recall 44% of the samples of a previously unknown
class. Where possible, we have included Gaussian Process-
based detectors as comparison. The main issue with our
approach is the high number of false positives found by the
original detectors in rippled seabed areas; improved methods
to tackle these are required. Recent work by Daniell et al.
has shown that regional context classifiers can suppress false
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Fig. 8: ROC curves for unseen detection of cylinders using
uncertainty in Colossus 2C.

(a) Non-mine object (false positive)
identified with high confidence by the
uncertainty detector.

(b) Wedge (green) in rippled (hard)
area missed by wedge detector but
identified by the uncertainty detector
(blue).

Fig. 9: Failure modes of uncertainty detector.

positives, at little computational cost [17]; this approach is
being considered for future work.
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