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Abstract—Most real-world signals or images have an intrinsic
non-linear similarity measure and can be harder to discriminate.
Kernel dictionary learning with applications to signal classifica-
tion offers a solution to such a problem. However, decomposing
a kernel matrix for large datasets is a computationally intensive
task. Existing papers on dictionary learning using optimal kernel
approximation method improve computation run-time but learn
an over-complete dictionary. In this paper, we show that if we
learn a discriminative orthogonal dictionary instead then learning
and classification run-time can be significantly reduced. The
proposed algorithm, Kernelized simultaneous approximation, and
discrimination (K-SAD), learns a single highly discriminative
and incoherent non-linear dictionary on small to medium-scale
real-world datasets. Extensive experiments result in > 97%
classification accuracy and show that the algorithm can scale
both in space and time when compared to existing dictionary
learning algorithms.

Index Terms—Kernel, Dictionary learning, Sparsity.

I. INTRODUCTION

Sparsity promotes a simple idea, a minimal collection
of directions or atoms, called a dictionary, can represent a
particular observation in the input or feature space. In most
cases the underlying process that causes an observation to
occur in the first place is low-dimensional. Identifying such
a cause is highly beneficial for signal reconstruction, com-
pression [1] and discrimination [2]. Dictionary learning (DL)
for signal approximation [3] and discrimination [4, 5] is equal
to identifying, given a set of training samples, an appropriate
set or dictionary such that any K-subset of it spans a K-
dimensional subspace. In contrast to hand-crafted dictionaries,
DL methods adapt an over-complete or orthogonal dictionary
to an observation, hoping for better sparsity.

A. Orthogonal or Over-complete Dictionary Learning

Given a measurement vector, w € RF*! « W € RP*N the
aim is to extract a sparse vector, ¢ € RE*L = Q e RE*N and
learn a dictionary Z = [z1, ..., zx] € RP*X, simultaneously.
Traditional DL algorithms have two steps:

1) Sparse Coding:
rrcllin |[wi — Zq; ||3,s.t. ||qi|lo € To, Vi=1,...,N (1)

2) Dictionary Update:

K
min [IIW -2 qufllﬂ el = LVE=1,,K ()
k=1
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Equation (2) assumes that both W and Z are fixed except in
column z; and the coefficients that correspond to it, the Eth
row in Q, denoted as q?. ||.||o is the sparsity measure. The
unit length and orthogonal constraint makes the dictionary Z
orthonormal.

Learning an over-complete dictionary using greedy methods
ensures maximum sparsity, but the dictionary can be most
coherent, i.e. highly redundant. Enforcing the incoherence
condition on an over-complete dictionary [6] whilst solving 2
is a difficult task. In this work, we learn a structured orthogonal
dictionary and use the derived coefficients as target signatures
for classification purposes. Recently, Kernel based DL [7]-[9]
methods have been proposed as an effective way of capturing
non-linearity in the input space and learn sparse encodings,
simultaneously. However, these methods require the kernel or
Gram matrix, K € RYV*¥  For large-scale datasets, computing
such a matrix is a computationally complex task, both in
space and time. Work by Golts and Elad [10] incorporate
an effective way of approximating a kernel matrix with an
over-complete dictionary and Gangeh ez. al [11] show that an
kernelized orthogonal dictionary can be learnt. However, in
this paper, we combine the kernel approximation method [12]
with a discriminative orthogonal dictionary learning step. This
separates our work from [10] and [11] improving classification
accuracy and reduces the algorithm run-time significantly.

B. Contributions & Outline

The key contributions of this work are: 1) we report
an improvement in run-time and classification accuracy on
existing kernel DL methods [9, 10] by proposing to learn
a discriminative orthogonal dictionary instead of an over-
complete one; ii) unlike [10], we propose the use of an efficient
SVD method for large matrices when approximating the kernel
matrix using the Krylov method [12]; iii) we report state-
of-the-art classification results and faster run-time on high-
dimensional RGB-D and face recognition databases learning
a single kernelised orthogonal dictionary; iv) finally, unlike
[10, 11] we also map the kernel dictionary back into the input
domain in order to better understand the dictionary structure
and diversity.
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II. KERNEL DICTIONARY LEARNING

The Mercer kernel defines an implicit, non-linear transfor-
mation mapping the input data into a higher or even an infinite
dimensional kernel feature space [13]. The kernel trick allows
training of the input data in the high dimensional feature space
without explicitly computing the exact mapping. The Mercer
kernel k : W x W +— R for training samples w; and w; can
be expressed as
where @ is the implicit non-linear mapping associated with
the kernel function k (-, -). For the input matrix W & RY*N,
the kernel matrix K € RY*Y contains values of all pairs of
input signals where ®(w) € R? is the image of w in F and
D » P is the dimension of the feature space F. Commonly
used kernel methods are the linear kernel, polynomial kernels
and Gaussian radial basis function (RBF). The RBF kernel can
be expressed as

“)

k{w;, wj) = exp (—fy [|w; — wj||§) ,where, v > 0

A. Kernelised Orthogonal Dictionary Learning Problem

We assume that for an input matrix W & RFP*V ijts
kernel matrix K € RNV*N is of rank » < N. Hence,
K ~ BB = ®(W)T®(W), where B € R"*", Finally using
B, we compute “virtual samples” ®;,.4;, € RE*YN  where
K « P. Section III-A details how we approximate ®:q;r,.

Proposition 1. Given the virtual samples, ®y.qin, a dictio-
nary, Z € RExK | ZT7Z = I, where K « P, the original
sparse coding (1) can be re-written as J(Q) =:

min [|®srain — 2Q 13 + B11l1Q1I1 + B2G(Q),

subject to ||Q |1 €1 (5)

and has a unique solution Q* = Tpg, (Z Pirain, G(Q)).
Proof. See Appendix A. O
We add a discriminatory function G({Q) (See Section
III-B) that maximises inter-class variance and minimises
intra-class variance of dictionary coefficients [2, 7]. We

solve (5) using a soft-threshold operator Tg, (Z ®ty4in) =
Sign(@train) max(|®truin| - 517 0)

Proposition 2. Assuming ZTZ = I, the orthogonal kernel
dictionary learning step can be written as:

mzin ||(Ptrain - ZQ ||2 (6)

has a unique solution Z* = UVT, where U,V denote the or-
thogonal matrices defined by the following SVD ® 4,54, QT =
uxzvrT,

Proof. See Appendix B. O
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Algorithm 1: K-SAD
Input: Wy,qin, Weest, sampler, sr, kernel, kt, ¢
Output: labels

1 begin

// Stage I — LKA. See Section III-A

W, = VQ (Wirgin, st, kt, ¢)

Cirain — compute_kernel (Wirqin, W)

Ciest — compute_kernel (Wiegst, W)

H — compute_kernel (W, W)

HY —» AXTAT

1/2
7 | ®Birain = (2};) ATCT

train
/

A i A W N

1 1/2 TOT
8 (Ptest = (Ek) Ak Ctest
// Stage 2 — ODL. Section III-B

9 Set initial Z

10 forall the ¢ € {0,7] do

1 Qt = Tp, (ZtPrrain, G(Q))
12 D,0inQf = UXVT

13 Zip1 =UVT

14 Z = Zk+1

// Stage 3 — K-NN Classifier
15 Qtest = ZT@test

16 labels < ModelKNNClassifier (Q¢est, Z)
17 forall the i € [1,N] do

18 |_ Distance(Z, Qqe.t)

19 labels < Sort (Distance (Z, Qtest))

20 return labels

III. PROPOSED APPROACH

Some of the limitations with linear and non-linear sparsity
based classification algorithms are:

i) The Eigenvalue decomposition of the kernel or the Gram
matrix may not scale with large data sets, O(N2) and
O(N®) in space and time, respectively, where N is the
number of observations.

ii) Learnt dictionaries may be highly redundant and may not
have a structure.

Recent work by Golts and Elad [10] also propose a solution
to the implicit kernel problem, i.e. efficient computation of
the kernel matrix K. However, unlike our approach, they
do not enforce incoherency or discriminatory constraints on
the dictionaries and learn over-complete dictionaries for each
target class. Our algorithm learns only one.

A. Stage 1: Low-rank Kernel Approximation

The low-rank kernel approximation (LKA) stage is a pre-
processing step that maps the high-dimensional input data
on a low-dimensional non-linear feature space. We use the
Nystrom method, first introduced by Williams and Seeger
[14] through uniform sampling of the input data. This method
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computes a low-rank approximation to K of the form K =
CH, C”. The Nystrom method permutes K as:

H H ST

o=[s] =[5 X "
where C denotes the N x ¢ matrix formed by ¢ columns,
H € R°*¢ is a matrix consisting of the intersection of ¢
columns with corresponding ¢ rows of K, A corresponds
to a matrix composed of the remaining (N — ¢} rows and
columns and S € RN=¢)%¢ i5 a mixture of both. In this work,
we use two sampling techniques that determine the size of
¢, 1) random uniform sampling, and ii) vector quantisation
(VQ) which uses the k-means clustering method. The uniform
sampling method selects ¢ « N columns from Wy, at
random compared to the clustering or the VQ method that
uses c cluster centers. Finding the best sampling technique for
LKA is out of the scope of this work and interested readers can
see [14] and reference therein for a detailed analysis. Using (7)
we construct K as follows K ~ CH'CT, where (T) denotes

the pseudo-inverse operator.
Since H is a symmetric positive semi-definite (SPSD)

matrix, it can also be written in terms of its eigenvalues and
eigenvectors. Hence, we re-write H as

H=AXA" and Hf = AXDTAT ®)

and (HT) vz _ (ET) 172 AT, Finally, we re-write ®;,4;, as
follows

Prain = () Y arer ©)

We solve Line 6 of algorithm 1 using the randomised version
of the block Lanczos method [12] which is adapted for large
datasets and produces nearly optimal accuracy. We repeat the
above steps for the test dataset and get ®,.;.

B. Stage 2: Discriminative Coefficient based Orthogonal DL

Stage 2 of algorithm 1 presents the pseudocode of the
ODL stage. The input to the algorithm is a training matrix
®,,.4in.-The optimisation problem in (1) does not optimise
the learned coefficients for maximum discrimination. The
discriminative term in (5), G (Q) is expressed below [2]. For a
set of coefficients Q = [¢1, g2, ..., g |, Where g1, ..., gk, ..., gx
are the coefficients for the dictionary afoms, of which K,
samples are in class {2, for 1 € ¢ < 2, the mean and
variance for class {2, can be defined as: p, = = 3

K, aige. b
and v} = =3 o ||z — pecl[3. The mean of all coefficient

. K .
samples can be written as: [ = % Zk:l qr. The inter-

class scatter matrix, S,, and the intra-class scatter matrix, Sp
Q

can be defined as: Sy = || 3 Ko (pe — 1) (pe — )" ||2 and
Q =
Sw = Y, v2. Finally, the discrimination function is defined

c=1
as G (Q) = Trace(S;'S). Algorithm 1 lists the pseudocode
of the steps involved and we call this algorithm kernelised
simultaneous approximation and discrimination (K-SAD).
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RGB-D Washington Dataset

Fig. 1: RGB-D Washington and YaleB Face dataset.

Extended Yale Face Dataset

IV. EXPERIMENTS

The aim of our experiments is mainly to compare with other
kernel dictionary learning approaches. We evaluate our ap-
proach on four publicly available benchmark datasets: i) The
RGB-D object dataset [15], ii) The ORL AT&T face dataset!
[16], iii) Extended Yale face dataset® [17] and iv) MNIST
Digit Dataset’ . All our experiments were carried out on an
Intel quad-core 17-4800MQ 64-bit computer with a CPU clock
speed of 2.7 GHz and 16 GB RAM.

A. RGB-D Object Recognition Dataset

The Washington RGB-D dataset is a collection of 300
household objects grouped into 51 categories collected us-
ing the Microsoft Kinnect sensor. The images are of size
~ 85 x 85 x 4. Several representation based methods, e.g.
instance distance learning (IDL) [18], query adaptive similarity
measure (QSM) [19], convolutional-recursive deep learning
(CNN-RNN) [20], convolutional k-means descriptor (CKM)
[21], depth kernel descriptors (KDES) [22] and hierarchical
matching pursuit (HMP) [23] have reported results on the
Washington RGB-D datasets. Lai et. al in [18] compute a
single feature vector combining image, texture and depth
features. Such features are then used for classification. Deep
learning based methods, e.g. the CKD [20, 21], have reported
state-of-the-art results where feature responses are learned
in the vicinity of interest points and later combined into a
descriptor. The CKD descriptor incorporates depth information
which is then computed on image patches whose dimensions
are pre-defined.

As suggested in [15] 10 trials with pre-defined training and
test datasets* were adopted in our experiments and average
accuracy is reported. We compare our results against state-of-
the-art results in [19] and report classification accuracy and
training and classification run-time. All the methods shown
in Table I use the same training and test partitioning of the
dataset. For our experiments we do not down-sample the
images or extract any features [18, 22]; 51 dictionary atoms
(one atom per category) are initialised at random from the
input data and adopted using the DL method. A polynomial
kernel of degree 8 with hyper-parameters $; = 0.1 and
B2 = 0.01 was used in our experiments.

B. The AT&T (formerly ORL) Face Dataset

The AT&T face dataset is composed of 40 subjects and
10 images with pose and expression variation per subject.

Uhttp://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
Zhttp://vision.ucsd.edu/~leekc/ExtYaleDatabase/
3http://yann.lecun.com/exdb/mnist/
“http://rgbd-dataset.cs.washington.edu/dataset/rgbd-dataset_eval/
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TABLE I: Accuracies(%) on RGB-D Washington dataset.

Method Accuracy(%)
SP-HMP [23] 87.5+29
IDL [18] 85.4 + 3.2
CKM [21] 86.4 +2.3
CNN-RNN [20] 87.6 +2.0
KDES [22] 86.2 + 2.1
Kernel SVM [18] 83.84+3.5
QSM [19] 92.7+1.0
Our approach 97.572 + 0.265

Method Accuracy Time(s)

OMP [24] 93.75+2.12 -

L1 — Ls [25] 95.90 +1.15 -

KK-SVD [9] 93.75 + 0.05 8.3
AT&T Dataset FDDL [7] 94.25 +0.03 17443

LKA+FDDL [7] | 92.75 + 0.03 92.78

Our approach 96.58 +0.02 | 1.3

OMP [24] 91.97+0.96 -
Ly — Ls [25] 94.22 £ 0.71 -
KK-SVD [9] 91.53 £ 0.09 41.96
YaleB Dataset LKA+FDDL [7] | 87.2 4+2.12 9000
FISTA [26] 94.50 + 0.82 -
PALM [27] 93.19 £ 0.642 | -
LKDL [10] 96.33 -
Our approach 98.26 + 0.03 | 314

TABLE II: Accuracies(%) on AT&T and YaleB Datasets

The dataset has images of size 112 x 92, captured on sev-
eral different occasions in an up-right frontal position under
a homogeneous background. We compare our approach to
orthogonal matching pursuit [24], L_L, [25] and FISTA [26].
Technical details of the above algorithms can be found in a
recent survey [27]. In comparison to the methods discussed in
a recent review [27] our method gives the least classification
error. In our experiments, we use the full feature space of
10, 304 pixels as input to the stage 1 of our algorithm, unlike
[27]. We randomly initialise 240 our dictionary atoms (6 per
subject) from the non-linear mapped input data. A polynomial
kernel of degree 8 was chosen for this experiment with
B1 = 0.1 and B3 = 0.01. Table II illustrates state-of-the-art
results on the AT&T face dataset.

C. Extended YaleB Face Dataset

The “Extended YaleB” face recognition database, in con-
trast to the AT&T database, is a larger database with 2,432
frontal images taken under varying lighting conditions and
expressions. There are 38 subjects with ~ 64 8-bit images
per subject of size 192 x 168. Table II illustrates state-of-the-
art results reported for this database against methods presented
in [27]. In comparison to the methods and other kernel based
DL methods our approach shows improvement in classification
accuracy and is faster. For our experiments we do not re-size
our images as done in [27] and use the full input space as
an input to stage 1 of our algorithm. A polynomial kernel of
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TABLE III: Accuracies(%) on USPS Digit Dataset

Method Accuracy(%) | Time(s)
FDDL [7] 95.79 -
FDDL+ LKDL [10] 96.03 -
LKA + KKSVD [9] 74.62 9825.4
SVM (Gaussian Kernel) 98.6 -
Our approach 96.42 92.86

degree 8 with 740 dictionary atoms (20 atoms per subject),
initialised by uniformly sampling the kernel space was used.

D. MNIST USPS Digit Dataset

The USPS MNIST dataset consists of 60, 000 training image
and 10,000 test images of size 28 x 28. The parameters used
for this experiment are: 5; = 0.1, 8 = 0.01, 20 DL iterations,
300 dictionary atoms and a polynomial kernel of order 8.
We compare classification accuracies and run-time execution
against state-of-the-art results reported by Golts et. al [10].
Table I compares classification accuracy of our approach
against approaches presented in [9, 10]. We use the KKSVD
code made available by the authors. The original algorithm in
[9] is not feasible for such a large dataset hence we employ
the kernel approximation (Stage 1, III-A) algorithm first and
then use the KKSVD algorithm for kernel dictionary learning.
We call this method “LKA + KKSVD” in Table III. Compared
to [10], with same parameters, the orthogonal discriminatory
dictionary learnt using our approach is & 55 times faster.

V. CONCLUSION

This work improves on two central problems in DL algo-
rithms i) handle non-linearity in the input space by improving
classification accuracy on existing publicly available datasets;
i) further reducing the learning and classification algorithm
run-time through kernel matrix approximation. This work
combines an orthogonal incoherent discriminatory dictionary
learning method in the non-linear space with an efficient ap-
proximation of kernel matrix. Unlike some existing techniques,
which have produced these ideas individually, our approach
learns a single non-linear orthogonal dictionary which is in-
coherent, minimising cardinality and maximising the discrim-
ination capabilities in the non-linear space. We complement
the small-runtime required by the orthogonal DL step with
a fast kernel approximation stage in our algorithm. We report
state-of-the-art results on large-scale high-dimensional datasets
and report an average classification accuracy of ~ 97% on
8-bit digits, face and RGB-D images. Unlike most sparsity
based classifiers our approach uses the coefficients as target
signatures. Finally, unlike [10, 11], the reverse mapping, i.e.
pre-images, of the kernel dictionary, Figure 2, were computed
using [28].
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APPENDIX A
PROOF FOR PROPOSITION 1 [12]
We apply the majorisation-minimisation method to solve our
non-linear cost function J 7§Q) (5) using a surrogate function (13]
(Q Qt) = (Q Qt) (aI — ZTZ) (Q — Qt). Hence by ,
design J( ) ( ) + M(Q, Qt) coincides with J(Q) at 14
Q:. Solving the modified cost function leads to
(Q) = ‘ptraﬂ,n@tﬂli’ﬂ QQtT‘H.Z’HZQ + [15]
TrpT T T
QZ'72Q+(Q-Q) (eI -Z7Z)(Q-Q,) (10)
[16]
2J(Q)
T T
W = —27 (Ptra.in — 2(0[1 Y/ Z)Qt +
1 [17]
3 T
QBIQ =0= Q$ = TB1 (Qt + EZ (Ptra.in -
B 18
ZQ:+G(Q)).5)  an M
APPENDIX B .
PROOF FOR PROPOSITION 2 [19]
The reduced rank procrustes rotation (Theorem 4 in [29])
shows that for the minimisation problem for Z in [20]
. 2
mzln ||(Ptra.in - ZQ || (12)

[21]
subject to ZTZ = I, has a unique solution Z* = UVT,
where ®4,4:,QT = UXVT. In contrast to this work, where
the dictionary learnt is a kernel dictionary, the proof in [29] [22]
is in the linear domain.
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