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Abstract—Sensor parameter estimation is a key process that
must be considered when performing data fusion in a multi-
sensor object tracking scenario. For example, significant relative
time delays in sensor data arriving at a fusion centre can
result in a reduction of track accuracy, false tracks, or early
termination of a true object track. The same issues may arise
in the presence of some relative angular bias between sensors.
This article presents a technique for simultaneous target tracking
and estimation of relative time delays and angular biases in data
for a multi-sensor system with no access to a global frame of
reference. The proposed technique makes use of a hierarchical
Bayesian model and couples a grid-based search method with
an array of augmented state Kalman filters to accomplish this.
Results are provided comparing the root-mean-squared error in
a simulated single object tracking scenario. The performance of
a single sensor, two sensors with correct registration, two sensors
with incorrect registration, and two sensors with registration
correction are compared. The results demonstrate a significant
improvement in tracking performance when registration errors
are corrected with the proposed method, as well as an increase
in accuracy over object tracking with only a single sensor.

Index Terms—hierarchical Bayesian model, spatio-temporal
alignment, single object tracking, GNSS-denied, bias estimation,
Kalman filter, grid-based search

I. INTRODUCTION

A. Problem Overview

Sensor data fusion is a valuable technique in sensor net-

works. Use of multiple sensors to carry out a task – such

as behaviour analysis – has advantages over the same task

performed by only a single sensor [1]. Calibration of these

sensors is key to their reliable performance. Consider the

rapid deployment of radars on ships where there may be no

time for calibration ahead of time - impromptu registration

becomes a necessary capability. Sensors with unknown relative

registration biases are likely to return data which can lead to,

in the case of object tracking, false tracks or complete loss of

tracks. In a crisis situation, this could be disastrous.

Sensors may not share a common spatial reference frame

(spatial bias) and may not be synchronised in time (temporal

bias). Therefore, to allow successful data fusion, it is important

to remove these biases such that the sensors share a frame

of reference (FoR). Additionally, the network may not have

any reliable access to an external reference such as the Global

Positioning System (GPS). GPS can provide much information

about sensor position and pose, however, in a real scenario

this will likely be with some error. Furthermore, regions

exist which are entirely GPS-denied. These include indoors,

underwater, hostile regions (where signals may experience

interference), and in space exploration.

Developed in 1981, the Network Time Protocol (NTP) is

a method for the clock synchronisation of computer systems

[2]. It requires access to the internet. The sensors considered

in this work have no internet access and therefore NTP is

not considered a solution to the problem this work addresses.

Additionally, NTP deals with round trip delays and overall

clock synchronisation, which is not considered here.

B. State-of-the-Art & Contributions

Registration methods for networks of sensors have been pro-

posed previously in the literature. Some fall into the category

of spatial alignment [3], [4], while others focus primarily on

temporal alignment [5]. A new KF-based algorithm for spatial

bias estimation among stationary time synchronised sensors

tracking N targets is proposed in [6]. This is founded on the

reconstruction of Kalman gains at the fusion centre. Fortunati

et al. [7] consider the spatial alignment problem between local

and remote sensors and derive a linear LS estimator to align

the data. A modified exact maximum likelihood (MEML)

registration algorithm, which was shown to outperform the

standard exact maximum likelihood (EML) algorithm in a

small radar network, has been presented [8]. This was achieved

through the determination of an exact likelihood function. A

neural EKF (NEKF) has been developed for the alignment

of two-sensor systems [9], while in [10] a deep learning

based 3D point cloud registration system is proposed. In 2013,

[11] presented a Bayesian algorithm based on importance

sampling to estimate sensor bias for asynchronous sensors.

Recently, [12] formulate a nonlinear LS approach for the three

dimensional asynchronous multi-sensor registration problem.

The works mentioned above do not consider joint tracking

and spatio-temporal alignment. This paper builds on the work

in [13]. An algorithm is proposed for the spatial and temporal

alignment of co-located radars with relative registration errors

between them. The method allows simultaneous joint bias

estimation and object tracking and does not rely on access

to a global FoR. Instead, the radars are calibrated relative to

each other. A grid-based search method is implemented. A two

dimensional grid represents the bias hypothesis state space,

where one dimension represents temporal bias hypotheses and

the other represents spatial bias hypotheses. In this work
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temporal bias is a fixed, integer value of radar sampling

interval, whilst spatial bias is a relative angular offset between

the radars. The method is implemented within a hierarchical

Bayesian model (HBM) [14] – which is a powerful tool for

state prediction – and an array of augmented state Kalman

filters (ASKFs) utilised for the object tracking. A likelihood

function suited for KFs is derived and evaluated during the

data filtering stage. Values assigned to bias pairs are then used

to update the corresponding weights of points on the grid.

This work considers centralised networks – in other words,

all measurements collected by all sensors are transmitted to

a data fusion centre. A plot fusion architecture is employed.

The novel contributions of this work include a joint sensor

calibration and object tracking method implemented within

an HBM, and the derivation of a likelihood function for the

parameter estimation. An analysis of a range of simulations

where sensor configuration is varied is provided.

C. Paper Organisation

Section II presents the joint spatio-temporal estimation

problem and an overview of the HBM processes; Section

III provides model definitions, scenarios, and implementation;

results are displayed in Section IV; and Section V provides a

conclusion and brief discussion of future work.

II. PARAMETER ESTIMATION AND DATA FUSION

The main problem addressed in this work is that of es-

timating a relative temporal delay, τ , in sensor data and a

relative angular offset, φ, between multiple sensors. These

are estimated jointly and in a recursive manner alongside

the object tracking procedure. Consider the scenario of two

co-located sensors tracking the same object. Both sensors

collect measurements with some time-varying measurement

noise. The FoR of one sensor is rotated by φ relative to

that of the other sensor and there is relative delay τ in data

transmission from this sensor. These biases must be corrected

so that accurate sensor fusion can be accomplished. The

framework of choice is the HBM. This hierarchical approach

has been successfully applied to the solution of problems in a

wide range of fields. These include spatio-temporal forecasting

in urban traffic modelling [15], unsupervised learning and

estimation of crowd emotional states in crowd monitoring [16],

and the modelling of the brain cortex for pattern recognition

[17], amongst others. In the field of target tracking, HBMs

have been used for joint multiple-target tracking (MTT) and

registration parameter estimation [18] and for simultaneous

localisation and mapping (SLAM) [19]. The HBM utilised

in this work has two levels: the high-level process (known

as the parent process) estimates the unknown (or ‘hidden’)

parameters, i.e. the sensor calibration parameters; and the low-

level process (known as the offspring process) estimates the

object states, i.e. the tracking function. The two processes

are linked by a likelihood function calculated in the offspring

process and employed for parameter estimation in the parent

process. This function is problem dependent.

A. Offspring Process

The tracking problem considered is linear when the calibra-

tion is known and so the offspring process utilises a bank of

ASKFs for the tracking procedure. It is important to describe

it here as this is where the bias hypotheses are incorporated.

An ASKF is a Kalman filter with augmented state vector and

extended transition and observation matrices. Augmentation

of the state vector at time k involves the concatenation of

previous state estimates with the current state estimate in the

following manner:

X̂k =
[

x̂k · · · x̂k−τ̂max

]T
(1)

Here, τ̂max denotes the largest temporal bias hypothesis made

in units of the sampling interval, δt, and:

x̂k =
[

p̂x,k v̂x,k p̂y,k v̂y,k
]T

(2)

Here, p̂x/y,k is the filter object x and y position estimates,

and v̂x/y,k is the filter object x and y velocity estimates.

The transition matrix of the system model, Fk, is extended

to become:

Fk =















F0 0 0 · · · 0 0
I 0 0 · · · 0 0
0 I 0 · · · 0 0

...

0 0 0 · · · I 0















(3)

where I is a 4× 4 unit matrix, and:

F0 =









1 δt 0 0
0 1 0 0
0 0 1 δt
0 0 0 1









(4)

The observation matrix, Hi, is also extended and arranged

to reflect the bias hypothesis of any grid point i,
[

φ̂is τ̂ is
]

for

s ∈ S = {1, . . . , ns}, the set of sensor IDs, where ns is the

total number of sensors. φ̂is represents the spatial bias (angular

offset) hypothesis at grid point i for sensor s and τ̂ is represents

the temporal bias hypothesis at grid point i for sensor s. A

rotation matrix, Θi, is then applied to incorporate the angular

offset estimate:

Hi = ΘiHi (5)

where:

Θi =

















θi1 0 0 · · · 0
0 θi2 0 · · · 0

0 0 θi3
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 θins

















(6)

and:

θis =

[

cos(φ̂is) − sin(φ̂is)

sin(φ̂is) cos(φ̂is)

]

(7)

Hi takes the following general form:

Hi =
[

Hi
1 Hi

2 · · · Hi
ns

]T
(8)
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where:

Hi
s =

[

O2×4τ̂ i
s

H0 O2×(4τ̂max+4)

]

(9)

and

H0 =

[

1 0 0 0
0 0 1 0

]

(10)

In the above, Om×n is an m×n zero matrix. The offspring pro-

cess is responsible for estimating an object state as it evolves

through time. Here, this obeys the nearly constant velocity

(NCV) motion model. Measurements from both sensors are

fused and supplied to the filter, along with a spatio-temporal

bias hypothesis. With these inputs, the filter performs the state

estimate update and evaluates the likelihood function. This is

then passed to the parent process for the weights update.

B. Parent Process

The parent process performs the estimation of the registra-

tion parameters, φ and τ . With a grid-based approach the hy-

potheses of the registration parameters at a time-step k for sen-

sor s are represented by a set of points and their corresponding

weights Ψk,s = {ψis, w
i
k,s}

N
i=1 = {

[

φ̂is τ̂ is
]ns

s=1
, wik,s}

N
i=1.

Each i references a different bias pair (grid point) and N is

the total number of pairs. Every pair has some corresponding

weight, wik,s, which reflects the belief that registration param-

eters ψis are closest to the true values, φ and τ . Because the

grid is not time-varying, a grid-based search method ( [20],

pg. 9) can be used to update the weights at each time-step.

Weights are predicted and updated recursively, following [13]

equations (2a) and (2b). Equation (2a) can be understood as a

convolution of prior weights with a kernel function. The kernel

function is selected to be the binomial distribution r ∼ B(n, p)
and, following investigation, the parameters n = N and

p = 0.5 were found to be suitable in this work. These were

selected as a compromise between an uninformative distribu-

tion and one which searches the state space efficiently. The

parent process is initialised with the assumption that, before

any data processing, all sensor bias pairs are equally likely.

Therefore, the supplied prior distribution is flat. Equation (2b)
requires a likelihood function to update weights and here the

Kalman filter likelihood function, ℓk(ψ
i
k|Zk), is derived from

the integral form of the KF likelihood conditioned on ψik (Zk
is the set of all sensor measurements up to time-step k, and

zk and xk are the set of sensor measurements and the object

state at time k, respectively):

ℓk(ψ
i
k|Zk) =

∫

p(zk|xk, ψ
i
k)× p(xk, ψ

i
k|Zk−1)dxk (11)

where:

p(xk, ψ
i
k|Zk−1) =

∫

p(xk|xk−1, ψ
i
k)p(xk−1, ψ

i
k|Zk−1)dxk−1

(12)

The Gaussian propagation identity [21] is used to evaluate

both of these integrals and the resulting function simplifies to:

ℓk(ψ
i
k|Zk) = N (zk|HiFkx̂k−1,Λk) (13)

where Λk is the covariance of ℓk(ψ
i
k|Zk) with form:

Λk = Rk +Hi(Qk + FkPk−1F
T
k )H

T
i (14)

where Rk is the measurement noise covariance and defined in

the measurement model in Section III-B.2) in Equation (20),

and Pk−1 is the KF estimate covariance at time-step k-1. Qk is

the filter process noise covariance, defined in Equation (17).

The pseudocode for the parent and offspring prediction and

update steps of this work are based loosely on that found in

[13], where a HBM is used for joint registration and fusion of

heterogeneous sensors.

III. MODELING, DATA, AND SCENARIOS

A. Implementation

The parent process of this hierarchical model is represented

by an evenly distributed, two-dimensional grid of distinct

points. A single grid point represents a joint spatio-temporal

bias hypothesis with a calculated weight. The weights are

continuously updated based on the value of the likelihood

function, ℓk(ψ
i
k|Zk), that is the output of the offspring process.

B. Model Definitions

1) Object Motion Model: Multiple sensors track a single

object which evolves through time according to the NCV

model. This is defined as:

xk = F0xk−1 +wk (15)

where xk is a four dimensional Cartesian state vector, with

the following elements:

xk =
[

px,k vx,k py,k vy,k
]T

(16)

and F0 is the state transition matrix – previously defined in

Equation (4). wk represents zero-mean white Gaussian process

noise with covariance matrix given by:

Qk =









1
3δt

3 1
2δt

2 0 0
1
2δt

2 δt 0 0
0 0 1

3δt
3 1

2δt
2

0 0 1
2δt

2 δt









q̃ (17)

Here, δt is the sampling interval and q̃ is the process noise

intensity level ( [20], pg. 181 and [22], pg. 269). It dictates

how closely the object adheres to the CV model: a value q̃ =
Q22/δt = 1 ( [22], pg. 270) produces CV motion.

2) Measurement Model: Sensors collect x and y data and

the measurement model is defined as:

zk = Hobs
k xk + vk (18)

where:

zk =
[

zk,1 zk,2 · · · zk,ns

]T

Hobs
k =

[

H1 H2 · · · Hns

]T
(19)

zk is the measurement vector at time k made up of measure-

ments collected by each sensor, zk,s. Hs is the observation

matrix associated with sensor s and identical to the matrix

H0 (see Equation (10)). In this work, only x-y components
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of the object trajectory are observed. vk is the measurement

noise and drawn from a zero-mean white Gaussian distribution

with parameters: N (vk|0,Rk). Rk is given by:

Rk = Ins×|zk|σ
2
R (20)

where In×m is an n×m identity matrix. This definition of Rk

assumes that each sensor returns the same type of observation

vector (see (19)), although note that it is possible for the

sensors to collect different types of measurements. σR is the

standard deviation of the multivariate Gaussian distribution

that describes the measurement noise, vk.

C. Scenarios

The proposed algorithm is tested in an artificial scenario

with the goal of demonstrating that the method is able to

calibrate sensors effectively to the baseline. This is a pre-

liminary test and therefore a basic setup is considered: two

co-located radars and a fusion centre receiving updates from

them every δt = 0.5s. Data is simulated of a single NCV

object travelling in two dimensional space – i.e. only x and

y coordinates and their associated rates of change, ẋ and ẏ,

are measured by the radars. The simulation is run for a total

of t = 2000s. Clutter and false alarms are not considered

and, for all cases, probability of detection, pd, is assigned the

value 1. In this work, ns = 2 and it is assumed that sensor

s = 2 possesses the spatio-temporal biases, whilst sensor

s = 1 is treated as the reference sensor. Standard deviation

of measurement noise variance, σR, is selected to be 10m
following those assigned by comparable works [23], [24], [25],

whilst the process noise intensity, q̃, is set to 1.1 The initial

object state is
[

10 10 10 10
]T

and the initial object state

tracker estimate is
[

10 5 10 5
]T

. Both radars are placed

and fixed at co-ordinates (0, 0). Four distinct cases for the

single object tracking are analysed. These are as follows:

1) single sensor;

2) two centralised sensors, correctly registered;

3) two centralised sensors, with relative spatio-temporal

bias, and the proposed method for bias correction;

4) two centralised sensors, with bias, and no correction.

In cases 3) and 4) the temporal bias is assigned to 1× δt and

angular bias to 10◦. Sampling rate for all cases is δt = 0.5s.

IV. RESULTS

The results that follow have been averaged over 100 Monte

Carlo (MC) runs and the temporal and angular biases jointly

estimated using the maximum a posteriori (MAP) estimate of

the likelihood function. The RMSE is the chosen metric for

evaluation of tracking performance. RMSE is calculated for

Euclidean distance over a range of σR values and q̃ levels over

the final quarter of the full simulation time, t (to allow for filter

stabilisation). Figure (1) provides log plots of the RMSE of

Euclidean distance as σR and q̃ vary, respectively. Each data

point represents the average over all 100 MC trials. A new

1Note that this q̃ value is the one used to generate tracking performance
results against measurement noise standard deviation, σR.

object trajectory and set of sensor measurements is generated

in each trial. Both plots provide a legend to link the data

with the different test cases (for reference, see Section III-C).

From these graphs, we can see that the worst performance, by

far, is demonstrated by the configuration of two sensors with

relative registration errors that are not corrected. This clearly

shows how important it is to address the registration problem.

Using the proposed method for correction, performance of the

sensors is very close to that of the benchmark scenario, and

outperforms the single sensor for all tested values of σR and

q̃. For example, at the lowest q̃ value of 10 the corrected

case differs from the benchmark case by ≈ 0.4m; whilst the

single sensor case differs by ≈ 1.6m (≈ 4× the difference

of the corrected case); and the no correction case is out by

≈ 5, 500m. Whereas, when q̃ is at its greatest tested value of

80, the correction case differs by ≈ 1.5m from the benchmark;

the single sensor by ≈ 2.6m; and the uncorrected case by

≈ 42, 000m. A similar trend can be seen in the measurement

noise graph. However, all scenarios display an increase in

RMSE with increasing σR and q̃.

Although the key result has been demonstrated with this

method and sensors are calibrated to the baseline, it is impor-

tant to note that the issue of scalability must be addressed in

the future. Due to the use of grid-based search, the number

of grid points N (i.e. number of ASKFs required in the

offspring process) relates to the number of registration errors,

|ψik|, present as N =
∏|ψi

k
|

j=1 χj . χj represents the number

of hypotheses made per error j. This shows that with every

additional error, an additional dimension appears on the grid.

A particle filter method may improve scalability.

V. CONCLUSION & FUTURE WORK

This article demonstrates the successful application of a

method for simultaneous joint spatio-temporal alignment of

sensors and object tracking. The registration parameters are

continuously estimated as the object tracker runs, based on the

performance of the tracker itself. The metric for the tracker

performance is a KF likelihood function. It is used to update

grid weights in the parent process of the HBM. Simulation

results demonstrate how vital it is to have correctly calibrated

sensors, and also show that tracking with multiple sensors is

more accurate than tracking with only a single sensor. The

work described in this article acts as a foundation for further

investigation of the sensor alignment problem. The method

can be extended to non-linear systems where, rather than

collecting and processing data in the Cartesian frame, data

is collected and processed in the polar frame. This is more

realistic for radar systems. A new likelihood function would

be required for the non-linear tracker. Varying probability of

detection and introducing false alarms will also make the

model more realistic. Increasing the number of sensors and

targets is another useful avenue of investigation. Additionally,

resampling and propagation can be introduced to the grid-

based search method. A suitable resampling technique may

allow for faster selection of a bias state - although it may add

computational complexity. The usefulness of this method for
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(a)

(b)

Fig. 1: 1(a) shows performance comparison for cases 1)-4) for

increasing σR and 1(b) for increasing q̃.

non-co-located sensors can be explored, as well as for time-

varying spatio-temporal biases and fractional temporal biases.
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