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Abstract—This paper addresses the problem of joint surface
detection and depth estimation from single-photon Lidar (SPL)
data. Traditional 3D ranging methods for SPL usually perform
surface detection and range estimation sequentially to alleviate
the computational burden of joint detection and estimation.
Adopting a Bayesian formalism, the joint detection/estimation
problem is formulated as a single inference problem. To avoid
the intractable integrals usually involved with variable marginal-
ization, we consider discrete variables and the resulting problem
is recast as a model selection/averaging problem. We illustrate our
method for a case where the expected signal-to-background (e.g.,
the target reflectivity and ambient illumination level) is unknown
but the proposed framework can be adapted to more complex
problems where the target depth can be obtained by combining
several estimators. We demonstrate the additional benefits of
the proposed method in also providing a conservative approach
to uncertainty quantification of the calculated depth estimates,
which can be used for real time analysis. The benefits of the
proposed methods are illustrated using synthetic and real SPL
data for targets at up to 8.6 km.

Index Terms—Single-photon Lidar, Bayesian estimation, De-
tection, Ensemble estimation.

I. INTRODUCTION

Single-Photon Lidar (SPL) is a reliable Lidar technology
for readily providing 3D scene reconstruction. SPL systems are
based on time-correlated single-photon counting (TCSPC) [1]–
[3], whereby the laser source emits a short pulse towards the
scene, part of which is reflected by the target. Once an individ-
ual photon of the reflected pulse is detected, which we refer to
as a “desirable” detection event, the time interval between the
pulse emission and the photon detection is recorded. This time
interval is the photon’s time-of-flight (ToF) and it is logged in
the corresponding time-bin of a histogram. ToF histograms can
be adversely affected by “undesirable” detection events, which
arise due to ambient illumination and dark counts. To provide
more accurate and reliable depth estimates of the target, many
pulses are repeatedly emitted towards the scene to build denser
histograms and improve the signal quality.

SPL has proven to have great benefits for use in a range of
different fields, including autonomous vehicles [4], agriculture
[5] and defence [6]. The high sensitivity of single photon
detectors allows for the use of low-power, eye-safe laser
sources [6]. Furthermore, the picosecond timing resolution
enables greater surface-to-surface resolution at ranges up to
200 km [7]. Thanks to advances in single-photon avalanche
diode (SPAD) array technology, acquisition of data can now
be achieved at video rates or higher [8], [9]. Consequently,

greater interest is being focused on faster data processing
to reconstruct 3D scenes as fast and as reliably as possible.
Whilst great strides have been achieved along those lines,
e.g., [10], important challenges such as surface detection and
reliable uncertainty quantification still need to be addressed.

In this paper, we propose a novel, pixel-wise, joint detection
and depth estimation method, which detects objects/surfaces
in the field of view, estimates their distance and rapidly
provides uncertainty measures that can then be used in
more sophisticated object recognition algorithms or subse-
quent decision-making processes. We use a similar observation
model as described previously [11]–[14]. These methods treat
the unknown model parameters (e.g., the target reflectivity)
as continuous variables that are classically determined us-
ing sequential or iterative processes [15]–[18]. This can be
computationally intensive, especially if the target depth and
reflectivity are jointly estimated. We overcome this problem
by treating the reflectivity as a discrete parameter, allowing us
to perform joint detection and range estimation at a fixed (and
low) computational cost. We also extend the observation model
from previous works by allowing non-uniform background
distributions without the method being significantly more
computationally intensive. This enables the analysis of data
corrupted by pile-up in SPAD detectors [19].

As multiple sources of error arise when reconstructing 3D
surfaces, it is ever more important to quantify the uncertainty
in depth estimation. Recent works have shown it is possible to
use uncertainty quantification methods for joint depth estima-
tion and detection, e.g., [20]. However, that method is far too
slow for reconstruction at real time speeds, which motivates
our work.

The remainder of this paper is organized as follows. Section
II recalls the statistical observation model used for SPL and
describes the proposed method for joint surface detection
and depth estimation. Results of simulations conducted with
synthetic single-pixel histogram data and real SPL data are
presented and discussed in Section III. Conclusions are finally
reported in Section IV.

II. BACKGROUND THEORY

A. Observation model

In this paper, we consider a set of K photon time of arrival
(ToA) values y = {yk}Kk=1, such that yk ∈ (0, T ), where it
is implicitly assumed that T is the repetition period of the
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laser source [21]. Indices representing pixel dependency are
omitted to simplify notation. The probability density function
for a photon ToA, yk, for a given pixel is given by

f(yk|d,w) = w h0

(
yk −

2d

c

)
+ (1− w) V(0,T ), (1)

where d is the range of the target surface within the admissible
range gate and c is the speed of light, such that 2d/c is the
characteristic ToF associated with the illuminated target. The
function h0(·) in Eq. (1) is the normalised Impulse Response
Function (IRF) of the Lidar system which is not required to
be Gaussian nor symmetric. It is generally measured during
system calibration [12], [21]. The second term V(0,T ), assumed
known, represents the distribution of undesirable background
photon detection events mentioned in Section I. This need not
necessarily be a uniform distribution, especially in situations of
high ambient illumination conditions where pile-up effects due
for instance to scattering media are more prominent. The shape
of V(0,T ) arises generally due to the dominating properties
of the ambient illumination over the undesirable detection
events caused by dark counts, which are usually constant
and relatively low compared with the ambient illumination
undesirable detection events. The variable w in Eq. (1) is the
probability of a detection event to be a desirable detection
event. This probability is related to the signal to background
ratio (SBR) by SBR = w/(1− w).

When K photons are detected, and the dead-times of the
SPAD detector can be neglected, the photon ToA’s are mutu-
ally independent (given d and w) and the joint likelihood can
be expressed as [12], [21]

f(y|d,w) =
K∏

k=1

f(yk|d,w). (2)

Our goal is to estimate d from Eq. (1), given that w is also
unknown. Moreover, we are also interested in estimating w, as
it provides information about the presence (w > 0) or absence
(w = 0) of a surface, as well as its reflectivity.

B. Proposed estimation strategy

We assume that d can take a finite number ND of values,
i.e., d ∈ {d1, ..., dND

}. This set is constructed from a subset of
the NT number of original non-overlapping time bins spanning
(0, T ) and ND is a number of non-overlapping time bins
within this subset, spanning (τ, T − τ), such that ND ≤ NT

and τ ≥ 0, where the width of the time bins is arbitrary
(usually given by the timing resolution of the SPAD used).
The parameter τ is chosen to ensure that the support of h0(·)
is always included in (0, T ) (for any admissible value of d)
and thus the value of τ depends on the width of the IRF peak.

Let’s first assume that w is known. The probability distribu-
tion f(d|y, w) can be obtained from the joint likelihood Eq.
(2), using Bayes theorem

f(d|y, w) =
f(y|d,w)f(d)

f(y|w)
, (3)

where f(d) is a user-defined depth prior distribution, f(y|w) is
the marginal term and f(y|w) =

∑ND

j=1 f(y|d = dj , w)f(d =

dj) is a tractable normalizing constant (thanks to d being
discrete). This posterior can then be used easily to compute
Bayesian estimators (e.g., maximum a posteriori (MAP) or
minimum mean squared error (MMSE), denoted µ(w)) for
the depth, as well as the posterior variance, denoted σ2(w).
Unfortunately, depth inference using Eq. (3) is challenging
since w is unknown in practice and setting its value poorly
can greatly impact the depth estimation.

To alleviate this issue, a classical approach consists (assum-
ing that w is continuous) of assigning w a prior distribution
and of computing the following marginal posterior distribution

f(d|y) =

∫
f(d|y, w)f(w|y) dw, (4)

where f(w|y) is the marginal posterior distribution of w.
Unfortunately, manipulating f(d|y) in Eq. (4) is challenging
due to the integral w.r.t. w which needs to be approxi-
mated numerically for any value of d. To overcome this
difficulty, we consider the parameter w as discrete with
w ∈ {w1, w2, ..., wM}, where we allow w1 = 0 to be in the
admissible set of w and M is a user determined value. Using
this discretization of w, Eq. (4) becomes

f(d|y) =
M∑

m=1

f(d|y, wm)f(wm|y), (5)

which becomes tractable, provided that f(wm|y) can be
computed easily. The marginal posterior distribution f(d|y)
can be seen as a mixture of M distributions, whose weights are
given by f(wm|y). Thus, its mean and variance can be easily
derived from the mean and variance of each of its components.
More precisely, by simplifying the notation µm = µ(wm) and
σ2
m = σ2(wm) for the mean and variance of f(d|y, wn), the

mean and variance of f(d|y) in (5) are given by

µ̄ =
M∑

m=1

f(w = wm|y)µm, (6)

σ̄2 =

(
M∑

m=1

f(w = wm|y)(σ2
m + µ2

m)

)
− µ̄2. (7)

Since w can only take a finite number of values, the
marginal posterior f(w|y) can be computed exactly using

f(w|y) =
f(y|w)f(w)∑M

m=1 f(y|w = wm)f(w = wm)
, (8)

and f(y|w) defined below Eq. (3). While in Eq. (6), we con-
sider the marginal mean of d a posteriori (having marginalised
over w), it is of course also possible to condition the estimation
of d based on the marginal MAP (MMAP) estimate of w. In
that case, we can first compute

ŵ = argmax
w

f(w|y), (9)

and derive the mean and variance of f(d|y, ŵ), which, as will
be illustrated in Section III, often has a mean close to that of
f(d|y) but a smaller variance (since is does not account for the
uncertainty associated with w). It is important to notice that
the computation of the summary statistics in Eqs. (6) and (7)
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requires the computation of MND likelihoods (f(y|dn, wm)).
The associated cost can thus be bounded by controlling the
grids of d and w. Note also that Eq. (8), as a by-product of
the depth estimation procedure, allows us to perform surface
detection. For instance, we can decide that a surface is present
based on f(w > α|y) where α is user-defined. More complex
decision criteria can also be used as the proposed method is not
based on single decision criterion. Finally, this method differs
from the surface detection method detailed in [11] in which the
depth estimation is performed after the detection step, whereas
our proposed method performs both simultaneously.

C. Depth estimation using ensemble estimators

Eq. (5) is a mixture distribution and the resulting depth
estimation method can be seen as a model averaging method,
whose weights are given by f(wm|y). These M models are
simply characterized by a different value of wm. However,
more general models can also be used. Consider a set of
M models denoted {Mm}m, for which we can compute
f(d|y,Mm) and its mean and variance. Robust depth esti-
mation via model averaging can then be achieved using

f(d|y) =
M∑

m=1

πmf(d|y,Mm), (10)

where πm ≥ 0, ∀m and
∑M

m=1 πm = 1. These weights can
be either arbitrarily defined (e.g., using 1/M when f(Mm|y)
cannot computed, or using πm = f(Mm|y) otherwise). Due
to space constraints, we only illustrate our method for models
parametrized by w, but the proposed approach could also be
used, for instance if several IRFs or background distributions
were considered simultaneously. The former would arise for
instance in long-range imaging applications when the peak
broadens due to reflection on surfaces which are oblique to
the beam direction. The latter can arise from varying levels of
back-scattered light in scattering media. Models can also differ
by the priors assigned to d (and the other model parameters
such as w).

III. RESULTS

We first evaluate the performance of the proposed algo-
rithm using synthetic single-pixel data and then two real
SPL datasets, provided by Leonardo UK [6]. In all results
presented, the background distribution V(0,T ) is assumed to
be known, regardless of whether it is a uniform distribution
or not (and estimated from the data as a pre-processing step).

A. Single-Pixel analysis

First, we generate two synthetic histograms of length T =
1500 bins, with K = 100 and K = 1000, respectively. The
real IRF data obtained from [22] is used, with histogram
resolution at 2ps per bin and FWHM = 30 bins = 60ps, and
the maximum of the peak is set to bin 746. We set the ground
truth signal photon probability to w = 0.2. The final pixel
data generated are shown in Fig. 1 (bottom). For this initial
investigation, we set M = 20 and the values of admissible
values of w are uniformly spread in [0, 1]. Fig. 1 (top) shows
that f(w|y) is more concentrated as K increases since more
detected photons help the discrimination between signal and

Fig. 1: Graphic results of photon dense (blue) and sparse
(red) single pixel histogram data. Top: Plot of probability a
posteriori f(w|y) vs w. Middle: Plot of mean µm values for
photon dense (Second) and sparse (Third) data, with error
range plots (shown in black). Bottom: Single Pixel Histogram
data plot.

Dense hist. (K = 1000) Sparse hist. (K = 100)
Mean
of d

Var.
of d

Est.
w

Mean
of d

Var.
of d

Est.
w

f(d|y, ŵ)
using (9)

745.44 2.68 0.21 747.13 28.55 0.16

f(d|y)
and f(w|y)

745.43 2.74 0.20 747.02 62.50 0.19

TABLE I: Comparison of the different estimates of d (con-
ditioned on w or not) and w (marginal MAP or marginal
MMSE), for K = 1000 and K = 100. The actual value
of (d,w) is (746, 0.2). Note that f(d|y) and f(w|y) are
computed using (5) and (8), respectively.

background photons. Similarly, the second and third row of
Fig. 1, which depict µ(w = wm) and σ2(w = wm), illustrate
how the estimated depth mean and variance using f(d|y, w)
depend on K and on the unknown value of w (plots restricted
to w > 0.1 below which the means degrade drastically).

Table I summarizes the different estimates of d and w for
the two histograms with K = 100 and K = 1000. First,
we can note that the marginal MMSE estimator of w (i.e.,
the mean of f(w|y) used in the bottom row of Table I)
is usually more reliable than the MMAP estimator in (9)
which is more sensitive to the resolution of the w-grid (and
M ), especially for small values of K. Second, the MMSE
depth estimates, conditioned on the MMAP estimator of w
(top row) or computed from the marginal posterior f(d|y)
(bottom row) are similar. However, the estimated variance is
larger in the latter case, since it incorporates the uncertainty
about this unknown parameter w. This estimator is thus more
conservative in terms of uncertainty quantification.

B. Real SPL data analysis

Here, we use two real SPL datasets acquired by Leonardo
to illustrate the potential benefits of the proposed method. The
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Fig. 2: Sum of photon counts (blue) across all Lidar pixels
for college tower data (top) and pylon data (bottom). The red
curves represent the estimated background contributions.

first SPL cube consists of 100× 50 pixels and focuses on the
tower of an Edinburgh college tower, taken at ≈ 3km range,
already considered in [6]. The second dataset consists of 80×
40 pixels representing a pylon, taken at ≈ 8.6km range, and is
an example of a challenging, line-based object. These datasets
primarily differ by their average SBR, much higher in the first
dataset (SBR ≈ 0.22) than in the second (SBR ≈ 0.01 ). It
should be noted the SBR described is not the peak SBR, where
the signal to background ratio is calculated from the time bin
where the signal/peak reaches its maximum value, but rather
the ratio of desirable to undesirable detection events from all
histogram temporal bins. The difference in the SBR of both
datasets can be seen in Fig. 2, which depicts two histograms
obtained by accumulating the histograms of all the pixels in
the set. These accumulated histograms can be used to estimate
an average background distribution which is not constant in
these two cases. Here, we used second-order polynomials to
fit V(0,T ) and compared the results obtained assuming constant
background instead. The background for the SBR is equivalent
to the integral of the V(0,T ) distribution curve over all the
temporal bins.

For both datasets, our detection method is compared to the
detection method proposed by Tachella et al. [11], assuming
a constant background distribution. It is worth recalling that
estimates of w can be used to estimate to the target intensity
(number of signal photons I = wK) and the number of
background photons B = (1 − w)K and we used w̄, the
mean of f(w|y) in these expressions, leading to Ī and B̄.
The proposed method has been applied with larger M values
than for the single pixel analysis for a more precise estimation
of w. A target is assumed to be present in each pixel if and
only if f(w > w0) > 0.5, where w0 is user-defined and scene
dependent. Due to space constraints, the final depth variance
results are not presented but their scale is of the order the
timing resolution of the SPAD used.

1) College Tower Data: For this dataset, target detection
is a relative simple task and the admissible grid of w is
set using M = 100 equality spaced {wm}m and we used
w0 = 0.02. The estimated probability of target presence maps
are displayed in Fig. 3, which shows that for this scene,
the proposed method leads to results similar to that using
Tachella’s method [11], irrespective of the background model

adopted. This can be explained by the fact that the peaks in
the histograms can be easily identified even when assuming a
constant background.

(a) Tachella
[11]

(b) Uniform
background

(c) Non-uniform
Background

Fig. 3: College tower data comparison of probability of
detection results for the method by Tachella et al. (a), and
for the proposed method using uniform (b) and non uniform
(c) background distributions, where w0 = 0.02.

The final mean depth estimates µ̄, reflectivity estimates Ī
and background estimates B̄ are presented in Fig. 4.

Fig. 4: Final mean depth (left), reflectivity (middle) and
background (right) estimates for the tower data using the
proposed method, for w0 = 0.02.

2) Pylon Data: For this dataset for which we know the
SBR is low, the admissible grid of w is set using M = 200
logarithmically spaced {wm}m, with w2 = 10−5, wM = 10−1

and w0 = 0.008. The estimated target presence maps are
displayed in Fig. 5, which shows that for this scene, the
proposed method leads to results noisier than those obtained by
Tachella et al. [11] (taking the conjugate gamma density shape
parameter αb = 100) when we assume a uniform background
distribution, and leads to improved results for detecting the
pylon structure when we assume a non-uniform background
distribution. In this instance, the peaks in the histograms can-
not be easily identified when assuming a constant background,
and so a non-uniform distribution assumption is required to
obtain better results from the cross-correlation calculations.

The final mean depth, reflectivity and background estimates
obtained using our proposed method are shown in Fig. 6, under
the condition w0 = 0.008 and Ī > 0.25.

IV. CONCLUSION

In this paper, we proposed a novel method for joint surface
detection and depth estimation from SPL data using discrete
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(a) Tachella
[11]

(b) Uniform
background

(c) Non-uniform
Background

Fig. 5: Pylon data comparison of probability of detection
results for Tachella et al. method (a), where αb = 100,
and proposed method using uniform (b) and non uniform (c)
background distributions, where w0 = 0.008.

Fig. 6: Final mean depth (left), reflectivity (middle) and
background (right) estimates for the pylon data using the
proposed method, for w0 = 0.008 and Ī > 0.25.

variables to avoid intractable marginalizations and producing
satisfactory results in the final estimates using model selec-
tion/averaging. While we illustrated the method for a case
where only the expected signal-to-background is unknown, in
the future we aim to adapt the framework to more complex
problems where the target depth can be obtained combining
several arbitrary estimators. Furthermore we plan to propose a
GPU implementation to enable reliable depth estimation and
uncertainty quantification at real-time speeds.
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