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Abstract—With the proliferation of low-cost CCD-based sensors
used on telescopes by amateur astronomers, there is potential
to exploit these within an infrastructure for space surveillance.
Observations may be corrupted by an undesirable drift of the
telescope due to mount jittering and uncompensated diurnal
motion of stars. This work presents an approach for drift
compensation based on a joint estimation of the sensor drift and
the states of the objects and stars observed by the telescope. It
exploits a recent development in multi-object estimation, known
as the single-cluster Probability Hypothesis Density filter, that
was designed for group tracking. The sensor drift is obtained
by estimating the collective motion of the stars, which is in turn
used to correct the estimation of moving objects. The proposed
method is illustrated on simulated and real data.
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1. INTRODUCTION
Objects with close proximity to Earth are of special interest in
the context of Space Situational Awareness (SSA) [1]. They
include Earth-orbiting objects and near-Earth objects, as well
as small solar system bodies, typically comets or asteroids
whose orbit intersects the orbit of the Earth. While the
latter are generally of a few kilometres size and are currently
monitored because of their potential collision with Earth,
the first category comprises relatively small objects which
endanger currently active satellites, ongoing and future space
missions.

The data to evaluate such risks are obtained by complex
networks of sensors like radars, radio and optical telescopes
[2], [3]. Measurements are integrated to build a reliable
prediction of future events to avoid unwanted collisions in the
sky. However, because of the imperfections in the mechanical
systems used for telescope pointing, the recorded data may be
corrupted by jitter [4]. Other possible sources of disturbance
in astronomical images include atmospheric perturbation as
well as basic camera jitter [5].
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There are two possible modes for operating telescopes. Either
the telescope corrects the diurnal motion of the celestial
bodies or it is positioned with a constant pointing direction
in horizontal coordinates. In both cases, basic random drift
will appear due to the jitter of the mount, and in the latter
case, an additional approximately linear component will be
observed in case of short acquisition times.

Since the precise pointing direction of the telescope is crucial
for defining the astrometric coordinates of the target, it is of
great importance to keep its error as small as possible. Even
slight perturbations in altitude and azimuth result in large
astrometric shift. Various control techniques are used for
directing the mount and correcting for possible uncertainties.
Optional built-in correction software can help to compensate
for certain types of perturbation provided that they are repeat-
able and static on the hardware side [6], [7], [8].

Since computational power has become more accessible in
the last decades, some of the methods now use digital image
registration, e.g. [9]. Conventional image registration meth-
ods, however, rely heavily on the extraction of fiducial feature
points [10]. Other output-correction approaches are defined
solely on guide star catalogues (such as the Tycho Catalog or
Guide Star Catalogue 2) in an attempt to match the pattern of
the stars [11], [12].

Typically, the problem of image misalignment is solved
separately from object tracking. However, it is possible to
integrate the estimation of the sensor drift and the multiple
object states within a single probabilistic framework, so that
the improved sensor drift estimate yields to an improved
multi-object state estimate, and vice versa. In the scope
of this article, the joint estimation problem consists in a
simultaneous estimation of the telescope drift and the motion
of the observed objects such as space debris, satellites, or
stars. The presented technique is based on a hierarchical
model in which the measurements are conditioned on the
object states and the location of the sensor [13], [14], [15],
[16], [17]. A multi-object filter estimates simultaneously
the stars in the background and the objects moving in the
sensor Field of View (FoV), while the motion of the sensor
is observed indirectly by estimating the collective motion of
the stars.

The methodology of this article is explained in Sec. 2-6. An
explanation of the joint drift compensation and multi-object
estimation problem is given in Section 2, and the two aspects
of multi-object state and sensor state estimation are treated
separately in Sec. 3 and 4. Since the acquisition of the mea-
surements from the astronomic images is an important aspect
of the estimation, the preprocessing flow and observation
extraction are presented in Sec. 5, demonstrated on the data
that is used for the experiments. After that, the process of
dataset simulation for the experimental section is explained
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in Sec. 6. The results in Sec. 7 are divided according to the
data used (simulated and real) as well as the model of drift.
The registered multi-object tracking results obtained from the
simulated data are given along with error plots with respect to
(w.r.t.) the simulated ground truth; for the real datasets, only
qualitative estimation is presented since no ground truth is
available in this case. The set of parameters that was used for
the tests is also specified in this section. The paper concludes
in Sec. 8.

2. JOINT ESTIMATION PROBLEM
During a surveillance scenario, the sensor focusses on a
region of space delimited by its FoV and produces a sequence
of image frames from successive observations across time.
For the rest of the paper, the time is indexed on the sequence
of images corresponding to a specific surveillance scenario.

It cannot always be guaranteed that the acquired images are
perfectly registered because of small jitter of the telescope or
large-scale bias due to the diurnal motion of Earth. In other
words, the observation process is corrupted by sensor drift.
In this paper, the drift at time t is modeled with a sensor state
yt, a 4-dimensional vector in some sensor state space Y ⊆
R

4 describing the deviation of the sensor in the image plane
w.r.t. to the initial frame, with two position followed by two
velocity components.

Following the technique presented in Sec. 5, a set of mea-
surements (or observations) is extracted from each image
frame. Each measurement is characterized by its state zt,
a 2-dimensional vector in some observation space Z ⊆ R
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describing the position coordinates of the measurement in the
image plane. We denote the set of measurements collected at
time t by Zt.

Finally, each object in the sensor FoV at time t is character-
ized by its state xt, a 4-dimensional vector in some target
state space X ⊆ R

4 describing the position and then velocity
coordinates of the object in the image plane. The set Xt
denotes the current multi-object state, i.e., the set of all the
states of the objects present in the sensor FoV.

The main challenge in this estimation problem is that the sen-
sor drift corrupting the observation data is unknown, and thus
must be estimated alongside the object states. Fortunately,
the static nature of the stars in the image background can be
exploited for calibration purposes since the drift of the sensor
manifests itself in the synchronised movement of all static
objects in the scene.

In this paper, we introduce a probabilistic method exploiting
a Simultaneous Localisation and Mapping (SLAM) based ap-
proach [14], in which the sensor drift is estimated jointly with
the states of the objects observed in the sequence of images.
The algorithm follows a hierarchical structure, depicted in
Fig. 1 (both target and sensor state spaces are reduced to two
dimensions for the sake of illustration). The joint estimator is
structured as a single-cluster Probability Hypothesis Density
(PHD) filter as follows:

1. The sensor state estimator is implemented with a Sequen-
tial Monte Carlo (SMC) method, i.e., a particle filter;

2. Each particle, corresponding to an admissible value of the
sensor state, is associated to a PHD filter [18] estimating the
multi-object state.

y1

y2

Y

X

Figure 1: The hierarchical structure of the algorithm
(illustrated in 2D). The sensor state space Y is overlayed
by the probability distribution of the sensor position. A
specific multi-object distribution in the target state space
X is maintained for each possible sensor position (blue
and red colours for sensor positions y1 and y2, respec-
tively). The asterisks and ellipses illustrate the means and
covariances of the targets, extracted from the multi-object
distributions.

The PHD filter [18] is selected for the design of the multi-
object estimator because it focusses on the estimation of pop-
ulations of objects and avoids the frame-to-frame association
of individual objects. In addition, the sensor state estimator
is expected to inherit the robustness of the underlying PHD
filtering framework to imperfections in the data – most no-
tably, missed detections and clutter observations – through
the hierarchical structure of the joint estimator.

An important characteristic of the proposed method is that the
PHD filtering framework incorporates a probabilistic classifi-
cation of the objects following a range of M different motion
models2, for the static objects in the sensor frame – typically,
the stars in the background – play an important role in the
estimation of the sensor state.

3. MULTI-OBJECT ESTIMATION
The exploitation of the PHD filter for the estimation of
the multi-object state is central to the performance of the
proposed sensor calibration method presented in Sec. 4. An
alternative method has been exploited in [17] where the
Hypothesised filter for Independent Stochastic Populations
(HISP) [19] has been used for calibrating video sequences
in microscopy, using one object motion model only. Other
works like [14], [15] or [16] utilise the PHD filter with a
single motion model for the objects.

The PHD filter is set within the Random Finite Set (RFS)
filtering framework, in which the information about the multi-
object state Xt is represented by a single random variable
called a multi-object RFS Φ. A realisation of Φ is a set
X = {x1, . . . , xn} of points belonging to the single object
state space X . The multi-object RFS Φ can be seen as a set
whose size and elements are random, able to represent the
uncertainties in the number and the states of the objects in

2In the experiments presented in Sec 7 only two motion models – static and
moving objects – are considered. In the general case, however, any number
of motion models could be assumed.
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the sensor FoV [18]. In its usual form, the PHD filter aims
at propagating the first-order moment density or intensity μt
of the multi-object RFS Φ, defined on the state space X ; it
is such that the expected number of objects in some arbitrary
region F ⊆ X of the target state space is given by the integral∫
F
μt(x)dx.

For the rest of this section, y ∈ Y denotes an aritrary sensor
state, upon which the observation process is conditioned.
The PHD filtering framework [18] is based on the following
modelling assumptions (at time t):

• An object with state xt−1 in time step t − 1 survives to
the current time step with probability ps,t(xt−1), where ps,t
is the probability of survival. If it survives, it evolves to a
new state xt according to a single-object Markov transition
density ft(·|xt−1);
• Newborn objects appear in the scene, independently of
the pre-existing targets, following a birth process with given
intensity γt;
• An object with current state xt is detected by the sensor
with probability pd,t(xt|y). If it is detected, it produces an
observation z according to a single-observation/single-object
likelihood gt(z|xt, y);
• False alarms are produced in the observation space inde-
pendently of the targets, following a clutter process with
intensity λt(y)ct(z|y).
A detailed construction of the resulting PHD filtering equa-
tions can be found in [18].

In contrast to the usual PHD filter, which represents the whole
population of objects with a single RFS, the method presented
in this paper aims at estimating different population of objects
for each considered motion model.

Assuming that the number of motion models is set to M = 2,

and denoting by Φ(m) the RFS representing the population
of objects following the motion model m, one iteration of
the PHD recursion with multiple motion models can be
visualised in the following diagram:

. . . Φ
(1)
t−1 Φ

(1)
t|t−1 Φ

(1)
t . . .

. . . Φ
(2)
t−1 Φ

(2)
t|t−1 Φ

(2)
t . . .

prediction update

prediction update

Zt

In the prediction step, each population is propagated inde-

pendently according to its own probability of survival p
(m)
s,t

and Markov transition density f
(m)
t , and the birth process

generates targets for both populations. However, the update
step has to be performed in a joint manner since the observed
measurement set Zt carries information for both populations.
This is ensured by treating the objects of the first population,
in the update step of the second population, as “undesirable”
sources of observation that are not to be estimated, and vice
versa.

The resulting PHD filtering equations are given as follows.
Given an aritrary motion model 1 ≤ m ≤ M , the prediction
equation of the mth population is

μ
(m)
t|t−1(x|y)=

∫
p
(m)
s,t (x̄)f

(m)
t (x|x̄)μ(m)

t (x̄|y)dx̄+w
(m)
t γt(x),

(1)

where the model weights w
(m)
t , distributing the birth

component among the motion models, are such that∑M
m=1 w

(m)
b,t = 1. The update equation of the mth population

is then

μ
(m)
t (x|y) = (1− pd,t(x|y))μ(m)

t|t−1(x|y)

+
∑
z∈Zt

pd,t(x|y)gt(z|x, y)μ(m)
t|t−1(x|y)

λt(y)ct(z|y)+
M∑

m̄=1

∫
pd,t(x̄|y)gt(z|x̄, y)μ(m̄)

t|t−1(x̄|y)dx̄
.

Note that the joint normalisation in the update equation (2)
accounts for the interaction between the different motion
models.

4. SENSOR STATE ESTIMATION
The estimation of the sensor state is maintained by a set of N
weighted particles {(wt, yt)

i}Ni=1, where yit ∈ Y , 1 ≤ i ≤ N ,

is a possible sensor state with associated weight wi
t.

For every considered motion model 1 ≤ m ≤ M and every
sensor state 1 ≤ yit ≤ N , a specific PHD filter propagates the

intensity μ
i,(m)
t (·) = μ

(m)
t (·|yit), estimating the population

of objects following the mth motion model conditioned on
sensor state yit (see Sec. 3 for more details).

Like every Bayesian approach, the estimation of the sensor
state can be described in three steps: initialisation, time
prediction, and data update, the last two ones being repeated
sequentially across time whenever a new measurement set Zt
becomes available.

1. Initialisation (time 0): Without loss of generality, the
initial sensor drift is set at zero. All particle states yi0 are
thus initialized with the null vector, and with uniform weights
wi

0 = 1/N . The sensor FoV is assumed void of any target at

the initial step, and thus all the intensities μ
i,(m)
0 are set to

zero as well.

2. Prediction (time t): Each particle is sampled according to
a drift motion model ht|t−1, depicting the knowledge of the
operator regarding the evolution of the sensor drift since the
last time step3, i.e.

yit ∼ ht|t−1(·|yit−1). (2)

In addition, the intensities μ
i,(m)
t are predicted independently

using the corresponding object motion model m as shown in
Eq. (1).

3. Update (time t): The weight of the ith particle is updated
based on the underlying PHD filter update conditioned on
the new measurement set Zt in order to evaluate the match
of the proposed sensor state yit with the newly available
measurements. The dependence of the likelihood function
gt on the sensor state yit in Eq. (2) is incorporated straightfor-
wardly by subtracting the bias induced by the drift yit from
all the measurements z ∈ Zt. There are typically many
static targets in the sensor FoV – most notably, the stars in
the background – and they are reliable features for sensor

3Several drift motion models are considered in the experiments, see Sec. 7
for more details.
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calibration. Therefore, only the static objects are used for
estimation of the sensor drift in the context of this paper. For
the rest of the paper, the index m = 1 will denote the motion
model corresponding to static objects. The re-weighting of
the ith particle is computed through the likelihood given by

L(Zt|μi,(1)
t , yit) =

L̂(Zt|μi,(1)
t , yit)∑N

i=1 L̂(Zt|μi,(1)
t , yit)

(3)

with

L̂(Zt|μi,(1)
t , yit) = exp

(
−
∫
pd,t(x|yit)μi,(1)

t (x)dx

)
×

∏
z∈Zt

(
λt(y

i
t)ct(z|yit) +

∫
pd,t(x|yit)gt(z|x, yit)μi,(1)

t (x)dx

)
.

(4)

A roulette resampling [20] is then performed whenever the
effective sample size

Neff =
1∑N

i=1(w
i
t)

2
(5)

is such that the ratio Neff

N falls below some threshold value τ .

5. EXTRACTION
This section explains the method that was used to extract
position measurements from objects in a sequence of astro-
nomical images.

The real data for the experiments was obtained using a cooled
Starlight Xpress SXV-M7 CCD camera with 250mm f4.3
Newtonian reflector. As an example, one frame from the first
dataset is shown in Fig. 2a.

The target trail is quite faint in both image sequences while
the intensity of the stars is very high (see Fig. 2c). The image
is thus rescaled to increase the contrast, using a logarithmic
scale. The resulting image is shown in Fig. 2b along with its
histogram in Fig. 2d.

The subsequent step eliminates differences in the illumina-
tion caused by irregularities of the sensor using background
subtraction

Ī = I − I ◦D (6)

where I denotes the original image, Ī is the resulting image
and D is a structuring element in a shape of a disk with
radius r > 3, and the operation ◦ denotes morphological
opening (see Fig. 2e). After that, the image is convolved with
a Gaussian smoothing kernel with a standard deviation of 0.5
pixels in order to remove high frequency noise (see Fig. 2f).

To create a binary mask for further connected component
analysis, the smoothed image is binarised by thresholding us-
ing an empirical threshold value corresponding to the Signal-
to-Noise Ratio (SNR) of the image. A second morphological
opening step is performed to discard all connected compo-
nents having less than 2 pixels. The resulting binary mask
is demonstrated in Fig. 2g. In the end, the centroids of
all remaining connected components in the binary mask are
taken as measurements, consisting of the two-dimensional

(a) Original image (b) Scaled image

(c) Histogram of the original image (d) Histogram of the scaled image

(e) Background subtraction output (f) Smoothed image

(g) Binary mask (h) Observations on the original
frame

Figure 2: Preprocessing work flow

positions in the respective image frame. Hence, all results
shown in Sec. 7 are measured in pixels.

The final observations in the sample image 2a resulting from
the proposed extraction method are demonstrated in Fig. 2h.

6. SIMULATION
There is no way of obtaining a priori information about
the telescope drift, therefore a suitable simulation method
is required. However, the nature of the application does
not require a completely realistic image simulation, thus a
simplistic, yet functional model is considered. For multi-
object estimation, it is essential to have a realistic pattern
of stars in the background, and moving targets in the sensor
FoV. Furthermore, two modes of sensor drift have to be
simulated: random jitter of the sensor in the horizontal coor-
dinate system is modelled as Brownian motion, and possible
uncompensated diurnal motion is approximated by a Near
Constant Velocity (NCV) motion of the celestial sphere with
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Figure 3: Simulation work flow (DSS: Digital Sky Survey)

respect to the sensor due to the Earth motion.

The overview of the simulation work-flow is shown in Fig. 3.
The main process consists of three main steps: generation
of the telescope orientation in equatorial coordinates, sky
background extraction and target mapping.

The first step is essentially a geometrical conversion of a
simulated telescope pointing direction to the position in the
sky given in equatorial coordinates. As the time passes,
celestial objects shift with respect to the observer due to
diurnal motion. In this way, a slightly different area in the sky
is captured for every time step, creating the effect of a linear
drift compromised by a small acceleration noise (Eq. (12)).
The Brownian drift of the sensor is generated in horizontal co-
ordinates as a small pointing direction error of the telescope.
In this step, the time and duration of the observation, the
position of the telescope and its pointing direction are used
to generate a sequence of equatorial coordinates.

As a second step, the star background is generated. The list
of equatorial coordinates, together with the FoV of the tele-
scope, are used for the extraction of the corresponding patch
of the sky from the Digital Sky Survey (DSS) provided by
European Southern Observatory on-line archive [21].4 Since
these images have an extremely high SNR (see Fig. 4a) which
is likely to be much lower in reality due to low exposure
times used for debris tracking, only the brightest stars that
can outshine the photon noise of the background are used for
further processing.

Then, the target is projected on the star pattern. Its position
in every frame of the image sequence is determined by
two initial values: the starting position of the satellite on
the sky and its angular velocity. The length of the target
track depends on the parameters of the shutter speed and the
velocity of the target. A resulting image is shown in Fig. 4b.

As it was mentioned above, the Brownian drift is generated in
horizontal coordinates (azimuth and altitude of the telescope
pointing direction) and thus is measured in degrees. On the
other hand, the proposed method corrects for the values in the
image space, given in pixels. To be able to compare ground
truth values with the drift recovered, the original variation
in horizontal coordinates is therefore mapped from degrees
to pixels. An example of a purely Brownian drift and of a
composite drift mixing a Brownian and a NCV component,
are shown in Fig. 5.

4The extracted data is copyrighted by the Space Telescope Science Institute
(STScI Digitized Sky Survey, 1993, 1994, AURA, Inc. all rights reserved).

(a) Image of stars obtained from the
DSS catalogue

(b) The final image of the simula-
tion with the target

Figure 4: Simulation steps

7. RESULTS
The section presents the results of experiments on the pro-
posed drift compensation model, exploiting both simulated
data and real data, and analyses its performances.

Sensor observation model

The single-object/single-observation likelihood function gt
depends on the sensor state yt as follows:

gt(z|xt, yt) = N (z;H(xt − yt), Qm,t), (7)

where N (·;μ, σ) denotes a Gaussian distribution with mean
μ and covariance σ, H is the observation matrix given by

H = [I2 02] , (8)

and Qm,t is a noise covariance matrix of the form

Qm,t = (σm,t)
2I2, (9)

where the standard deviation σm,t is a model parameter. On
the other hand, the probability of detection pd,t and the clutter
intensity λtct are assumed independent from the sensor state
yt. In addition, the spatial distribution of the clutter is ct is
modelled as a uniform distribution on the sensor FoV.

Sensor motion models

Two different sensor motion models (2) were considered,
accounting for drifts of specific nature arising from two
different modes of telescope operation.

Brownian model—The Brownian model describes an opera-
tion mode where the diurnal motion of the earth is corrected
by the telescope, but the observation is corrupted by sensor
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(a) Brownian drift

(b) Composite drift

Figure 5: Examples of simulated sensor drift, in the image
frame, over 120 time steps. Note the scale difference in x
and y in Fig. 5b.

jitter. The Brownian sensor drift hb
t|t−1 is modelled as

follows:

hb
t|t−1(yt|yt−1) = N (yt; yt−1, Qb,t), (10)

where Qb,t is a covariance matrix of the form

Qb,t = (σb,t)
2

[
ΔtI2 02
02 02

]
(11)

with Δt being the duration since the previous time step in
unit time, and the standard deviation σb,t being a model
parameter.

Composite model—The composite motion describes a static
mode of the telescope in which the uncompensated diurnal
motion of the earth induces a linear drift, through a NCV
model [22], also corrupted by additional sensor jitter, through
a Brownian model. The composite sensor drift hc

t|t−1 can

thus be described as follows. First, an intermediate state ỹt is
sampled following a NCV model, i.e.

ỹt ∼ N (·;A�,tyt−1, Q�,t), (12)

where A�,t is the transition matrix given by

A�,t =

[
I2 ΔtI2
02 I2

]
, (13)

and Q�,t is a covariance matrix of the form

Q�,t = (σ�,t)
2

[
Δ3

t

3 I2
Δ2

t

2 I2
Δ2

t

2 I2 ΔtI2

]
, (14)

the standard deviation σ�,t being a model parameter. Then,
the intermediate state is augmented with a Brownian noise as
showm in Eq. (10), i.e.

yt ∼ N (·; ỹt, Qb,t). (15)

An example of composite drift simulated over a scenario of
120 time steps in depicted in Fig. 5.

Object motion models

We consider two different object motion models.

The first model f
(1)
t accounts for near-static objects in the

image background. It is modelled as follows:

f
(1)
t (xt|xt−1) = N (xt;xt−1, Q

(1)
p,t), (16)

where Q
(1)
p,t is a covariance matrix of the form

Q
(1)
p,t = (σ

(1)
p,t )

2

[
ΔtI2 02
02 02

]
, (17)

where the standard deviation σ
(1)
p,t is a parameter of the model,

set to a small value.

The second model f
(2)
t accounts for objects passing the

sensor FoV. It is designed with a NCV model similarly to
Eqs. (13), (14), that is:

f
(2)
t (xt|xt−1) = N (xt;A�,txt−1, Q

(2)
p,t), (18)

where Q
(2)
p,t is a covariance matrix of the form

Q
(2)
p,t = (σ

(2)
p,t )

2

[
Δ3

t

3 I2
Δ2

t

2 I2
Δ2

t

2 I2 ΔtI2

]
, (19)

where the standard deviation σ
(2)
p,t is a parameter of the model.

Input data

Two real datasets were collected for these experiments, dur-
ing the close passage of asteroid 2007HA on Apr 17, 2007.
The first one was collected at 20:50:26 UT, over 19min and
has 38 frames, the second one at 21:53:53 UT, over 15min
and has 26 frames.

In addition, two simulated datasets were generated following
the procedure explained in Sec. 6. The first dataset was
corrupted with a Brownian drift and the second one with
a composite drift. The variance of the Brownian pointing
direction error was set to 4.32× 10−4′′. As for the other
parameters of the simulation, they were set to realistic em-
pirical values as follows: the exposure time of the sensor was
set to 2 s and CCD reading time to 0.5 s. The telescope would
be located at 70◦24′15′′ N, 24◦37′38′′ W. The hypothetical
observation was made on Aug 23, 2013 at 22:10 and lasted
for 5min. The velocity of the satellites was set to an angular
rate of 7.26× 10−5 rad s−1.

Parametrisation

The implementation of the PHD filters follow a Gaussian
Mixture (GM) approach as described in [23]. In addition, we
follow a measurement-driven approach [24], [25] in order to
avoid the initialisation of many superfluous birth components.

The parametrisation of the filters for the experiments is given
in Table 1. Note that the probability of detection pd,t is set
to different values for the real and simulated data and reflects
the quality of the observation process in both cases.

Results on simulated data

The first simulated scenario involves an observation process
over 120 time steps corrupted by a Brownian sensor drift,
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Table 1: Parametrisation

1. Multi-object filter (time t)

Parameter Sim. data Real data

Prob. of survival (static) p
(1)
s,t 0.98 0.9

Prob. of survival (NCV) p
(2)
s,t 0.98 0.9

Std. dev. (static) σ
(1)
p,t 10−3 10−3

Std. dev. (NCV) σ
(2)
p,t 1 1

Prob. of detection pd,t 0.9 0.6
Std. dev. (obs.) σm,t 10−3 10−3

Clutter rate λt 0.1 0.2

2. Sensor state estimator (time t)

Parameter Sim. data Real data

Particle number N 100 400
Std. dev. (Brownian) σb,t 1 1
Std. dev. (linear) σ�,t 1 1
Resampling threshold τ 0.1 0.1

simulated as described in Sec. 6. The sensor estimator
is accordingly fed with a Brownian drift model using the
parametrisation as given in Table 1.

Fig. 6 depicts the observations and filter outputs of the first
scenario. The filter output shows that the spread of each
estimated star position is very limited and the trajectory of
the moving object closely approximates a straight line. This
suggests that the sensor drift was accurately compensated by
the filter; Fig. 7 indeed shows that the estimation error in the
drift remained below 0.2 pixels on each axis throughout the
scenario.
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(b) Filter output

Figure 6: Simulated scenario with Brownian drift. Ob-
servations (resp. stars, moving objects) are depicted with
blue (resp. black, red) crosses.

The second simulated scenario involves an observation pro-
cess over 120 time steps, corrupted by a composite sensor
drift as detailed in Sec. 6. The sensor estimator now works
with a composite drift model using the parameters as given in
Table 1.

Fig. 8 depicts the observations and filter outputs of the second
scenario. Similarly to the first scenario, the filter proves to
be effective in the classification of objects between moving
targets and stars and also in the estimation of the object states.
Again, the quality of the multi-object estimation is backed by
an accurate estimation of the sensor drift as demonstrated in
Fig. 9.

Time-step
0 10 20 30 40 50 60 70 80 90 100 110 120

Y
-a

xi
s 

(p
ix

el
s)

-0.1

0

0.1

0.2
0 10 20 30 40 50 60 70 80 90 100 110 120

X
-a

xi
s 

(p
ix

el
s)

-0.1

0

0.1

0.2

Figure 7: Error in the drift estimation on the simulated
scenario with Brownian drift.
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Figure 8: Simulated scenario with composite drift. Ob-
servations (resp. stars, moving objects) are depicted with
blue (resp. black, red) crosses.

Results on real data

For the first dataset, the sensor estimator assumes a Brownian
drift model and for the second one, it assumes a composite
drift model. The parametrisation is given in Table 1. The
output of the two experiments is shown in Fig. 10 and 11.

Overall, the proposed method proved to be successful in clas-
sifying the moving objects from the stars and estimating the
positions of the objects in the image sequences provided by
both real datasets. An objective assessment of the proposed
drift compensation method is lacking in this context since
the ground truth associated to the real datasets is unknown,
but the comparison of the cumulated observations and the
estimated positions of the stars suggests that the sensor drift
is accurately compensated in both datasets since the stars are
registered with a very small internal variation. A comparison
of this approach with an image-based registration method in
a biomedical context can be found in [26].

Note that while a continuous trajectory for the passage of
asteroid 2007H in the first dataset can be extracted from the
estimated positions of the moving object in the successive
frames (red crosses in Fig. 10), the asteroid in the second
dataset is initially misclassified as a static object due to the
close proximity of a bright star in that region which is causing
missed detections of nearby objects (see Fig. 11).

8. CONCLUSIONS
A new method was proposed to simultaneously estimate the
motion of the sensor and the trajectories of targets with
different motion models in astronomical images. For this
purpose, a hierarchical process was used which incorporates
a PHD filter with classification. No prior information about
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Figure 9: Error in the drift estimation on the simulated
scenario with composite drift.
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Figure 10: First real dataset (close passage of asteroid
2007HA), processed with a Brownian sensor drift. Ob-
servations (resp. stars, moving objects) are depicted with
blue (resp. black, red) crosses. The spacecraft first ap-
peared at the bottom of the camera frame.

the telescope position or its pointing direction is necessary
since it is solely based on the images acquired through the
telescope.

The method was tested on simulated and real data and per-
formed well on two types of drift that typically occur in
astronomical observation. Furthermore, the method not only
estimates the sensor drift but also provides information on the
object type through its specific motion behaviour in the field
of view. Due to the hierarchical structure of the algorithm,
the bias estimation inherits its robustness to imperfections in
the data from the underlying PHD filter framework.

For the validation of the presented framework, a simple
observation extraction scheme was proposed. A method for
the simulation of astronomical images with a moving target
was developed; it is capable of generating an image of the sky
from any geographical position at any given date or time with
an orbital object track plotted with specific parameters. The
resulting data sets were suitable for the given task and might
also be useful for similar applications.
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Figure 11: Second real dataset (close passage of aster-
oid 2007HA), processed with a composite sensor drift.
Observations (resp. stars, moving objects) are depicted
with blue (resp. black, red) crosses. The spacecraft first
appeared on the right-hand side of the camera frame.
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