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Abstract—We propose an efficient SMC-PHD filter which
employs the Kalman-gain approach during weight update to
correct predicted particle states by minimizing the mean square
error (MSE) between the estimated measurement and the actual
measurement received at a given time in order to arrive at a
more accurate posterior. This technique identifies and selects
those particles belonging to a particular target from a given
PHD for state correction during weight computation. Besides
the improved tracking accuracy, fewer particles are required in
the proposed approach. Simulation results confirm the improved
tracking performance when evaluated with different measures.

Index Terms—Kalman-gain, particle filter, sequential Monte
Carlo (SMC), probability hypothesis density (PHD) filter, multi-
target tracking (MTT), Bayesian tracking.

I. INTRODUCTION

Multi-target tracking (MTT) is essential in many application
areas such as motion-based recognition, automated security,
navigation and surveillance, medical imaging, traffic control,
and human computer interaction [1]–[3]. MTT belongs to a
class of dynamic state estimation problems [3]–[5]. In MTT
targets can appear and disappear randomly in time and this
results in a varying and unknown number of targets and
their corresponding states. Furthermore, not all measurements
received by sensors at each time instance are due to existing
targets. The sensor may pick up detections as false alarms
due to clutter or may even miss some detections. As a result,
the measurements received at each time step are corrupted
and consist of indistinguishable measurements that may be
either target-originated or due to clutter. Therefore, the main
objective of MTT is to be able to jointly estimate target states
and number of targets from a set of corrupted observations.

Furthermore, because there is no particular ordering be-
tween measurements received and target states at each time
step in terms of association; both the received measurements
and target states can be represented as finite sets [6]–[9]. The
modelling of target states and observations as a random finite
set (RFS) allows for the use of the Bayesian filtering approach
(as an optimal multi-target filter) to estimate the multi-target
states in the presence of clutter, missed detections and associ-
ation uncertainty [6]–[9]. Tractable alternatives to the optimal
multi-target filters include the RFS based probability hypoth-
esis density (PHD) filter, the cardinalized PHD (CPHD) filter
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[8]–[10], the multi-target multi-Bernoulli (MeMBer) filter1 and
its cardinality-balanced version, the CBMeMBer filter [8], [9],
[11]. Both the CPHD in [10] and the CBMeMBer in [11]
have been shown to have better performance than the MeMBer
filter in [8]. The CBMeMBer filter was proposed specifically
to address the pronounced bias in the cardinality estimate of
the MeMBer filter. For more details on other tractable RFS
based MTT methods, the reader is referred to [12]–[15].

The PHD filter is a recursion that propagates the posterior
intensity of the RFS of targets in time [6]. The integral of the
PHD is the expected number of targets in a measurable region,
and the peaks of the PHD function provide the estimates of the
target states [6], [8], [9]. The PHD filter is able to track time
varying multiple targets without the need to explicitly associate
measurements to tracks. In the literature, the PHD filter has
been implemented in two distinct fashions; i.e. as the Gaussian
mixture PHD (GM-PHD) filter [16] and the Sequential Monte
Carlo PHD (SMC-PHD) filter [17]. In the GM-PHD filter
implementation, the PHD is assumed to be a Gaussian mixture
(GM) while in the SMC-PHD filter implementation, the PHD
is approximated by a set of weighted particles and does
not need any further assumptions. The SMC-PHD filter is
therefore more suitable for tracking in non-linear and non-
Gaussian environments.

In SMC filter design, the choice of importance density
function from which samples are drawn to avoid sample
degeneracy and impoverishment is of crucial importance [18].
Furthermore, in MTT which involves multiple modalities,
if particles are in clusters representing the modes of the
posterior, the iterative process of randomly drawing samples
from proposal distributions results in random fluctuations in
the total weight attributed to each mode [19]. In addition,
the errors associated with the estimation of the weights of
each mode will increase in magnitude with time [19]. These
errors arise due to the stochastic nature of drawing samples
from the proposal distribution and the stochasticity of the
resampling process [19]. These two processes greatly influence
performance of SMC filters. SMC filters are further affected
by how well the state space of targets is populated with
samples. Also, [20] argued that the mean squared error (MSE)
of the SMC-PHD filter is inversely proportional to number
of samples. In [18], it is shown that the optimal importance
density function is the posterior. In many cases it is difficult
to sample from the optimal importance density. As an attempt

1The MeMBer filter is a recursion that propagates (approximately) the
multi-target posterior density and is based on the assumption that every multi-
target posterior is a multi-target multi-Bernoulli process [8], [11].
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to solve the importance sampling problem, [19] proposed
using an optimised proposal distribution for SMC filters with
multiple modes in general. However, this approach tends to be
problem specific. In [21], the authors proposed the Gaussian
mixture unscented sequential Monte Carlo probability hypoth-
esis density (GM-USMC-PHD) filter which uses the Gaussian
mixture representation to approximate the importance sam-
pling function and the predictive density functions via the
unscented information filter (UIF). Additionally, [22] and [23]
proposed the auxiliary SMC-PHD (ASMC-PHD) filter and its
improved version, the auxiliary particle PHD (AP-PHD) filter
respectively. Both try to use the auxiliary particle approach
to incorporate the measurement into the importance sampling
function. This however involves double computation on the
measurement and more samples are required to populate the
state space in order to make the importance sampling function
more viable.

However it is also possible to construct suboptimal approx-
imations to the optimal importance density by using local
linearization techniques [18]. As a realization of this, the
unscented Kalman particle PHD filter (UK-P-PHD) was pro-
posed in [24] for the joint tracking of multi-targets. It tries to
use the unscented Kalman filter (UKF) in the prediction step.
This allowed for inclusion of the latest measurement to draw
particles. Similarly, [25] proposed the Kalman particle PHD
filter for multi-target visual tracking which uses the Kalman
filter to construct the proposal density also in the prediction
step. Furthermore, [26] presented an improvement to the SMC-
PHD filter which incorporates the latest measurements into the
resampling step by using the UKF.

Additionally, in the literature are the combined implemen-
tation of the GM and particle PHD filter as a GM parti-
cle PHD (GMP-PHD) filter in [27], [28] and [29] and the
Gaussian mixture SMC-PHD (GM-SMC-PHD) in [30]. These
methods attempt to combine the advantages of both GM-
PHD and SMC-PHD filters. The methods give some level
of performance improvement without easing computational
burden or the number of particles. Also, it may be possible to
implement the Markov Chain Monte Carlo (MCMC) sampling
method in the update stage of the SMC-PHD filter as a
way of asymptotically approximating the posterior. However,
this approach will require even more particles, as these extra
particles will be used to perform some sort of random walk in
order to achieve maximum a posteriori estimate of target states
but no guarantees exist about it yielding good point estimates
[31]. Recently, [32] proposed a data driven SMC-PHD filter
for multi-target tracking. The method tries to segment the
measurements available at each time step into measurements
due to persistent targets and measurements due to new born
targets. Again this does not help reduce the number of particles
but rather, more particles are required to populate regions of
interest.

It is desirable therefore to have an efficient filter that
can provide for particle state correction for any proposal
distribution using fewer particles. This gives the motivation
for the Kalman-gain aided sequential Monte Carlo probability
hypothesis density (KG-SMC-PHD) filter. The KG-SMC-PHD
filter provides for the particle state correction of the predicted

mutli-target state. This is achieved with the application of
the Kalman state update technique on selected particles to
minimize the MSE between estimated measurements and
actual measurement.

In this paper, we propose an SMC-PHD filter with a valida-
tion threshold to select promising particles and to guide them
to regions of high likelihood using the Kalman-gain, irrespec-
tive of the importance density function. This method seeks to
minimize the MSE between the estimated measurements due
to selected particles and the actual measurements to achieve
a more efficient SMC-PHD filter with less computational
complexity. This allows fewer particles to be used to populate
the state space and at the same time achieve improved tracking
performance as opposed to the standard SMC-PHD filter.

The remainder of the paper is organized as follows. In Sec.
II the multi-target tracking problem is presented in terms of
process and measurement models. Sec. III presents the idea of
the importance density function and highlights some common
choices of proposal distributions. In Sec. IV, the PHD filter
recursion is presented and explained followed by a description
of the standard SMC-PHD filter implementation. Next, Sec. V
presents our proposed KG-SMC-PHD filter. Simulation results
together with discussions are presented in Sec. VI. Finally,
conclusions are drawn in Sec. VII.

II. MULTI-TARGET TRACKING PROBLEM FORMULATION

The MTT problem relates to that of modelling a dynamical
system. Two models are generally used, the state evolution
model and the measurement model.

A. State Model

A non-linear system governed by the state evolution model
is considered:

xk = fk−1(xk−1, vk) (1)

where xk denotes the t-th target state at discrete time k, vk is
an independent and identically distributed (i.i.d.) process noise
vector and fk−1(·) is the non-linear system transition function.
Then the multi-target state at time k can be written as

Xk = {x1,k, ..., xT,k} ∈ Es (2)

where T is the number of targets present at each time k, and
Es denotes the state space.

B. Measurement Model

Let the multi-target cumulative measurement sequence up to
time K be Z1:K : Z1,Z2, ...,ZK ⊂ Eo. Measurements consist
of both target-originated measurements and false alarms due
to clutter. Then the multi-target measurement set at time k in
the observation space is:

Zk = {z1,k, ..., zα,k}
⋃
{c1,k, ...cβ,k} ⊂ Eo (3)

where {z1,k, ..., zα,k} denotes the target-originated measure-
ment set with number of measurements, α; {c1,k, ...cβ,k}
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denotes the false measurement set with the number of mea-
surements, β and Eo denotes the observation space. The t-th
target-originated non-linear measurement model is given as:

zk = hk(xk,nk) (4)

where hk(·) is a non-linear function, and nk is an i.i.d. process
noise vector.

III. THE IMPORTANCE DENSITY FUNCTION

In this section we focus on proposal distributions and their
role in SMC methods in general.

A. Importance sampling

Monte Carlo (MC) methods for numerical integration deal
with problems of the form

g =

∫
<n

f(y)π(y)dy (5)

where π(y) is such that π(y) ≥ 0 and integrates to unity,∫
<n

π(y)dy = 1 (6)

is a pdf.
It is also the assumption that it is possible to generate N

� 1 samples distributed according to the probability density
π(y). The MC estimate of the integral (5) is formed by taking
the average over the set of samples

ĝ =
1

N

N∑
i=1

f(yi) (7)

where N is assumed to be large. However, π(y) is not usually
a familiar density and so it is difficult to generate samples
directly from it. When the latter is the case, the integral of
(5) can be solved by letting q(y) be a proposal distribution
or importance density which is easy to generate samples and
with the assumption that π(y) > 0⇒ q(y) > 0 for all y ∈ <n.
Under this assumption, (5) becomes:

g =

∫
<n

f(y)π(y)dy =

∫
<n

f(y)
π(y)

q(y)
q(y)dy (8)

An MC estimate is then computed by generating N � 1
samples from q(y) instead of π(y) and forming a weighted
sum

ĝ =
1

N

N∑
i=1

f(yi)w(yi), (9)

where w(yi) ∝
π(yi)
q(yi)

are the associated weights [33]. To sum
up, importance sampling makes it possible to sample, with
associated weights, from a distribution, π(y) difficult to sample
from by sampling from an alternate distribution, q(y) known
as the proposal distribution.

B. Importance densities

Some common choices of importance density in SMC
methods are given below:

1) The transitional prior (TP): This is the most popular
choice of suboptimal proposal distribution for SMC-PHD fil-
ters and particle filters in general because it’s implementation
is easy and straightforward [34]. This choice requires sampling
from the dynamic prior, i.e.

q(xk|xlk−1, zk) = p(xk|xlk−1) (10)

2) Extended particle filter (EPF): Given that the measure-
ment model of (4) is non-linear, but Gaussian, it is possible
to use a proposal distribution that exploits a linear approxi-
mation to the posterior [19] in the same way as the extended
Kalman filter uses a local linearization about its estimates. The
proposal distribution is then given as:

q(xk|xlk−1, zk) = N (xk; uk,Ak) (11)

where

uk = fk−1(xk−1) + AkHT
k R−1

k (zk − h(fk−1(xk−1))) (12)

Hk =
∂h
∂xk

∣∣∣∣
fk−1(xk−1)

(13)

where Ak and Rk denote state and measurement covariances
respectively, and Hk is the measurement transformation ma-
trix.

3) Unscented particle filter (UPF): As an alternative to
the EPF, an unscented transform can be used to calculate the
mean h(fk−1(xk−1)) and covariance Hk by generating sigma
points and applying a transform such that the new generated
samples have fk−1(xk−1) as mean and Pk−1 as covariance.
h(fk−1(xk−1)) is then evaluated at each sigma point and Hk

computed from these samples [19].

IV. PROBABILITY HYPOTHESIS DENSITY

A. The PHD Filter

The probability hypothesis density (PHD), DΛ, of a given
RFS, Λ, is the first order moment of Λ and is given by [6],
[8], [9]:

DΛ(x) = E {δΛ(x)} =

∫
δX(x)PΛ(dX) (14)

where E {·} is the statistical expectation operator and δΛ(x) =∑
y∈Λ δy(x) is the random density representation of Λ. PΛ

is the probability measure of the RFS. The PHD filter is a
recursion of the PHD, Dk|k that is associated with the multi-
target posterior density p(Xk|Zk), and

p(Xk|Zk) ∝ p(Zk|Xk)p(Xk|Zk−1) (15)

where p(Zk|Xk) and p(Xk|Zk−1) denote the multi-target like-
lihood and prior density respectively.

The prediction formula of the PHD, Dk|k is given as [8],
[9]:

Dk|k−1(xk|Zk−1) = γk(xk)+∫
φk|k−1(xk, xk−1)Dk−1|k−1(xk−1|Zk−1)dxk−1, (16)
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with the factor

φk|k−1(xk, xk−1) = pS(xk−1)fk|k−1(xk, xk−1)+bk|k−1(xk, xk−1),
(17)

where γk(·) is the PHD of the spontaneous birth, pS(·) is
the probability of the target survival, fk|k−1(xk, xk−1) is the
single target motion model, and bk|k−1(xk, xk−1) is the PHD
of the spawned targets.

The update formula is given as:

Dk|k(xk|Zk) =[
ν(xk) +

∑
z∈Zk

ψk,z(xk)

κk(z) + 〈Dk|k−1, ψk,z〉

]
Dk|k−1(xk|Zk−1)

(18)

with ν(xk) = 1 − pD(xk), ψk,z(xk) = pD(xk)g(z|xk), and
κk(z) = λkck(z); where pD(xk) and ν(xk) denote the prob-
ability of target detection and non-detection for a given (xk)
respectively, g(z|xk) is the measurement likelihood function
for the single target, κk(z) is the clutter intensity, λk is the
average number of Poisson clutter points per scan, and ck(z)
is the probability density over the state-space of the clutter
point; 〈·, ·〉 denotes inner product and is computed as [8], [9]:

〈Dk|k−1, ψk,z〉 =

∫
Dk|k−1(xk|Zk−1)ψk,z(xk)dxk. (19)

B. The Standard SMC-PHD Filter

The PHD filter can be implemented either as in the se-
quential Monte Carlo (SMC) fashion (particle-PHD) or as
the Gaussian mixture PHD (GM-PHD). The SMC-PHD fil-
ter approximates the PHD using random samples and is
more specifically an effective scheme in non-linear and non-
Gaussian scenarios as well as different noise models [35]. For
comparison purposes, the standard SMC-PHD filter of [17] is
briefly presented. The implementation of the standard SMC-
PHD filter usually requires four stages. These stages are briefly
presented in Algorithm 1.

Fig. 1 illustrates how particles are used to represent and
track targets in the standard SMC-PHD filter. The state space
of two targets populated with particles at time k is shown.
In A, during the prediction stage, the PHD is represented
with eight equally weighted particles. In B, as the latest mea-
surement arrives, the particle weights are updated accordingly.
Particles with higher weights are chosen for resampling. As
seen in B, the highly weighted particles are marked with “

√
”

respectively, five particles for the first target and six particles
for the second target. To ensure that the number of particles
remains eight for each target, the particles marked with “

√
”

are resampled depending on the size of their weights as seen in
C. Notice that the particle positions remain unchanged and the
particles corresponding to high weights are retained and those
with lower weights are discarded. The estimated state of the
targets or the posterior at time k is derived from the resampled
particles. It is true that populating the state space of the targets
with many more particles will result in more particles falling
near the modes of the state space. This will translate to higher

weighted particles and a more accurate posterior. However,
doing this will increase computational complexity.

In the next section, the proposed SMC-PHD filter is pre-
sented.

V. THE PROPOSED SMC-PHD FILTER

In the standard SMC-PHD filter, the particles appear to be
scattered and it is difficult to guide particles to regions of
interest. The filter’s ability to estimate the posterior at a given
time depends on how densely the state space is populated
with samples and how well the estimated measurements match
the actual measurements received in that time frame. The
weights are then updated accordingly. The SMC-PHD filter
does not provide for particle state correction to achieve particle
improvement. In other words, it does not seek to reduce the
error between the actual measurement and the estimated mea-
surements irrespective of the importance density chosen. The
proposed method seeks to address this problem. The novelty
of our approach lies in the technique behind the Kalman
filter. The Kalman filter is a minimum MSE (MMSE) esti-
mator, which in effect seeks to recursively minimize the mean
square error between the estimated measurements and actual
measurements using the Kalman-gain [36]. The Kalman-gain
computes the required correction from the observation and
transforms the correction of the observation back to the cor-
rection of state. The proposed approach tries to apply particle
state correction/improvement using the Kalman-gain to guide
validated particles in the SMC-PHD filter to the region of
higher likelihood to better approximate the posterior at each
time step.

A. Measurement set partition

Given that Tk targets exist at time k, the measurements
received at k may consist of target-originated measurements
(i.e. measurements due to persistent target or new born targets)
and clutter. In the standard SMC-PHD filter, all measurements
are used to compute weights to show the significance of all
particles with no attempt to check for errors. Therefore, a
measurement set partition is needed to separate the measure-
ment set into target-originated measurements and measure-
ments due to clutter. We use a statistical distance measure
and gating technique to achieve this. The second step is to
identify promising particles from the predicted target state
using a validation threshold and improve their states using the
Kalman-gain while updating weights as measurement arrives.

At time k, measurements assumed to originate from per-
sistent targets are identified by computing the square Ma-
halanobis distance between elements in the measurement set
Zk−1 at time k − 1 and Zk at time k from (3) as

d2
i,j,k = (zik − zjk−1)TΣ−1

k (zik − zjk−1), (20)

for i = 1, ..., |Zk| and j = 1, ..., |Zk−1|. Σk is the measure-
ment covariance matrix. For target originated measurements zik
and zjk−1 belonging to the same target, the square Mahalanobis
distance d2

i,j,k is χ2 distributed with degree of freedom equal
to the dimension of the measurement vector. Therefore, a unit-
less threshold d̃ can be computed for a given probability using
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Figure 1: Schematic representation of the standard SMC-PHD filter showing the 2D state space of the PHD of two targets populated with
particles. The contours represent the state space of targets. The contour centres and number of centres represent the mode and cardinality of
targets respectively. Boxes A, B and C represent various stages of the filter. The square shaped and diamond shaped particles are for target
1 and target 2 respectively. The colours stand for different particle states. The particles marked with “

√
” in B denote particles with higher

weight for when the latest observation arrives.

the inverse cumulative χ2 function such that the Pr[d2
i,j,k ≤ d̃]

falls within a given confidence region [3].
Assuming that measurement noise is not too great and the

time increment is not too large, a target generated measure-
ment in Zk will usually be nearby some measurement in Zk−1.
Assuming that clutter is not too dense and is uncorrelated
frame to frame, a clutter measurement in Zk will usually not
be near any measurement in Zk−1. Thus d2

i,j,k as defined in
(20) will tend to be small for some j if zik is due to a target.
Likewise, it will tend to be large for all j if zik is a clutter
measurement. So for a given i, the measurement zik is recorded
as a valid target-originated measurement, żnk if,

minjd
2
i,j,k ≤ d̃ (21)

is satisfied or, otherwise, regarded either as clutter or a poten-
tial new born target. Therefore, the clutter free measurement
set at time k is

Żk =

ns⋃
n=1

{żnk}, (22)

where n = 1, · · · , ns and ns =
∣∣Żk∣∣, i.e., the total number of

measurements in Zk satisfying (21).

B. Validated particle selection and correction

Once the measurement set is partitioned, the selection and
correction step follows. In order to identify those particles
to correct, a validation threshold, τ , is used, which selects
particles from the predicted target state that fall under a given
measurement for correction. A predicted particle, x̃lk|k−1 is
selected for correction if, for each clutter free measurement
żnk ∈ Żk,

g(żnk |x̃
l
k|k−1) ≥ τ, for l = 1, ...,Lk (23)

where g(żnk |x̃
l
k|k−1) is the measurement likelihood function; τ

is chosen to be inversely proportional to the total number of
samples per persistent target ρ, i.e.

τ ∝ 1

ρ
(24)

Each particle satisfying (23) is assumed to be a reasonable
candidate for correction given the current measurement. A
large τ will lead to a tighter particle selection while a smaller
value of τ will result in wider particle selection, i.e. more
particles will be selected for correction. Once a reasonable
candidate x̃lk|k−1 has been identified, it’s state is corrected as

x̃lk = x̃lk|k−1 +Kk(żnk − f(x̃lk|k−1)) (25)

Kk = Pk−1HT
k S−1

k (26)

S−1
k = Rk + HkPk−1HT

k (27)
Pk = Pk−1 −KkHkPk−1 (28)

where f(x̃lk|k−1) is the projection of the predicted state x̃lk
on to the measurement, Kk is the Kalman-gain, H is the
measurement transformation matrix and P is the state estima-
tion covariance matrix, R is the measurement error covariance
matrix, and S is the innovation covariance matrix.

Therefore, given that the t-th target generated the clutter
free measurement żt,k at time k, and its state is represented
by particles {xt,k}ρt=1 from the predicted target state, then,
only those particles, {xt,k}st=1 satisfying (23) will be selected
for correction according to (25) where s ≤ ρ. Fig. 2 illustrates
how particles representing the state of the PHD of targets are
selected for correction as the measurement originating from
the t-th target arrives at time k. From the figure, in A, during
the prediction stage, each of the target states is represented
with eight equally weighted particles. As the latest measure-
ment for each target arrives, particles with high likelihood are
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Figure 2: Schematic representation of the proposed SMC-PHD filter showing the 2D state space of the PHD of two targets populated with
particles. The contours represent the state space of targets. The contour centres and number of centres represent the mode and number of
targets respectively. Boxes A, B, C and D represent various stages of the filter. The square shaped and diamond shaped particles are for
target 1 and target 2 respectively. The colours stand for different particle states. The particles with “

√
” stand for particles with higher weight

for when latest the observation arrives. Particles with “*” denote particles selected for state correction.

marked with “
√

” as seen in B. The validation threshold τ of
(23) is then applied to the likelihood of particles with “

√
”.

Each particle whose likelihood satisfies the threshold condition
is selected for correction. The selected particles are shown
with “*” in B. The particle weights are updated accordingly.
Notice from B that for the first target, five particles have
high likelihood but only three from the five were chosen for
state correction. Similarly, for the second target, six particles
gave high likelihood but out of which only four were selected
for state correction. The selected particles from B are then
corrected using (25) and (26) as shown in C. The corrected
particles are then resampled to ensure the number of particles
remains eight for each target.

Note, the above measurement set partition approach can be
applied under the following assumptions: that new born targets
exist for at least two consecutive time steps, the manoeuvring
of targets is not too abrupt, the sample period δt is not too
large, measurement noise is not too large, clutter is not too
dense, and clutter is not time correlated.

Furthermore, we emphasize that the proposed KG-SMC-
PHD is different from the GM-PHD in [16] even with the
application of the gating technique as will be demonstrated in
the simulation section. This is primarily because we do not
assume the strict linearity and Gaussianity condition of [16].

C. KG-SMC-PHD implementation of the PHD filter

We now present the initialization, prediction, update and
resample steps of the KG-SMC-PHD filter.

1) Initialization: At time k = 0, initialize the PHD, Dk|k

by a number of particles with associated weights
{

xlk, wlk
}Lk

l=1
.

A particle approximation of the intensity function at time step,
k > 0, can be obtained from a particle distribution at the
previous time step using prediction and update stages.

2) Prediction: The predicted PHD, Dk|k−1 is:

Dk|k−1(x̃k|Żk−1) =

Lk∑
l=1

w̃lk|k−1δ(x− x̃lk|k−1). (29)

We draw Lk−1 and Jk particles from two proposal densities
(chosen from the possibilities discussed in Sec. III i.e., TP,
EPF or UPF) to represent persistent and new born targets
respectively as:

x̃lk|k−1 ≈

{
qk(·|x̃lk−1, Żk), l = 1, ..., Lk−1

pk(·|Żk), l = Lk−1 + 1, ...,Lk
(30)

with corresponding weights:

w̃lk|k−1 =


φk|k−1(x̃lk,x̃

l
k−1)

qk(x̃k|k−1|x̃lk−1,Zk)
wlk−1, l = 1, ..., Lk−1

γk(x̃lk)
Jkpk(x̃k|k−1|Zk) , l = Lk−1 + 1, ...,Lk

(31)
with the term

φk|k−1(xk, xk−1) = pS(xk−1)fk|k−1(xk, xk−1)+bk|k−1(xk, xk−1)

where Lk = Lk−1+Jk, qk(·|·) and pk(·|·) denote the proposal
distributions for persistent and new born targets respectively;
γk(·) is the PHD of the spontaneous birth, pS(·) is the
probability of target survival, fk|k−1(xk, xk−1) is the single
target motion model, and bk|k−1(xk, xk−1) is the PHD of
spawned targets; Jk is the number of particles for new born
targets.

3) Update: For each żnk ∈ Żk where Żk is the clutter free
measurement set at time k obtained using (20) and (21), let

H(żnk ) = κ(żnk ) + Ck(żnk ) (32)

Ck(żnk ) =

Lk∑
l=1

pD(x̃lk|k−1)g(żnk |x̃
l
k|k−1)w̃lk|k−1, (33)
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then, for l = 1, ...,Lk, compute the likelihood g(żnk |x̃
l
k|k−1)

and verify if (23) is true, correct predicted state by computing
x̃lk using (25) then compute (33) and update the weights using:

w̃lk =

ν +
∑
ż∈Żk

pD(x̃lk|k−1)g(żnk |x̃
l
k|k−1)

H(żnk )

 w̃lk|k−1 (34)

where ν = 1−pD(x̃lk|k−1). However, if (23) is not satisfied, the
predicted state is not corrected; x̃lk is computed as x̃lk = x̃lk|k−1

and (32) and (34) are computed immediately.
The updated PHD, Dk|k is then given as:

Dk|k(x̃k|Żk) =

Lk∑
l=1

w̃lkδ(x− x̃lk) (35)

4) Resample:
i The expected number of targets T̂k|k is computed as:

T̂k|k = round

( Lk∑
l=1

w̃lk

)
(36)

where round(·) denotes round to the nearest integer.
ii Lk = ρT̂k|k particles are resampled (ρ corresponds to the

number of particles per existing target) according to the
modified systematic resampling technique below:
- Find all non contributing weights w̄k from w̃k such that
w̄k ∈ w̃k and replace with $ where 0 < $ � 1

ρ . This
is to ensure that only weights belonging to corrected
particles are chosen for resampling.

- Then compute cumulative probability c1 = 0, cl =

cl−1 + (
w̃l

k

T̂k|k
), l = 2, ..., Lk + Jk

- Draw a starting point u1 from U [0, 1
Lk

]
- For j = 1, ..., Lk,

uj = u1 + L−1
k (j − 1)

while uj > ci, l = l + 1. End while

xjk = x̃jk

wjk =
1

Lk

iii) Rescale (multiply) the weights by T̂k|k to get{
xlk,

T̂k|k
Lk

}Lk

l=1
where wlk =

T̂k|k
Lk

therefore{
xlk,

T̂k|k
Lk

}Lk

l=1
≡
{

xlk, wlk
}Lk

l=1
.

The pseudo code of the proposed KG-SMC-PHD filter is
described in Algorithm 2.

VI. SIMULATION RESULTS

In this section, the non-linear tracking performance of the
proposed KG-SMC-PHD filter is demonstrated.

A. Simulation context and filter parameters

We consider a two-dimensional non-linear range and bear-
ing scenario with unknown and varying number of targets
observed over a cluttered region. A total of 10 targets enter
and exit the scene at various times throughout the simulation

Algorithm 1 The Standard SMC-PHD Filter

1: at k=0, Initialize
[{

xlk, wlk
}Lk

l=1

]
.

2: for k = 1 : K do
3: Prediction
4: for l = 1 : Lk do
5: Draw samples for existing targets, x̃lk|k−1 ∼

qk(·|x̃lk−1,Zk),
. and compute weights, w̃lk|k−1 =
φk|k−1(x̃lk,x̃

l
k−1)

qk(x̃k|k−1|x̃lk−1,Zk)
wlk−1

6: end for
7: for l = Lk + 1 : Lk do
8: Draw samples for newborn targets, x̃lk|k−1 ∼

pk(·|Zk),
. and compute weights, w̃lk|k−1 =

γk(x̃lk)
Jkpk(x̃k|k−1|Zk)

9: end for
10: Update
11: for z ∈ Zk do
12: Ck(z) =

∑Lk

l=1 pD(x̃lk|k−1)g(z|x̃lk|k−1)w̃lk|k−1

13: for l = 1 : Lk do
14: update weight,

w̃ik =

[
ν +

∑
z∈Zk

pD(x̃lk|k−1)g(z|x̃lk|k−1)

κk(z)+Ck(z)

]
w̃lk|k−1

. ν = 1− pD(x̃ik|k−1)
15: end for
16: end for
17: Resample
18: Compute estimated number of targets, T̂k|k =

round
(∑Lk

l=1 w̃
l
k

)
19: Resample Lk particles using resampling techniques

such as in [34].

20: return
{

x̃lk|k−1,
T̂k|k
Lk

}Lk

l=1
≡
{

xlk, wlk
}Lk

l=1

21: end for

scenario. The observation region is a half disc of radius 2000m.
A plot of the ground truth (true trajectories) of the targets
along with the start and end positions of each track is shown
in Fig. 3. The start and end positions are indicated by a circle
and a triangle respectively. The non-linear target dynamics are
described by a nearly constant turn state model driven by white
noise acceleration

x̂k = F(ωk−1)x̂k−1 + Γvk (37)
ωk = ωk−1 + δtuk−1 (38)

where

F(ω) =


1 sinωδt

ω 0 − 1−cosωδt
ω

0 cosωδt 0 −sinωδt
0 1−cosωδt

ω 1 sinωδt
ω

0 sinωδt 0 cosωδt

 , Γ =


δt2

2 0
δt 0

0 δt2

2
0 δt

 .
F(ω) is the transition matrix for nearly constant turn rate, δt
denotes the sample period which is assumed to be 1s in this
simulation and Γ denotes the input matrix. The target state
vector xk = [x̂k, ωk]T̄ comprises the planar positions and
velocities given as x̂k = [xk, ẋx, yk, ẏk]T̄ along with turn rate
ωk. The variables (xk, yk) represent the position of the target
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Algorithm 2 KG-SMC-PHD filter

1: Initialization
2: Initialize filter parameters as in Sec. V-C1.
3: Prediction
4: Follow the prediction technique as in Sec. V-C2.
5: Update
6: Obtain clutter free measurement Żk at time k using (20)

and (21) by computing:
7: for all zik ∈ Zk and zjk−1 ∈ Zk−1 do
8: if (zik − zjk−1)TΣ−1(zik − zjk−1) ≤ d̃ then
9: żnk = zik

10: end if
11: end for
12: Żk =

⋃ns

n=1 {ż
n
k}

13: for all żnk ∈ Żk do
14: for l = 1 : Lk do
15: if g(żnk |x̃

l
k|k−1) ≥ τ then

16: x̃lk = x̃lk|k−1 +Kk(żnk − f(x̃lk|k−1))
17: Compute (32)
18: else
19: x̃lk = x̃lk|k−1

20: Only compute (32)
21: end if
22: Compute (34)
23: end for
24: end for
25: Resample
26: Find all non contributing weights w̄k from w̃k such that

w̄k ∈ w̃k and replace with $ where 0 < $ � 1
ρ and

resample as in Sec. V-C4. This is to ensure that only
weights belonging to corrected particles are chosen for
resampling.

and (ẋk, ẏk) represent the velocities. vk = N (·, 0, σ2
vI) and

uk−1 = N (·, 0, σ2
uI) with σv = 10 m/s2 and σu = π/180

rad/s. [·]T̄ denotes transpose operation.
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Figure 3: True target trajectories in the range-bearing plane with
start/end positions for each track shown with ©/4.

Targets can appear and disappear in the tracking
volume at any time. Target spawning is not considered
in this example. Each persistent target has a probability
of survival, pS(xk−1) = 0.9. The target birth process
is modelled as a Poisson point process with intensity
function γk(xk) = 0.3N (·, x́1, Q́) + 0.3N (·, x́2, Q́) +
0.3N (·, x́3, Q́) + 0.3N (·, x́4, Q́) + 0.3N (·, x́5, Q́), where

x́1 = [−1000, 0, 200, 0]T̄ , x́2 = [1000, 0, 1500, 0]T̄ ,
x́3 = [0, 0, 1500, 0]T̄ , x́4 = [500, 0, 500, 0]T̄ ,
x́5 = [1500, 0, 1000, 0]T̄ and covariance matrix,
Q́ = diag([200, 50, 200, 50, 6(π/180)]T̄ ).

The target-originated measurements are given by the non-
linear model

zk =

[
rk
θk

]
+ nk (39)

with
rk =

∥∥∥∥[1 0 0 0
0 0 1 0

]
xk −

[
xs
ys

]∥∥∥∥ , (40)

and

θk = arctan

(
[0 0 1 0]xk + ys
[1 0 0 0]xk + xs

)
(41)

where the measurement noise, nk is a zero-mean Gaussian
white noise vector with covariance matrix R =diag([σ2

r , σ
2
θ ])

with σr = 10m and σθ = 0.5 rad. The measurement
sensor’s location, [xs, ys]

T is at the origin. Clutter is uniformly
distributed over the observation region of [0, π] × [0, 2000]
with a Poisson point process on the clutter region with a
uniform intensity function κk = 3.2 × 10−3(radm)−1 (giving
an average of λ = 20 clutter points per scan). The total number
of particles at time k is

Lk = Lk + Jk, and Lk ∼= ρT̂k|k (42)

where T̂k|k denotes the expected number of targets, Lk is the
number of particles for all persistent tracks, ρ denotes number
of particles per persistent track and Jk = ρ

5 is the number
of samples per new born track. The probability of detection
pD(xk) is 0.9.

To analyse the estimation error of the filter, we use the
optimal subpattern assignment (OSPA) proposed in [37] and
computation time (CT). The OSPA distance metric enables us
to compare multi-target filtering algorithms [37]. The OSPA
distance between two arbitrary finite sets, i.e., the state set A
= {a1, ..., am} and the ground truth state set B = {b1, ...,bn}
is

d̄
(ć)
ṕ (A,B) =


0 if ḿ = ń = 0

Θ(A,B) if ḿ ≤ ń
d(ć)(A,B) if ḿ > ń

(43)

where

Θ(A,B) ,

(
1

ń

(
min
π∈

∏
ń

ḿ∑
i=1

d(ć)(ai, bπ(i))
ṕ + ćṕ(ń− ḿ)

)) 1
ṕ

(44)∏
ń is the set of permutations with length ḿ on the set
{1, ..., ń}. d(ć)(a,b) := min{ć, ‖ a − b ‖} is the distance
between single target vectors a and b. ć > 0 is the cut-off
parameter and ṕ ≥ 1 is a unit-less real number. We choose
parameters ć = 300 and ṕ = 1. The cut-off parameter ć
determines the relative weighting of the penalties assigned
to localization and cardinality errors, and ṕ determines the
sensitivity to outliers. For more details on the OSPA metric,
the reader is referred to [37].



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2017.2690530, IEEE
Transactions on Aerospace and Electronic Systems

9

B. Effect of proposal distributions

Here, different importance sampling functions, TP, EPF and
UPF of Sec. III are applied to the SMC-PHD and KG-SMC-
PHD filters to observe the effects of each choice on filter
performance. The results obtained are shown in Tables I and II.
The number of particles used in each of the two clutter cases is
ρ = 1000. Tables I and II show results averaged over 1000 MC
trials for λ = 20 and λ = 30 with measurement set partition
respectively. Overall, using the UPF as a proposal distribution
gives better performance for both filters in terms of low OSPA
distance but this method incurs the most computational load.
This is primarily due to the generation of sigma points for
each particle and the computation that follows during the
unscented transform process. Using both EPF and UPF to
construct the proposal distributions give better performance in
terms of yielding lower OSPA, when compared to using TP.
This is because both EPF and UPF helps to place generated
samples ‘under’ measurements as soon as measurements be-
come available. However, the improvement of using the UPF
over EPF is not too significant in terms of OSPA distance.
As a result, the EPF will be used as the importance sampling
function for both filters in our subsequent discussion.

Table I: Filter performance comparison in terms of OSPA distance,
computation time (CT) and PD for λ = 20 and ρ = 1000 with
measurement partition.

Filter PD OSPA (m) CT (s)

SMC-PHD
TP (from Sec. III-B1) 94.85 9.50

EPF (from Sec. III-B2) 83.17 11.67
UPF (from Sec. III-B3) 81.72 12.85

KG-SMC-PHD
TP (from Sec. III-B1) 22.19 10.43

EPF (from Sec. III-B2) 19.64 13.40
UPF (from Sec. III-B3) 18.69 14.51

Table II: Filter performance comparison in terms of OSPA distance,
CT and PD for λ = 30 and ρ = 1000 with measurement partition.

Filter PD OSPA (m) CT (s)

SMC-PHD
TP (from Sec. III-B1) 111.76 10.63

EPF (from Sec. III-B2) 105.46 12.15
UPF (from Sec. III-B3) 103.78 13.40

KG-SMC-PHD
TP (from Sec. III-B1) 31.56 11.77

EPF (from Sec. III-B2) 21.70 14.90
UPF (from Sec. III-B3) 20.15 15.76

C. Varying number of particles

For this case, the EPF was chosen as the importance
sampling density for both filters. This is because as discussed
earlier, using the EPF gives a lower CT. Tables III and IV
show results of filter performance in terms of number of
particles, OSPA distance and CT obtained for both filters
averaged over 1000 MC simulations for different ρ values
when clutter is present with measurement partition. It can be
observed from both tables that the performance of the SMC-
PHD filter appears to deteriorate further with more position
and cardinality mismatch (high OSPA distance) as clutter

density increases while the proposed filter is seen to maintain
a consistent performance with improved accuracy in position
and cardinality (low OSPA distance). The CT of the proposed
filter however is seen to be higher than the SMC-PHD filter
for a given ρ value. This is due to the particle state correction
step of the proposed filter. However, the number of particles
required in terms of performance level (i.e. low OSPA) by the
proposed filter is far less when compared to the SMC-PHD
filter making the proposed filter more efficient.

Table III: Filter performance in terms of number of particles, OSPA
distance and CT for λ = 20 with measurement partition.

Filter ρ OSPA (m) CT (s)

SMC-PHD

50 149.31 0.42
100 100.36 0.86
500 86.38 5.19
1000 83.17 11.67

KG-SMC-PHD

50 44.70 0.72
100 33.29 1.26
500 22.11 6.29
1000 19.64 13.40

Table IV: Filter performance in terms of number of particles, OSPA
distance and CT for λ = 30 with measurement partition.

Filter ρ OSPA (m) CT (s)

SMC-PHD

50 154.82 0.47
100 117.88 0.93
500 106.19 5.99
1000 105.46 12.15

KG-SMC-PHD

50 47.15 0.87
100 39.30 1.36
500 25.79 7.02
1000 21.70 14.90
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Figure 4: True and KG-SMC-PHD filter cardinality estimates of
targets time averaged over 1000 MC trials with ρ = 500 particles
per existing track.

Fig. 4 depicts the average of 1000 MC runs of the true and
estimated number of targets for ρ = 500 with average number
of clutter per scan, λ = 20. This result shows that the KG-
SMC-PHD filter is able to estimate properly the number of
targets under such high clutter condition. Fig. 5 shows the x
and y components (versus time) of the true trajectories and
the KG-SMC-PHD filter estimates. The plots indicate that the
proposed filter with ρ = 500 particles per existing track is
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Figure 5: x and y components (versus time) of the true target
trajectories and the KG-SMC-PHD filter estimates for ρ = 500
particles per existing track.

able to properly track all targets and in addition to being
able to identify all target births and deaths while successfully
accommodating non-linearities under high clutter condition.

D. Other filters

To further demonstrate the performance of the KG-SMC-
PHD filter, the proposed filter was evaluated along with the
GM-PHD filter of [16], the GM-USMC-PHD filter of [21]
and the AP-PHD filter in [23] in addition to the standard
SMC-PHD filter. The evaluation is in terms of OSPA distance
and CT. For this comparison, the EPF was used to construct
the importance sampling function for both the KG-SMC-PHD
filter and the SMC-PHD filter. The KG-SMC-PHD filter was
evaluated at 500 and 500

5 particles for existing and newborn
tracks respectively while 1000 and 1000

5 particles for existing
and newborn tracks respectively were used for the SMC-PHD
filter.

The GM-PHD filter was implemented with an extended
Kalman filter (EKF). The maximum number of Guassian terms
was set to 100, with the merging (Tm) and pruning threshold
(Tp) set at 10m and 10−3 respectively. A Gaussian component
is considered target-originated if its weight is above 0.4. The
estimated number of targets is given by the sum of weights of
the Gaussian mixture.

In the AP-PHD filter implementation, 1000 particles were
used per existing track and 1000

5 particles were used for the
newborn track. Each new track initialization is measurement
driven and each current measurement is associated with the
corresponding highest bidder if the bid is greater than 0.4.
The auxiliary importance sampling [23] process starts with
the selection of the measurements that are well described by
the targets states extracted from the estimated PHD and this
is achieved using the auction algorithm. Both auctioning and
state extraction is done as in [23].

The GM-USMC-PHD filter uses a Gaussian mixture to
approximate the IS function. The GM implementation of
the GM-USMC-PHD filter is similar to the GM-PHD filter
in terms of number of Gaussian components, and pruning
and merging thresholds. The number of samples per GM
component is set to 1000. The newborn track initialization,

resampling and state extraction steps follow [21] and the
mean and the covariance of Gaussian is computed using the
unscented information filter [3].

Tables V and VI show filter performance results aver-
aged over 1000 MC runs with and without measurement set
partition respectively. In both tables, measurement partition
was applied to the KG-SMC-PHD filter. The effect of the
measurement partitioning process can be seen in Table V as the
OSPA distance improved for the other filters. This is because
measurements due to clutter were discarded and not used in
the weight update stages of the filters. Notice also there is
a slight increase in CT from Table V as compared to VI.
This reflects the added CT during the partitioning process.
Overall, under high clutter, the KG-SMC-PHD filter gives a
better performance as it maintains low OSPA2 distance. This
is mainly due to our particle state correction technique. Also,
in Table V, it can be observed that with just 500 particles per
existing track, the KG-SMC-PHD filter outperformed all other
filters by having lower OSPA distance.

Figure 6 plots the time averaged OSPA distances for all
the five filters over 1000 MC trials with measurement set
partition. Here, 1000 particles were used per existing track
for the KG-SMC-PHD filter while the parameters of the other
four filters were maintained. As shown in Fig. 6, high values
of OSPA distance occurs when new targets are born around
time indices k = 10, 20, 40 and 60. It is observed from the
Figure that the SMC-PHD filter gave the least performance
while the proposed filter shows superior performance in terms
of average OSPA distance per target when compared to the
other filters under high clutter condition. The proposed filter
achieved this good performance level due to our selective
particle correction technique. Fig. 6 further suggests that for
our simulation example, there isn’t a significant difference
performance wise between the GM-PHD, GM-USMC-PHD
and the AP-PHD filters as all three filters gave similar level
of performance in terms of average miss-distance per target.

Table V: Filter performance comparison in terms of OSPA distance
and CT for λ = 20 with measurement set partition.

Filter OSPA (m) CT (s)
KG-SMC-PHD 22.11 6.29

SMC-PHD 83.17 11.67
GM-PHD 38.05 2.59

GM-USMC-PHD 35.38 13.58
AP-PHD 33.19 16.99

E. Overall Evaluation

We now discuss the filter limitations in terms of OSPA
distance and number of clutter points, number of particles
and CT as well as general filter performance. Fig. 7 plots
time averaged 1000 MC trials of the OSPA distance for the
SMC-PHD filter and the KG-SMC-PHD filter against clutter
intensities from κk = 0 (radm)−1 to κk = 8× 10−3(radm)−1,
i.e., from λ = 0 to λ = 50. Both filters were implemented with

2The OSPA [37] metric measures the combination of both localization and
cardinality distance.



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAES.2017.2690530, IEEE
Transactions on Aerospace and Electronic Systems

11

Table VI: Filter performance comparison in terms of OSPA distance
and CT for different filters for λ = 20 without measurement set
partition.

Filter OSPA (m) CT (s)
KG-SMC-PHD 22.11 6.29

SMC-PHD 94.66 10.11
GM-PHD 44.93 1.90

GM-USMC-PHD 47.23 12.25
AP-PHD 39.01 14.22
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Figure 6: OSPA distance averaged over 1000 MC runs for clutter rate
of 20 Poisson clutter (λ = 20) per scan (ć = 300, ṕ = 1)

measurement set partition with ρ = 1000. It is observed that
the miss-distance increases for both filters as clutter intensity
increases. However, this increase in OSPA distance is more
significant in the SMC-PHD filter implementation compared to
the proposed filter. Fig. 7 clearly shows that the proposed filter
outperforms the SMC-PHD filter as it maintains an average
OSPA distance of less than 51m up to clutter intensity of
κk = 8 × 10−3(radm)−1 due to the particle state correction
technique in our approach while the SMC-PHD filter starts
to exhibit breakdown from about κk = 6.4 × 10−3(radm)−1

(i.e., λ = 40). For this simulation example, the proposed
filter performed well up to λ = 60 and started exhibiting
breakdown at about λ = 65. Note that this time-averaging
result is intended as a guide to provide a broad indication of
the performance of the filter and can vary depending on the
application scenario.
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Figure 7: Averaged OSPA distances versus varying clutter intensity
over 1000 MC trials.

Fig. 8 shows the effect of the choice of number of particles
on OSPA distance and CT. As expected, on the right side of the
y-axis, the CT increases for both filters as number of particles

increases. It is also observed that for the same number of
particles, the CT of the SMC-PHD filter is always lower when
compared to the proposed approach and the difference in CT
for both filters increases with increase in number of particles.
The extra computation load for the proposed filter is due to the
extra particle state correction step of our approach. However,
on the left side of the y-axis, the miss-distance of the proposed
technique is seen to be significantly lower compared to the
SMC-PHD filter. Although the performance of the SMC-PHD
filter is seen to improve with increase in number of particles,
the filter did not achieve the accuracy level of the proposed
filter even with 10000 particles. In terms of miss-distance,
Fig. 8 also suggests that the proposed filter is more efficient
as only few a particles (less than 1000) are required to achieve
an OSPA distance of less than 50m while the SMC-PHD filter
requires about 10000 particles.
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Figure 8: KG-SMC-PHD and SMC-PHD filter performance evalua-
tion in terms of OSPA distance and CT versus varying number of
particles time averaged over 1000 MC trials for λ = 20.

Comparing the contributions of this paper, firstly, a parti-
tioning technique was used on consecutive measurement sets
to separate existing targets from clutter and new born targets.
This process primarily serves the function of reducing the
number candidate measurements to use in the weight update
stage in the presence of clutter. A reduced computational
burden is thus achieved as the unnecessary computation on
measurements due to clutter is avoided during weight update.
Secondly, the Kalman-gain as a correction technique seeks to
achieve minimal variance and thereby gives better accuracy
(in approximating the posterior). As a result, fewer particles
are required to populate regions of interest. Furthermore, the
effect of the partitioning process is not apparent in the no
clutter to partition. However, the correction step is needed with
or without clutter. As a whole, the use of the Kalman-gain
correction method is the contribution which gives the main
improvement.

VII. CONCLUSION

We have proposed a new and efficient SMC-PHD filter
for multi-target tracking which seeks to minimize the MSE
between received and estimated measurements at any given
time. This was achieved by first partitioning the measure-
ment set into target-originated measurements and clutter for
weight computation and applying the Kalman-gain to selected
particles for state correction. The tracking performance was
improved because, i) only target-originated measurements
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were used for weight computation and ii) the MSE at each
time step was reduced resulting in fewer number of particles
for state estimation. Simulation results demonstrate that our
algorithm outperforms the standard SMC-PHD filter as well
as other alternative implementations of the PHD filter. In our
future work, the proposed filter will be extended to track
manoeuvring and closely spaced targets and applied to other
target tracking applications including that in a MIMO radar
environment.
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