University Defence Research Collaboration (UDRC)
Signal Processing in a Networked Battlespace

UDRC Summer School

Industry Day
27" June 2014

LSSC WP5: Pls: Stephan Weiss, lan Proudler (LU), RA: Keith
Thompson, PhD: Jamie Corr

&\ MathWorks:

..
> €
Universityof N

Strathclyde
Eng

ngineering

d S tl Engineering and Physical Sciences
Research Council

University Defence Research Collaboration (UDRC)
Signal Processing in a Networked Battlespace

Overview

A

Universityof N&

Strathclyde

Engineering

&\ MathWorks

1) LSSC WP5 - Low Complexity Algorithms and
Efficient Implementation

RA: Keith Thompson
‘Outline of Mathworks Tools used in LSSC WP5’

2) Mathworks UK (Cambridge)
Marc Willerton, Applications Engineer
Part of UDRC 1 — Imperial College

‘Efficient System Level Simulations and Model Based
Design using MATLAB and Simulink’

University Defence Research Collaboration (UDRC)
Signal Processing in a Networked Battlespace

LSSC WP5 links with Mathworks

Original LSSC WP5 industrial partner Steepest Ascent acquired by
Mathworks in Autumn 2013.

Formed ‘Mathworks Glasgow’ with strong links with University of
Strathclyde (Prof. Robert Stewart, CIDCOM research group)

Wireless Communications Application Development - LTE System
Toolbox™

Hardware Development on FPGAs, Zync SoC, industry links with
Xilinx

PhD students working between Strathclyde and Mathworks
Desire to build further links with Mathworks Cambridge

University Defence Research Collaboration (UDRC)

Signal Processing in a Networked Battlespace

LSSC WP5 Overview

WP5.1) - Low Complexity Algorithms and Distributed Processing
WP5.2) - Hardware Realisations

WP5 is to support development of hardware and efficient
methods across all WP1 — WP4,

Relates to [dstl] Challenge 29 - "Reducing Size, Weight and Power
Requirements Through Efficient Processing"

Objective - Reduce “Implementation Gap” of algorithms
developed in LSSC

University Defence Research Collaboration (UDRC)

Signal Processing in a Networked Battlespace

WPS 1) Low Complexity Algorithms

Sub-space Techniques - Polynomial Eigen-value Decomposition
(PEVD) used in Source Separation applications

Recent work (SMD, MSME-SMD) improves performance of
iterative methods to diagonalise space-time covariance matrix.

New methods transfer more energy per step, further benefits of
reducing filter-bank requirements, and improved spectral

maJorlsatlon But more computatlonally demandmgI

Shadl)/ m]

C Pugflpld s ml

1m

a0 £l &0 o n 5 n 15
iteration index 1 paraunitary filter bank order

(1) Convergence Plot of Diagonalisation (2) Diagonalisation vs. Filter-bank Order

University Defence Research Collaboration (UDRC)
Signal Processing in a Networked Battlespace

Improving Alg. Efficiency in Matlab

Building a ‘PEVD Toolbox’ of Optimised Matlab to be made
available to consortium - include different algorithms, examples

Optimise Matlab code with ‘Profiler’ - provides execution
speed breakdown of functions called, useful to identify
‘bottlenecks’ (e.g. vectorise code, preallocate matrices,
Column-wise processing etc.)

Re-factor code into Entry-Point function, Test scripts
Accelerate Matlab code with MEX compiler

Accelerate using Parallel Processing Toolbox (identify
parallelisation) — can use multicore CPU, GPU, local PC network

Generate Documentation from Matlab ‘M2HTML:
http://www.artefact.tk/software/matlab/m2html/

http://www.artefact.tk/software/matlab/m2html/

University Defence Research Collaboration (UDRC)
Signal Processing in a Networked Battlespace

WP5.2) Hardware Realisations

View MATLAB algorithm and Toolbox Development as the
starting point (Profile, Refactor Code, Alg. Acceleration)

Further Stages in MATLAB:

Simulink — Useful for ‘System Level’ Design to modify MATLAB
code into ‘User-Defined Function Blocks’, e.g. convert
algorithm into serialized designs for analysis of large datasets

Matlab Coder — Generate C code for DSP, SoC Hardware

HDL Coder — Generate HDL code (VHDL/Verilog) for FPGA
Hardware

Fixed-Point Designer — Optimise word-lengths for non-floating
point processors, FPGAs

CUDA (C-based) for processing on GPU Hardware

University Defence Research Collaboration (UDRC)

Signal Processing in a Networked Battlespace

WP5.2) Hardware Realisations

General WP35 Strateqgy:

[Algorithm

—

(Matlab)

'

Optimization

(Profiler, MEX)
|

0

P N o —

Matlab Coder
Generate C/C++

R — L 4

I

v

(= o
HDL Fixed-Point
Coder Designer
Xilinx ISE/ HDL
Vivado Verifier
A /
FPGA

¥

hu

_‘\
Parallel Processing
Toolbox
Nvidia CUDA/
OpenCL
/
GPU

o

Build Demonstrator

F e !

L

University Defence Research Collaboration (UDRC)
Signal Processing in a Networked Battlespace

WP5.2) Code Generation

Code Generation Advantage - obviously don’t have to write
code from scratch!

More hardware-friendly algorithm remains in Matlab
development environment, thus easier to gauge performance
(use visualisation tools) and reference against original
algorithm (keeps designer in the loop). Note: ‘Matlab Engine’
can be called from Visual Studio C++ to use Matlab
Visualisation tools.

But!:

Can’t just press ‘Build’! — require further optimisation and
manual configuration of C/HDL, targeted at specific hardware

Some Matlab Functions not supported — find alternative
libraries, write C/HDL code.

University Defence Research Collaboration (UDRC)

Signal Processing in a Networked Battlespace

WP5.2) Further Optimisations

1) Execution Speed Optimisation

Inline functions, loop fusion, constant folding, loop un-rolling, remove
unused execution paths, disable support for non-finites, overflows etc.

2) Memory Usage Optimisation
Minimise Dynamic Memory Allocation, set thresholds or upper bounds,
manage data types (Fixed Point Conversion), remove unused execution

paths

3) Going Further:
Replace Run-time Computation — Look-up Tables

Use methods for Fast Evaluation of Elementary Functions — ‘Shift-and Add’
algorithms (CORDIC, BKM), Polynomial Approximations etc.

Use ‘OpenMP’ API for Parallelization, Message Passing Interface (MPI) for
distributed processing

University Defence Research Collaboration (UDRC)

Signal Processing in a Networked Battlespace

WP5 Summary

Develop optimise Matlab Toolboxes

Build capability to implement algorithms onto variety of
hardware targets — FPGA, DSPs, GPUs, SoC

Hardware Laboratory

Current Implementation work:
Implementation of PEVD Methods on FPGA

Implementation of SAR Change Detection algorithm (from
WP4) on Texas Instruments DSP board.

Grow further links with Mathworks and Texas Instruments

