
Learning a Secondary Source From Compressive
Measurements for Adaptive Projection Design

Fraser K. Coutts, John Thompson, and Bernard Mulgrew
Institute for Digital Communications, University of Edinburgh, Edinburgh, EH9 3FG, UK

email: fraser.coutts@ed.ac.uk

Abstract—Recent work has established that the gradient of
the mutual information (MI) in Gaussian channels with input
noise can be used for projection design in a compressive sensing
(CS) scenario with two independent, Gaussian mixture (GM)-
distributed inputs. The resulting CS projection matrices have
been shown to be capable of controlling the input-output MI
terms for the two inputs. One downside of such information-
theoretic strategies is their reliance on access to a priori knowl-
edge of the input source statistics. In this paper, we assume that
the GM distribution of a primary input is known and that the
GM distribution of a secondary input is unknown. We derive a
methodology for the online training of the distribution of the
secondary input via compressive measurements and illustrate
that once the distribution of this secondary source is known,
we can use projection design to control the input-output MI of
the system. We demonstrate through simulations the various per-
formance trade-offs that exist within the proposed methodology.

I. INTRODUCTION

Dimensionality reduction methods based on linear ran-
dom projections — i.e., compressive sensing [1] (CS) —
have gained significant attention recently; however, random
projections may not be the best choice if we know the
statistical properties of the source signal [2]. By employing
an information-theoretic approach, one can design a linear
projection such that the mutual information (MI) between
the projected signal and the source signal or its class label
is maximised [3], [4]. Intuitively, as the MI increases, the
recovery of the source signal or label information improves;
indeed, the Bayes classification error is bounded by the MI [3].

The distribution of a non-Gaussian signal can be approx-
imated by a mixture of several Gaussians [5]. Importantly,
increasing the number of Gaussians used enables the ap-
proximation of general distributions to an arbitrary level of
accuracy [6]. Such Gaussian mixture models (GMMs) have
been shown to be effective [7] and in some cases superior
to sparse signal models in CS scenarios [5]. Recent work [8]
utilises MI maximisation within a CS framework to optimise
information throughput for a Gaussian mixture (GM) source
signal in the presence of GM input noise. In [9], this frame-
work is extended to complex signal models and applied to real
radar data containing micro-Doppler (m-D) signatures [10];
subsequent results highlight that the methodology is able to
assist in the joint classification of the m-D signatures of
a primary, always-present source and a secondary, fleeting
source. By modelling two independent inputs via GMMs and
treating each as a source of structured input noise for the other,
both [8] and [9] employ an iterative gradient-ascent approach
to design a linear projection matrix capable of controlling the

information throughput for each source. However, these works
rely on a priori knowledge of the source statistics and are
therefore limited to the case of stationary sources.

In [11], Yang et al. investigate a scenario in which a desired
source in a CS scenario without input noise has an unknown
GM distribution. They seek to learn the distribution using only
knowledge of the compressive measurements, the projection
matrices involved, and the parameters of the Gaussian mea-
surement noise. Their implementation is iterative and related
to the expectation-maximisation (EM) algorithm [12].

In this paper, we consider the compressive measurement
of two GM-distributed inputs; these perceive each other as
additive noise and experience the same linear projection.
We assume that the GM distribution of the primary input
is known and that the GM distribution of the secondary
input is unknown. We extend the work of [11] and derive
a novel methodology for the training of the GM distribution
of the secondary input from compressive measurements and
illustrate that once the distribution of this secondary source is
known, we can use the projection design techniques of [8],
[9] to control the input-output MI of the system. For this
demonstration, we apply the developed adaptive projection
design algorithm to real radar data containing two coincident
sources of m-D information. Using synthetic data, we also
show the various performance trade-offs that exist within the
proposed distribution learning methodology.

Below, Sec. II establishes the signal model considered in this
paper. In Sec. III, we summarise the optimisation framework
from [8], [9] that we use for projection design. In Sec. IV, we
introduce the theory and algorithm required to learn the GM
distribution of a secondary source from compressive measure-
ments. Sec. V then briefly explains how these projection design
and source learning procedures fit together within an adaptive
algorithm. Sec. VI provides a practical demonstration of the
proposed approach, and conclusions are drawn in Sec. VII.

Notation: Straight bold lowercase and uppercase symbols
denote vectors and matrices, respectively, and In is an n×n
identity matrix. Italicised uppercase letters such as Y and C
denote random vectors and variables; their realisations are
lowercase equivalents, such as y and c. Operators {·}H, {·}∗,
E[·], ‖·‖1, and tr{·} evaluate the Hermitian transpose, complex
conjugate, expectation, `1-norm, and trace, respectively.

II. SIGNAL MODEL

We consider the following complex-valued signal model
with input noise:

Y = Φ(X + N) + W . (1)
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Following the CS protocol, we have measurements Y ∈ Cm
obtained from input signals X ∈ Cn and N ∈ Cn via a
compressive projection matrix Φ ∈ Cm×n, with m � n.
We opt for X and N to have a GM distribution for two
reasons. Firstly, GMs are known to be effective in statistical
CS scenarios [5], [7]. Secondly, a GM-distributed X permits a
natural extension of the work of [11] to the case of estimating
N given knowledge of Y, Φ, and the distributions of X and
the measurement noise W.

The signal N, which is independent of X and — when
attempting to recover the features of X — can be considered
as input noise, is distributed according to a complex GM; i.e.,

N ∼ pn(n) =
∑Jn

g=1
rg
∑K

k=1
sg,k CN (n;µg,k,Γg,k) , (2)

with mean vectors µg,k ∈ Cn, covariance matrices
Γg,k ∈ Cn×n, and weights sg,k such that

∑K
k=1 sg,k = 1.

An instance of N is generated by one of Jn classes, which
are each characterised by a GM with K components. The
classes g = 1, . . . , Jn occur with probability rg such that∑Jn
g=1 rg = 1. The random vector X represents a signal of

interest and is distributed as

X ∼ px(x) =
∑Jx

c=1
zc
∑O

o=1
πc,o CN (x;χc,o,Ωc,o) . (3)

That is, the probability distributions of classes c = 1, . . . , Jx
of X are each characterised by a GM with O components.
The vector W ∼ CN (w;ν,Λ) represents additive complex
Gaussian noise with mean ν∈Cm and covariance Λ∈Cm×m.

III. OPTIMISATION FRAMEWORK

Assume, for now, that — in addition to the distribution
of our primary, always present source X — we have ac-
cess to a predefined GM distribution for N, which repre-
sents a secondary source that may or may not be present
in the system at the time of measurement. As such, in
the distribution for N, the Jnth class is characterised as
pn|g(n|g = Jn) =

∑K
k=1(1/K) CN (0, σIn) for some arbitrar-

ily small σ; i.e., the value of N for this class is close to zero to
represent the scenario in which the secondary source is absent.

We seek the matrix Φ that maximises the objective function

F (Φ,β)=β1I(X;Y)+β2I(C;Y)+β3I(N;Y)+β4I(G;Y), (4)

where β = [β1, β2, β3, β4] ∈ R4 controls the relative im-
portance of the Shannon MI [13] terms and C and G are
random variables that represent the classes of X and N. For
our purposes, we maintain ‖β‖1 = 1.

We use the iterative gradient ascent algorithm of [8], [9]
to identify the matrix Φ that locally maximises F (Φ,β)
by setting Φ←Φ+δ∇ΦF (Φ,β) and normalising such that
tr{ΦΦH}=m at each iteration. The step size δ > 0 controls
the rate of change of Φ. When computing ∇ΦF (Φ,β), we
evaluate the gradient terms given in [8], [9] via Monte Carlo
(MC) integration and utilise the Bayesian inference model
detailed in [9].

IV. LEARNING THE SECONDARY SOURCE DISTRIBUTION

Here, we extend the work of [11] such that we are able to
learn the distribution of N from compressive measurements.

We assume that our compressive measurements have been
captured using a block of data that contains instances of only
one class of N. Therefore, we omit the class parameter g to
simplify notation. We first rewrite (1) as Y = ΦN+ Ŵ, where

Ŵ ∼
∑D

d=1
τd CN (ŵ;νd,Λd) , (5)

τd = zc′πc′,o′ , νd=Φχc′,o′+ν, Λd=ΦΩc′,o′Φ
H+Λ ,

D = JxO , c′ =
⌈
d
O

⌉
, o′=((d−1)modO)+1.

We seek the system parameters θ that maximise the log of
the marginal probability; i.e., the incomplete log-likelihood:

`inco(θ|y) = log py|θ(y|θ) = log
∑
k,d

∫
py,n,k,d|θ(y,n, k, d|θ) dn.

Since the log of a sum is not easily separable for maximisation
purposes, we take a two-stage EM approach [12] and utilise
the complete log-likelihood:

`co(θ|y,n, k, d) = log py,n,k,d|θ(y,n, k, d|θ) . (6)

Specifically, we consider the expected value of `co(θ|y,n, k, d)
under the posterior distribution of the latent variables (n, k, d).
In the first stage of iteration (t + 1), we use the previous
parameters θ(t) to find the posterior distribution of the latent
variables given by pn,k,d|y,θ(n, k, d|y, θ(t)). We then use this
to find the expectation of the complete log-likelihood

`ex−co(θ|y, θ(t)) = E
n,k,d|y,θ(t)

[
log py,n,k,d|θ(y,n, k, d|θ)

]
with respect to this posterior. In the second stage, we determine
the new parameters θ(t+1) by maximizing `ex−co(θ|y, θ(t)):

θ(t+1) = argmax
θ

`ex−co(θ|y, θ(t)) . (7)

Fortunately, we can show that maximising this function actu-
ally maximises the incomplete log-likelihood. We can write

py|θ(y|θ) = py,n,k,d|θ(y,n, k, d|θ)/pn,k,d|y,θ(n, k, d|y, θ) . (8)

By taking the expectation of the log of both sides with respect
to pn,k,d|y,θ(n, k, d|y, θ(t)), we obtain

log py|θ(y|θ) = `ex−co(θ|y, θ(t)) + h(θ|y, θ(t)) , (9)

where h(θ|y, θ(t)) is a conditional entropy term. The above
holds for any θ, including θ = θ(t). That is,

log py|θ(y|θ(t)) = `ex−co(θ
(t)|y, θ(t)) + h(θ(t)|y, θ(t)) . (10)

Subtracting this from (9), we obtain

log py|θ(y|θ)−log py|θ(y|θ(t))=
`ex−co(θ|y,θ(t))+h(θ|y,θ(t))−`ex−co(θ(t)|y,θ(t))−h(θ(t)|y,θ(t)).
By Gibbs’ inequality [13], we know that for two probability
distributions p1(y) and p2(y), we have

−
∫
p1(y) log p1(y) dy ≤ −

∫
p1(y) log p2(y) dy , (11)

with equality only when p1(y) = p2(y). Thus, we have
h(θ|y, θ(t)) ≥ h(θ(t)|y, θ(t)) and

log py|θ(y|θ)− log py|θ(y|θ(t))
≥ `ex−co(θ|y, θ(t))− `ex−co(θ(t)|y, θ(t)) . (12)

That is, choosing θ such that `ex−co(θ|y, θ(t)) improves upon
`ex−co(θ

(t)|y, θ(t)) guarantees that the resulting improvement
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from log py|θ(y|θ(t)) to log py|θ(y|θ) is at least as large.
When evaluating the posterior distribution of the latent

variables, we utilise the following Bayesian inference model,
where we have omitted the reliance on θ(t) for brevity:

pk,d|y(k, d|y) =
sk τd py|k,d(y|k, d)

py(y)
, (13)

py|k,d(y|k, d) = CN (y;Φµk + νd,ΦΓkΦ
H + Λd) , (14)

pn|y,k,d(n|y, k, d) = CN (n; µ̃k,d,Ck,d) , (15)

Ck,d =
(
ΦHΛ−1d Φ + Γ−1k

)−1
, (16)

µ̃k,d = µk + Ck,dΦ
HΛ−1d (y−Φµk − νd) . (17)

In actuality, we learn the distribution using a set of samples

{yi = Φini + ŵi} , i = 1, . . . , Ns . (18)

Here, if we consider each Φi as the ‘window’ through which
we observe ni, having a unique projection matrix for each
sample allows us to more fully observe the characteristics of
the distribution of N. However, we will show later that this is
not always necessary. For our Ns measurements, we have

`ex−co(θ|θ(t))=
Ns∑
i=1

E
n,k,d|yi,θ(t)

[
log py,n,k,d|θ(yi,n, k, d|θ)

]
.

After a number of operations, we are able to expand this
expression to obtain (19). Here, C

(i)
k,d and µ̃

(i)
k,d are the per-

sample equivalents of (16) and (17), respectively, and we have
again omitted the reliance on θ(t). If we set the expressions
for the gradient of (19) with respect to sk, µk, and Γk to zero
— noting that

∑
k sk = 1 — we obtain

s
(t+1)
k =

∑Ns

i=1 pk|y(k|yi)∑Ns

i=1

∑K
k′=1 pk|y(k

′|yi)
=

∑Ns

i=1 pk|y(k|yi)
Ns

, (20)

µ
(t+1)
k =

∑Ns

i=1

∑D
d=1 pk,d|y(k, d|yi)µ̃

(i)
k,d∑Ns

i=1 pk|y(k|yi)
, (21)

Γ
(t+1)
k = (22)∑Ns

i=1

∑D
d=1 pk,d|y(k, d|yi)

[
(µ̃

(i)
k,d−µk)(µ̃

(i)
k,d−µk)H+C

(i)
k,d

]
∑Ns

i=1 pk|y(k|yi)
.

Thus, we are able to iteratively move towards param-
eters for N that better fit our data. The approach
ceases after a pre-determined number of iterations or if
`inco(θ

(t+1)|y)−`inco(θ(t)|y) falls below a specified threshold.

V. ADAPTIVE INFORMATION-THEORETIC ALGORITHM

We combine the pre-existing projection design methodology
of Sec. III with our proposed distribution learning approach.
A pseudocode representation of the resulting framework is
provided in Algorithm 1. The algorithm initialises with a
trained Φopt ∈Cmopt×n, which has been designed subject to
the objective function of (4) and some prior knowledge of the
system parameters θopt. If there is initially no knowledge of a
secondary source, N is considered absent with only one class
as defined in Sec. III.

The algorithm captures compressive samples at regular
intervals. If the average log-likelihood of the past Navg

compressive samples falls below a predefined threshold ζavg,
the algorithm begins a compressive sampling process using
random matrices ΦiCS

∈ Cm×n with elements drawn from
CN (0, 1). Each matrix ΦiCS

is reused Nrep times. If the num-
ber of consecutive samples with low average log-likelihood
exceeds a predefined minimum Nmin

s , up to Nmax
s of these

samples will be used to learn the GM distribution of a new
class of N. This learning process will occur according to the
iterative approach described in Sec. IV and will cease after
a predefined number of iterations or if the change in log-
likelihood across iterations falls below a predefined threshold.
When updating the current system parameters θ with the new
class of N, the class probabilities for N are updated to match
their likelihoods in the previous NT samples:

rg ←
1

NT

∑i

i′=i−NT+1
pg|y(g|yi′) . (23)

Here, NT is large and defined by the user beforehand. To avoid
the retraining of a class with very low likelihood in the future,
a threshold ξ can be placed on the class probabilities such that
if rg′ < ξ for some g′, we set rg′ = ξ and, for g 6= g′,

rg ← (1− ξ) rg ·
(∑

g 6=g′ rg
)−1

. (24)

Samples with an average log-likelihood above the threshold
are used for classification and signal reconstruction purposes
according to the inference model in [9]. If the number of
samples taken is a multiple of NT and the parameters have
changed since the last execution of the projection design step,
we redesign Φopt subject to the objective function of (4).

Note that, if desired, the random matrices ΦiCS
can be

of a different dimensionality to Φopt; i.e., we can have
mopt 6= m. Using a high m to generate random projections
will provide more information about the statistics of N during
the distribution training step; it might therefore be possible
to decrease the minimum number of random samples Nmin

s

that are required to obtain a good estimate of the distribution.
However, a low mopt might be sufficient for reconstruction
or classification purposes. Using m 6= mopt will, of course,
require an additional (assumed known) distribution for the
measurement noise Wopt ∼ CN (wopt;νopt,Λopt).

VI. EXPERIMENTAL RESULTS

A. Experiments with Synthetic Data

In the following simulations, we use known distributions
to generate instances of X, N, and W. We then attempt to
recover the distribution of N using compressive measurements
under various conditions. Initially, for simplicity, we constrain
the number of classes of X and N to Jx = Jn = 1, and
consider both sources active at all times. The GM distributions
are limited to O = K = 3 components. We use Ns = 1000
random measurements and 500 iterations during the training of
the GM for N. Training ceases if the change in the incomplete
log-likelihood between iterations drops below a value of one.
Our input dimensionality is n = 32 and our compressive
measurements are of dimensionality m ∈ {4, 8, 12}.
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`ex−co(θ|θ(t)) = constant−
Ns∑
i=1

{
E
d|yi

[
log detΛd

]
+ E
k|yi

[
log detΓk

]
+ E
k,d|yi

[
tr
{

Λ−1d ΦiC
(i)
k,dΦ

H
i

}]
− E
k|yi

[
log sk

]
− E
d|yi

[
log τd

]
+ E
k,d|yi

[
(yi−Φiµ̃

(i)
k,d−νd)

HΛ−1d (yi−Φiµ̃
(i)
k,d−νd)

]
+ E
k,d|yi

[
tr
{

Γ−1k C
(i)
k,d

}]
+ E
k,d|yi

[
(µ̃

(i)
k,d−µk)

HΓ−1k (µ̃
(i)
k,d−µk)

]}
(19)

Find the Φopt ∈ Cmopt×n that maximises (4)
i← 0, iCS ← 0, θ ← θopt
repeat

i← i+ 1, j ← 0

Store new sample yi ← Φopt(xi + ni) + wopt
i

ζavgi is the average of Navg last ζi ← log py|θ(yi|θ)
if ζavgi < ζthr then j ← 1
if j = 1 and iCS < Nmax

s then
iCS ← iCS + 1
if mod(iCS − 1, Nrep) = 0 then

Generate and store random ΦiCS ∈ Cm×n
else ΦiCS

← ΦiCS−1
Store random sample ỹiCS

← ΦiCS
(xi+ni)+wi

else if iCS > Nmin
s then

Learn distribution of new class of N using
random measurements and projection matrices

Update distribution parameters θ, set iCS ← 0
else

Reconstruct/classify xi and ni, set iCS ← 0

if mod(i− 1, NT ) = 0 and θ 6= θopt then
θopt ← θ, find the Φopt that maximises (4)

Algorithm 1: Adaptive information-theoretic algorithm.

The weights πc,o and sg,k are drawn from the standard
uniform distribution and normalised. The mean vectors χc,o
and µg,k comprise elements drawn from the complex Gaussian
distribution CN (0,

√
2/10), and the covariance matrices Ωc,o

and Γg,k are initially equal to instances of the product QDQH,
where Q ∈ Cn×n is a random unitary matrix and D ∈ Rn×n
is a diagonal matrix with elements drawn from the uniform
distribution U(10−6, 10−2). To vary the signal-to-noise ratio
(SNR), we adjust the values in the diagonal elements of the
matrices D used to generate Ωc,o. Samples of measurement
noise are drawn according to W ∼ CN (w;0, 10−6Im) and
Wopt ∼ CN (wopt;0, 10

−6Imopt). For now, elements of Φopt

are drawn from CN (0, 1). Results are averaged over 100
instances of the simulation scenario. We use the ground truth
parameters for N to generate results for comparison purposes.

Generating and storing a unique random projection matrix
for each sample used for the training of the distribution of
N provides the best possible insight into the source statistics.
However, it may be possible to decrease computational costs
and memory requirements by reusing the same projection
matrix for multiple samples. In Fig. 1, we show that by
decreasing the number of unique projection matrices, we in-
crease the resulting mean-square error of reconstruction for N
obtained via the inference model of [9]; i.e., our estimate of the
distribution of N becomes increasingly inaccurate. However,
it is clear that the reliance of the training process on unique

10
0

10
1

10
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10
3

0.005

0.01

0.015

0.02

Fig. 1. Mean-square reconstruction error for N versus the number of unique
random projection matrices for m ∈ {4, 8, 12} and mopt = m.
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0.015

0.02

Fig. 2. Mean-square reconstruction error for N versus SNR from (25) when
training the distribution of N for m ∈ {4, 8, 12} and mopt = 4.

projections depends on m, with smaller m generally requiring
more unique matrices to achieve the best-case results. For a
large number of measurements, e.g., for m = 12, we see that
there are no significant disadvantages to using only 1% of
the available unique matrices. We can also observe that by
increasing the number of measurements mopt that we use for
signal recovery, we decrease the reconstruction error.

The SNR — i.e., the ratio of the power in X to the power
in N — will impact our ability to learn the distribution of N.
For the results of Fig. 2, we have used various values of SNR
during the training of the distribution of N, with

SNR = tr{Ωavg} /tr{Γavg} . (25)

Here, Ωavg and Γavg are the average covariance matrices for
the ground truth GM distributions of X and N, respectively. All
estimated distributions experienced the same test conditions;
i.e., we have attempted to reconstruct N in a scenario with
X and N of equal power and mopt = 4. The resulting
reconstruction error illustrates the quality of each estimate of
the distribution of N. We observe that increasing the number of
random measurements m improves the distribution estimation
in low SNR scenarios. Furthermore, we can see that for very
high or very low SNR, all m perform similarly. Significantly,
we see that we are unable to estimate the distribution for SNRs
of order 103 and above, as the reconstruction error is no longer
increasing; i.e., our estimates cannot become worse.

B. Experiments with Real Radar Data

Real radar returns from two fixed-location, three-bladed
fans were acquired according to the setup in [9]. The fans
possessed three rotation speeds, which can be seen in Table I.
Acquisitions for each speed were downsampled to 5.5 kHz.
Fans 1 and 2 contribute to the primary and secondary sources,
X and N, respectively. A time series r is the vectorised output
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TABLE I
CLASS DESCRIPTIONS BASED ON FAN SPEEDS IN ROTATIONS PER SECOND

Fan Input Class 1 Class 2 Class 3 Class 4

1 X 2.63 rps 4.10 rps 5.06 rps N/A
2 N 5.68 rps 6.21 rps 6.78 rps Absent

0 2000 4000 6000 8000 10000 12000

1

2

3

4

Fig. 3. Ground truth classes of X and N in the examined radar returns.

of the radar receiver system; r is split into R non-overlapping
‘frames’, which are segmented into B overlapping ‘bursts’.
Each burst is Hamming windowed and transformed to the
frequency domain via the discrete Fourier transform.

We obtain ground truth distributions for the GMMs of
X,N ∈ Cn via the EM algorithm [12]. For this, instances of X
and N are obtained from transformed bursts when r contains
radar returns from either source in isolation. Training data for
this is obtained from 50 frames of data recorded for each fan
speed. For feature extraction purposes, we use a frame length
of 700. As in [9], we limit the number of frequency coefficients
(and therefore the dimensionalities of X,N ∈ Cn) to n = 32.
Each burst overlaps its neighbours by 75%.

We initialise Algorithm 1 by designing the matrix Φopt such
that I(C;Y) is maximised; i.e., we use β = [0, 1, 0, 0] in (4).
Matrix Φopt is designed over 103 iterations using a step size
of δ = 0.01 and 500 MC draws to evaluate ∇ΦF (Φ,β). Our
initial system parameters θopt include W∼CN (0, 10−6Im),
Wopt∼CN (0, 10−6Imopt

), and the GMM for X with class
probabilities zc = 1/3 ∀ c and O = 3 components. We
assign K=3 components to each class of N and begin
with N ∼ pinitn (n)=

∑K
k=1(1/K)CN (0, 10−6In). The algo-

rithm is applied to a sequence of radar return data of length
NT = 12750 in which the ground truth classes of X and N
from Table I are changing according to Fig. 3. Note that Fan
2 is absent for class 4 of N. We use the following parameters:
m∈ {4, 6, 8, 12, 16}, mopt ∈ {4, 6, 8}, Navg =100, Nrep =1,
Nmax
s = 3000, Nmin

s = 1000, and ζthr = 2.5. When learning
GMs for N, we use the parameters of Sec. VI-A.

Fig. 4 shows the burst classification accuracies for X
obtained after applying Algorithm 1 to the examined
radar returns. Note that the retraining of Φopt again used
β = [0, 1, 0, 0]. Clearly, increasing m has improved our ability
to classify X. This indicates that, as in Sec. VI-A, a large m
provides a better estimate of pn(n). With a better estimate, we
are able to obtain a superior Φopt. As in [9], increasing mopt

also improves our classification accuracy. Note that classifying
on a per-frame basis [9] can further increase performance.

VII. CONCLUSIONS

In this paper, we have derived a methodology for the
training of the GM distribution of a secondary input via com-
pressive measurements. We have shown that well-estimated
distributions yield designed projection matrices that are more
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Fig. 4. Burst classification accuracy for X versus the number of optimised
measurements mopt for m ∈ {4, 6, 8, 12, 16} random measurements.

able to control the input-output MI of a system. Furthermore,
we have demonstrated that increasing the number of compres-
sive measurements aids the characterisation of weak secondary
sources and can reduce the number of unique projection
matrices required for distribution training purposes.
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