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Definition of a Stochastic Process

Natural discrete-time signals can be characterised as random
signals, since their values cannot be determined precisely;
they are unpredictable.
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Definition of a Stochastic Process

Natural discrete-time signals can be characterised as random
signals, since their values cannot be determined precisely;
they are unpredictable.

Consider an experiment with outcomes S = {ζk, k ∈ Z
+},

each occurring with probability Pr (ζk). Assign to each ζk ∈ S
a deterministic sequence x[n, ζk] , n ∈ Z.
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Definition of a Stochastic Process

Natural discrete-time signals can be characterised as random
signals, since their values cannot be determined precisely;
they are unpredictable.

Consider an experiment with outcomes S = {ζk, k ∈ Z
+},

each occurring with probability Pr (ζk). Assign to each ζk ∈ S
a deterministic sequence x[n, ζk] , n ∈ Z.

The sample space S, probabilities Pr (ζk), and the sequences
x[n, ζk] , n ∈ Z constitute a discrete-time stochastic process,
or random sequence.
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Definition of a Stochastic Process

Natural discrete-time signals can be characterised as random
signals, since their values cannot be determined precisely;
they are unpredictable.

Consider an experiment with outcomes S = {ζk, k ∈ Z
+},

each occurring with probability Pr (ζk). Assign to each ζk ∈ S
a deterministic sequence x[n, ζk] , n ∈ Z.

The sample space S, probabilities Pr (ζk), and the sequences
x[n, ζk] , n ∈ Z constitute a discrete-time stochastic process,
or random sequence.

Formally, x[n, ζk] , n ∈ Z is a random sequence or stochastic

process if, for a fixed value n0 ∈ Z
+ of n, x[n0, ζ] , n ∈ Z is a

random variable.
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Definition of a Stochastic Process

Natural discrete-time signals can be characterised as random
signals, since their values cannot be determined precisely;
they are unpredictable.

Consider an experiment with outcomes S = {ζk, k ∈ Z
+},

each occurring with probability Pr (ζk). Assign to each ζk ∈ S
a deterministic sequence x[n, ζk] , n ∈ Z.

The sample space S, probabilities Pr (ζk), and the sequences
x[n, ζk] , n ∈ Z constitute a discrete-time stochastic process,
or random sequence.

Formally, x[n, ζk] , n ∈ Z is a random sequence or stochastic

process if, for a fixed value n0 ∈ Z
+ of n, x[n0, ζ] , n ∈ Z is a

random variable.

Also known as a time series in the statistics literature.



Stochastic Processes

•Definition of a Stochastic

Process
• Interpretation of Sequences

•Predictable Processes

•Description using pdfs

•Second-order Statistical

Description

•Example of calculating

autocorrelations
•Types of Stochastic

Processes
•Stationary Processes

•Order-N and strict-sense

stationarity

•Wide-sense stationarity

•Wide-sense

cyclo-stationarity

•Quasi-stationarity

•WSS Properties

•Estimating statistical

properties

•Ensemble and

Time-Averages

•Ergodicity

• Joint Signal Statistics

•Types of Joint Stochastic

Processes
•Correlation Matrices

•Markov Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

- p. 4/55

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Definition of a Stochastic Process

Natural discrete-time signals can be characterised as random
signals, since their values cannot be determined precisely;
they are unpredictable.

Consider an experiment with outcomes S = {ζk, k ∈ Z
+},

each occurring with probability Pr (ζk). Assign to each ζk ∈ S
a deterministic sequence x[n, ζk] , n ∈ Z.

The sample space S, probabilities Pr (ζk), and the sequences
x[n, ζk] , n ∈ Z constitute a discrete-time stochastic process,
or random sequence.

Formally, x[n, ζk] , n ∈ Z is a random sequence or stochastic

process if, for a fixed value n0 ∈ Z
+ of n, x[n0, ζ] , n ∈ Z is a

random variable.

Also known as a time series in the statistics literature.
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Interpretation of Sequences

A graphical representation of a random process.
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Interpretation of Sequences

The set of all possible sequences {x[n, ζ]} is called an ensemble,
and each individual sequence x[n, ζk], corresponding to a
specific value of ζ = ζk, is called a realisation or a sample
sequence of the ensemble.
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Interpretation of Sequences

The set of all possible sequences {x[n, ζ]} is called an ensemble,
and each individual sequence x[n, ζk], corresponding to a
specific value of ζ = ζk, is called a realisation or a sample
sequence of the ensemble.

There are four possible interpretations of x[n, ζ]:

ζ Fixed ζ Variable

n Fixed Number Random variable

n Variable Sample sequence Stochastic process



Stochastic Processes

•Definition of a Stochastic

Process
• Interpretation of Sequences

•Predictable Processes

•Description using pdfs

•Second-order Statistical

Description

•Example of calculating

autocorrelations
•Types of Stochastic

Processes
•Stationary Processes

•Order-N and strict-sense

stationarity

•Wide-sense stationarity

•Wide-sense

cyclo-stationarity

•Quasi-stationarity

•WSS Properties

•Estimating statistical

properties

•Ensemble and

Time-Averages

•Ergodicity

• Joint Signal Statistics

•Types of Joint Stochastic

Processes
•Correlation Matrices

•Markov Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

- p. 5/55

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Interpretation of Sequences

The set of all possible sequences {x[n, ζ]} is called an ensemble,
and each individual sequence x[n, ζk], corresponding to a
specific value of ζ = ζk, is called a realisation or a sample
sequence of the ensemble.

There are four possible interpretations of x[n, ζ]:

ζ Fixed ζ Variable

n Fixed Number Random variable

n Variable Sample sequence Stochastic process

Use simplified notation x[n] ≡ x[n, ζ] to denote both a stochastic
process, and a single realisation. Use the terms random process
and stochastic process interchangeably throughout this course.



Stochastic Processes

•Definition of a Stochastic

Process
• Interpretation of Sequences

•Predictable Processes

•Description using pdfs

•Second-order Statistical

Description

•Example of calculating

autocorrelations
•Types of Stochastic

Processes
•Stationary Processes

•Order-N and strict-sense

stationarity

•Wide-sense stationarity

•Wide-sense

cyclo-stationarity

•Quasi-stationarity

•WSS Properties

•Estimating statistical

properties

•Ensemble and

Time-Averages

•Ergodicity

• Joint Signal Statistics

•Types of Joint Stochastic

Processes
•Correlation Matrices

•Markov Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

- p. 6/55

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Predictable Processes

The unpredictability of a random process is, in general, the
combined result of the following two characteristics:

1. The selection of a single realisation is based on the outcome of
a random experiment;

2. No functional description is available for all realisations of the
ensemble.
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Predictable Processes

The unpredictability of a random process is, in general, the
combined result of the following two characteristics:

1. The selection of a single realisation is based on the outcome of
a random experiment;

2. No functional description is available for all realisations of the
ensemble.

In some special cases, however, a functional relationship is
available. This means that after the occurrence of all samples of
a particular realisation up to a particular point, n, all future
values can be predicted exactly from the past ones.



Stochastic Processes

•Definition of a Stochastic

Process
• Interpretation of Sequences

•Predictable Processes

•Description using pdfs

•Second-order Statistical

Description

•Example of calculating

autocorrelations
•Types of Stochastic

Processes
•Stationary Processes

•Order-N and strict-sense

stationarity

•Wide-sense stationarity

•Wide-sense

cyclo-stationarity

•Quasi-stationarity

•WSS Properties

•Estimating statistical

properties

•Ensemble and

Time-Averages

•Ergodicity

• Joint Signal Statistics

•Types of Joint Stochastic

Processes
•Correlation Matrices

•Markov Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

- p. 6/55

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Predictable Processes

The unpredictability of a random process is, in general, the
combined result of the following two characteristics:

1. The selection of a single realisation is based on the outcome of
a random experiment;

2. No functional description is available for all realisations of the
ensemble.

In some special cases, however, a functional relationship is
available. This means that after the occurrence of all samples of
a particular realisation up to a particular point, n, all future
values can be predicted exactly from the past ones.

If this is the case for a random process, then it is called
predictable, otherwise it is said to be unpredictable or a
regular process.
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Description using pdfs

For fixed n = n0, x[n0, ζ] is a random variable. Moreover, the
random vector formed from the k random variables
{x[nj ] , j ∈ {1, . . . k}} is characterised by the cumulative
distribution function (cdf) and pdfs:

FX (x1 . . . xk | n1 . . . nk) = Pr (x[n1] ≤ x1, . . . , x[nk] ≤ xk)

fX (x1 . . . xk | n1 . . . nk) =
∂kFX (x1 . . . xk | n1 . . . nk)

∂x1 · · · ∂xk
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Description using pdfs

For fixed n = n0, x[n0, ζ] is a random variable. Moreover, the
random vector formed from the k random variables
{x[nj ] , j ∈ {1, . . . k}} is characterised by the cdf and pdfs:

FX (x1 . . . xk | n1 . . . nk) = Pr (x[n1] ≤ x1, . . . , x[nk] ≤ xk)

fX (x1 . . . xk | n1 . . . nk) =
∂kFX (x1 . . . xk | n1 . . . nk)

∂x1 · · · ∂xk

In exactly the same way as with random variables and random
vectors, it is:

difficult to estimate these probability functions without
considerable additional information or assumptions;

possible to frequently characterise stochastic processes
usefully with much less information.
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Second-order Statistical Description

Mean and Variance Sequence At time n, the ensemble mean and
variance are given by:

µx[n] = E [x[n]]

σ2
x[n] = E

[

|x[n]− µx[n] |
2
]

= E
[

|x[n] |2
]

− |µx[n] |
2

Both µx[n] and σ2
x[n] are deterministic sequences.
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Second-order Statistical Description

Mean and Variance Sequence At time n, the ensemble mean and
variance are given by:

µx[n] = E [x[n]]

σ2
x[n] = E

[

|x[n]− µx[n] |
2
]

= E
[

|x[n] |2
]

− |µx[n] |
2

Both µx[n] and σ2
x[n] are deterministic sequences.

Autocorrelation sequence The second-order statistic rxx[n1, n2]
provides a measure of the dependence between values of the
process at two different times; it can provide information
about the time variation of the process:

rxx[n1, n2] = E [x[n1] x
∗[n2]]
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Second-order Statistical Description

Autocovariance sequence The autocovariance sequence provides a
measure of how similar the deviation from the mean of a
process is at two different time instances:

γxx[n1, n2] = E [(x[n1]− µx[n1])(x[n2]− µx[n2])
∗]

= rxx[n1, n2]− µx[n1] µ
∗
x[n2]
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Second-order Statistical Description

Autocovariance sequence The autocovariance sequence provides a
measure of how similar the deviation from the mean of a
process is at two different time instances:

γxx[n1, n2] = E [(x[n1]− µx[n1])(x[n2]− µx[n2])
∗]

= rxx[n1, n2]− µx[n1] µ
∗
x[n2]

To show how these deterministic sequences of a stochastic
process can be calculated, several examples are considered in
detail below.
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Example of calculating autocorrelations

Example ( [Manolakis:2000, Ex 3.9, page 144]). The harmonic process
x[n] is defined by:

x[n] =
M
∑

k=1

Ak cos(ωkn+ φk), ωk 6= 0

where M , {Ak}M1 and {ωk}M1 are constants, and {φk}M1 are
pairwise independent random variables uniformly distributed in
the interval [0, 2π].

1. Determine the mean of x(n).

2. Show the autocorrelation sequence is given by

rxx[ℓ] =
1

2

M
∑

k=1

|Ak|
2 cosωkℓ, −∞ < ℓ < ∞ ⋊⋉



Stochastic Processes

•Definition of a Stochastic

Process
• Interpretation of Sequences

•Predictable Processes

•Description using pdfs

•Second-order Statistical

Description

•Example of calculating

autocorrelations
•Types of Stochastic

Processes
•Stationary Processes

•Order-N and strict-sense

stationarity

•Wide-sense stationarity

•Wide-sense

cyclo-stationarity

•Quasi-stationarity

•WSS Properties

•Estimating statistical

properties

•Ensemble and

Time-Averages

•Ergodicity

• Joint Signal Statistics

•Types of Joint Stochastic

Processes
•Correlation Matrices

•Markov Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

- p. 9/55

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Example of calculating autocorrelations

Example ( [Manolakis:2000, Ex 3.9, page 144]). SOLUTION. 1. The
expected value of the process is straightforwardly given by:

E [x(n)] = E

[

M
∑

k=1

Ak cos(ωkn+ φk)

]

=

M
∑

k=1

Ak E [cos(ωkn+ φk)]

Since a co-sinusoid is zero-mean, then:

E [cos(ωkn+ φk)] =

∫ 2π

0

cos(ωkn+ φk)×
1

2π
× dφk = 0

Hence, it follows:

E [x(n)] = 0, ∀n �
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Example of calculating autocorrelations

Example ( [Manolakis:2000, Ex 3.9, page 144]). SOLUTION. 1.

rxx(n1, n2) = E





M
∑

k=1

Ak cos(ωkn1 + φk)
M
∑

j=1

A∗
j cos(ωjn2 + φj)





=
M
∑

k=1

M
∑

j=1

Ak A
∗
jE [cos(ωkn1 + φk) cos(ωjn2 + φj)]

After some algebra, it can be shown that:

E [cos(ωkn1 + φk) cos(ωjn2 + φj)] =

{

1
2 cosωk(n1 − n2) k = j

0 otherwise

where g(φk) = cos(ωkn1 + φk) and h(φk) = cos(ωjn2 + φj),
and the fact that φk and φj are independent implies the
expectation function may be factorised.

E [cos(ω n + φ ) cos(ω n + φ )] =
1
cosω (n −n ) δ(k− j)
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Types of Stochastic Processes

Independence A stochastic process is independent if, and only
if, (iff)

fX (x1, . . . , xN | n1, . . . , nN ) =
N
∏

k=1

fXk
(xk | nk)

∀N, nk, k ∈ {1, . . . , N}. Here, therefore, x(n) is a sequence
of independent random variables.
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Types of Stochastic Processes

Independence A stochastic process is independent iff

fX (x1, . . . , xN | n1, . . . , nN ) =
N
∏

k=1

fXk
(xk | nk)

∀N, nk, k ∈ {1, . . . , N}. Here, therefore, x(n) is a sequence
of independent random variables.

An independent and identically distributed (i. i. d.) proce ss is one
where all the random variables {x(nk, ζ), nk ∈ Z} have the
same pdf, and x(n) will be called an i. i. d. random process.



Stochastic Processes

•Definition of a Stochastic

Process
• Interpretation of Sequences

•Predictable Processes

•Description using pdfs

•Second-order Statistical

Description

•Example of calculating

autocorrelations
•Types of Stochastic

Processes
•Stationary Processes

•Order-N and strict-sense

stationarity

•Wide-sense stationarity

•Wide-sense

cyclo-stationarity

•Quasi-stationarity

•WSS Properties

•Estimating statistical

properties

•Ensemble and

Time-Averages

•Ergodicity

• Joint Signal Statistics

•Types of Joint Stochastic

Processes
•Correlation Matrices

•Markov Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

- p. 10/55

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Types of Stochastic Processes

Independence A stochastic process is independent iff

fX (x1, . . . , xN | n1, . . . , nN ) =
N
∏

k=1

fXk
(xk | nk)

∀N, nk, k ∈ {1, . . . , N}. Here, therefore, x(n) is a sequence
of independent random variables.

An i. i. d. process is one where all the random variables
{x(nk, ζ), nk ∈ Z} have the same pdf, and x(n) will be called
an i. i. d. random process.

An uncorrelated processes is a sequence of uncorrelated random
variables:

γxx(n1, n2) = σ2
x(n1) δ(n1 − n2)



Stochastic Processes

•Definition of a Stochastic

Process
• Interpretation of Sequences

•Predictable Processes

•Description using pdfs

•Second-order Statistical

Description

•Example of calculating

autocorrelations
•Types of Stochastic

Processes
•Stationary Processes

•Order-N and strict-sense

stationarity

•Wide-sense stationarity

•Wide-sense

cyclo-stationarity

•Quasi-stationarity

•WSS Properties

•Estimating statistical

properties

•Ensemble and

Time-Averages

•Ergodicity

• Joint Signal Statistics

•Types of Joint Stochastic

Processes
•Correlation Matrices

•Markov Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

- p. 10/55

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Types of Stochastic Processes

An orthogonal process is a sequence of orthogonal random
variables, and is given by:

rxx(n1, n2) = E
[

|x(n1)|
2
]

δ(n1 − n2)

If a process is zero-mean, then it is both orthogonal and
uncorrelated since γxx(n1, n2) = rxx(n1, n2).



Stochastic Processes

•Definition of a Stochastic

Process
• Interpretation of Sequences

•Predictable Processes

•Description using pdfs

•Second-order Statistical

Description

•Example of calculating

autocorrelations
•Types of Stochastic

Processes
•Stationary Processes

•Order-N and strict-sense

stationarity

•Wide-sense stationarity

•Wide-sense

cyclo-stationarity

•Quasi-stationarity

•WSS Properties

•Estimating statistical

properties

•Ensemble and

Time-Averages

•Ergodicity

• Joint Signal Statistics

•Types of Joint Stochastic

Processes
•Correlation Matrices

•Markov Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

- p. 10/55

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Types of Stochastic Processes

An orthogonal process is a sequence of orthogonal random
variables, and is given by:

rxx(n1, n2) = E
[

|x(n1)|
2
]

δ(n1 − n2)

If a process is zero-mean, then it is both orthogonal and
uncorrelated since γxx(n1, n2) = rxx(n1, n2).

A stationary process is a random process where its statistical
properties do not vary with time. Processes whose statistical
properties do change with time are referred to as
nonstationary.
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Stationary Processes

A random process x(n) has been called stationary if its statistics
determined for x(n) are equal to those for x(n+ k), for every k.
There are various formal definitions of stationarity, along with
quasi-stationary processes, which are discussed below.

Order-N and strict-sense stationarity

Wide-sense stationarity

Wide-sense periodicity and cyclo-stationarity

Local- or quasi-stationary processes

After this, some examples of various stationary processes will be
given.
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Order-N and strict-sense stationarity

Definition (Stationary of order- N ). A stochastic process x(n) is
called stationary of order-N if:

fX (x1, . . . , xN | n1, . . . , nN ) = fX (x1, . . . , xN | n1 + k, . . . , nN + k)
♦

for any value of k. If x(n) is stationary for all orders N ∈ Z
+, it is

said to be strict-sense stationary (SSS).
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Order-N and strict-sense stationarity

Definition (Stationary of order- N ). A stochastic process x(n) is
called stationary of order-N if:

fX (x1, . . . , xN | n1, . . . , nN ) = fX (x1, . . . , xN | n1 + k, . . . , nN + k)
♦

for any value of k. If x(n) is stationary for all orders N ∈ Z
+, it is

said to be SSS.

An independent and identically distributed process is SSS since,
in this case, fXk

(xk | nk) = fX (xk) is independent of n, and
therefore also of n+ k.

However, SSS is more restrictive than necessary in practical
applications, and is a rarely required property.
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Wide-sense stationarity

A more relaxed form of stationarity, which is sufficient for
practical problems, occurs when a random process is stationary
order-2; such a process is wide-sense stationary (WSS).
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Wide-sense stationarity

Definition (Wide-sense stationarity). A random signal x(n) is called
wide-sense stationary if:

the mean and variance is constant and independent of n:

E [x(n)] = µx

var [x(n)] = σ2
x

the autocorrelation depends only on the time difference
l = n1 − n2, called the lag:

rxx(n1, n2) = r∗xx(n2, n1) = E [x(n1)x
∗(n2)]

= rxx(l) = rxx(n1 − n2) = E [x(n1)x
∗(n1 − l)]

= E [x(n2 + l)x∗(n2)]

♦



Stochastic Processes

•Definition of a Stochastic

Process
• Interpretation of Sequences

•Predictable Processes

•Description using pdfs

•Second-order Statistical

Description

•Example of calculating

autocorrelations
•Types of Stochastic

Processes
•Stationary Processes

•Order-N and strict-sense

stationarity

•Wide-sense stationarity

•Wide-sense

cyclo-stationarity

•Quasi-stationarity

•WSS Properties

•Estimating statistical

properties

•Ensemble and

Time-Averages

•Ergodicity

• Joint Signal Statistics

•Types of Joint Stochastic

Processes
•Correlation Matrices

•Markov Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

- p. 13/55

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Wide-sense stationarity

The autocovariance function is given by:

γxx(l) = rxx(l)− |µx|
2

Since 2nd-order moments are defined in terms of 2nd-order
pdf, then strict-sense stationary are always WSS, but not
necessarily vice-versa, except if the signal is Gaussian.

In practice, however, it is very rare to encounter a signal that
is stationary in the wide-sense, but not stationary in the strict
sense.
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Wide-sense cyclo-stationarity

Two classes of nonstationary process which, in part, have
properties resembling stationary signals are:

1. A wide-sense periodic (WSP) process is classified as signals whose
mean is periodic, and whose autocorrelation function is
periodic in both dimensions:

µx(n) = µx(n+N)

rxx(n1, n2) = rxx(n1 +N,n2) = rxx(n1, n2 +N)

= rxx(n1 +N,n2 +N)

for all n, n1 and n2. These are quite tight constraints for real
signals.
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Wide-sense cyclo-stationarity

2. A wide-sense cyclo-stationary process has similar but less
restrictive properties than a WSP process, in that the mean is
periodic, but the autocorrelation function is now just
invariant to a shift by N in both of its arguments:

µx(n) = µx(n+N)

rxx(n1, n2) = rxx(n1 +N,n2 +N)

for all n, n1 and n2. This type of nonstationary process has
more practical applications, as the following example will
show.
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Quasi-stationarity

At the introduction of this lecture course, it was noted that in the
analysis of speech signals, the speech waveform is broken up into
short segments whose duration is typically 10 to 20 milliseconds.
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Quasi-stationarity

At the introduction of this lecture course, it was noted that in the
analysis of speech signals, the speech waveform is broken up into
short segments whose duration is typically 10 to 20 milliseconds.

This is because speech can be modelled as a locally stationary
or quasi-stationary process.
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Quasi-stationarity

At the introduction of this lecture course, it was noted that in the
analysis of speech signals, the speech waveform is broken up into
short segments whose duration is typically 10 to 20 milliseconds.

This is because speech can be modelled as a locally stationary
or quasi-stationary process.

Such processes possess statistical properties that change slowly
over short periods of time.
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Quasi-stationarity

At the introduction of this lecture course, it was noted that in the
analysis of speech signals, the speech waveform is broken up into
short segments whose duration is typically 10 to 20 milliseconds.

This is because speech can be modelled as a locally stationary
or quasi-stationary process.

Such processes possess statistical properties that change slowly
over short periods of time.

They are globally nonstationary, but are approximately locally
stationary, and are modelled as if the statistics actually are
stationary over a short segment of time.
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WSS Properties

The average power of a WSS process x(n) satisfies:

rxx(0) = σ2
x + |µx|

2

rxx(0) ≥ rxx(l), for all l
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WSS Properties

The average power of a WSS process x(n) satisfies:

rxx(0) = σ2
x + |µx|

2

rxx(0) ≥ rxx(l), for all l

The expression for power can be broken down as follows:

Average DC Power: |µx|
2

Average AC Power: σ2
x

Total average power: rxx(0)

Total average power = Average DC power+Average AC power
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WSS Properties

The average power of a WSS process x(n) satisfies:

rxx(0) = σ2
x + |µx|

2

rxx(0) ≥ rxx(l), for all l

The expression for power can be broken down as follows:

Average DC Power: |µx|
2

Average AC Power: σ2
x

Total average power: rxx(0)

Total average power = Average DC power+Average AC power

Moreover, it follows that γxx(0) ≥ γxx(l).
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WSS Properties

It is left as an exercise to show that the autocorrelation sequence
rxx(l) is:

a conjugate symmetric function of the lag l:

r∗xx(−l) = rxx(l)

a nonnegative-definite or positive semi-definite function,
such that for any sequence α(n):

M
∑

n=1

M
∑

m=1

α∗(n) rxx(n−m)α(m) ≥ 0
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WSS Properties

It is left as an exercise to show that the autocorrelation sequence
rxx(l) is:

a conjugate symmetric function of the lag l:

r∗xx(−l) = rxx(l)

a nonnegative-definite or positive semi-definite function,
such that for any sequence α(n):

M
∑

n=1

M
∑

m=1

α∗(n) rxx(n−m)α(m) ≥ 0

Note that, more generally, even a correlation function for a
nonstationary random process is positive semi-definite:

M
∑

n=1

M
∑

m=1

α∗(n) rxx(n,m)α(m) ≥ 0 for any sequence α(n)
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Estimating statistical properties

A stochastic process consists of the ensemble, x(n, ζ), and a
probability law, fX ({x} | {n}). If this information is available
∀n, the statistical properties are easily determined.
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Estimating statistical properties

A stochastic process consists of the ensemble, x(n, ζ), and a
probability law, fX ({x} | {n}). If this information is available
∀n, the statistical properties are easily determined.

In practice, only a limited number of realisations of a process
is available, and often only one: i.e. {x(n, ζk), k ∈ {1, . . . , K}}
is known for some K, but fX (x | n) is unknown.
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Estimating statistical properties

A stochastic process consists of the ensemble, x(n, ζ), and a
probability law, fX ({x} | {n}). If this information is available
∀n, the statistical properties are easily determined.

In practice, only a limited number of realisations of a process
is available, and often only one: i.e. {x(n, ζk), k ∈ {1, . . . , K}}
is known for some K, but fX (x | n) is unknown.

Is is possible to infer the statistical characteristics of a process
from a single realisation? Yes, for the following class of
signals:
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Estimating statistical properties

A stochastic process consists of the ensemble, x(n, ζ), and a
probability law, fX ({x} | {n}). If this information is available
∀n, the statistical properties are easily determined.

In practice, only a limited number of realisations of a process
is available, and often only one: i.e. {x(n, ζk), k ∈ {1, . . . , K}}
is known for some K, but fX (x | n) is unknown.

Is is possible to infer the statistical characteristics of a process
from a single realisation? Yes, for the following class of
signals:

ergodic processes;
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Estimating statistical properties

A stochastic process consists of the ensemble, x(n, ζ), and a
probability law, fX ({x} | {n}). If this information is available
∀n, the statistical properties are easily determined.

In practice, only a limited number of realisations of a process
is available, and often only one: i.e. {x(n, ζk), k ∈ {1, . . . , K}}
is known for some K, but fX (x | n) is unknown.

Is is possible to infer the statistical characteristics of a process
from a single realisation? Yes, for the following class of
signals:

ergodic processes;

nonstationary processes where additional structure about
the autocorrelation function is known (beyond the scope of
this course).
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Ensemble and Time-Averages

Ensemble averaging, as considered so far in the course, is not
frequently used in practice since it is impractical to obtain the
number of realisations needed for an accurate estimate.



Stochastic Processes

•Definition of a Stochastic

Process
• Interpretation of Sequences

•Predictable Processes

•Description using pdfs

•Second-order Statistical

Description

•Example of calculating

autocorrelations
•Types of Stochastic

Processes
•Stationary Processes

•Order-N and strict-sense

stationarity

•Wide-sense stationarity

•Wide-sense

cyclo-stationarity

•Quasi-stationarity

•WSS Properties

•Estimating statistical

properties

•Ensemble and

Time-Averages

•Ergodicity

• Joint Signal Statistics

•Types of Joint Stochastic

Processes
•Correlation Matrices

•Markov Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

- p. 18/55

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Ensemble and Time-Averages

Ensemble averaging, as considered so far in the course, is not
frequently used in practice since it is impractical to obtain the
number of realisations needed for an accurate estimate.

A statistical average that can be obtained from a single
realisation of a process is a time-average, defined by:

〈g(x(n))〉 , lim
N→∞

1

2N + 1

N
∑

n=−N

g(x(n))

For every ensemble average, a corresponding time-average can
be defined; the above corresponds to: E [g(x(n))].
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Ensemble and Time-Averages

Ensemble averaging, as considered so far in the course, is not
frequently used in practice since it is impractical to obtain the
number of realisations needed for an accurate estimate.

A statistical average that can be obtained from a single
realisation of a process is a time-average, defined by:

〈g(x(n))〉 , lim
N→∞

1

2N + 1

N
∑

n=−N

g(x(n))

For every ensemble average, a corresponding time-average can
be defined; the above corresponds to: E [g(x(n))].

Time-averages are random variables since they implicitly depend
on the particular realisation, given by ζ. Averages of
deterministic signals are fixed numbers or sequences, even
though they are given by the same expression.
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Ergodicity

A stochastic process, x(n), is ergodic if its ensemble
averages can be estimated from a single realisation of a
process using time averages.

The two most important degrees of ergodicity are:

Mean-Ergodic (or ergodic in the mean) processes have identical
expected values and sample-means:

〈x(n)〉 = E [x(n)]

Covariance-Ergodic Processes (or ergodic in correlation) have the
property that:

〈x(n)x∗(n− l)〉 = E [x(n)x∗(n− l)]
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Ergodicity

It should be intuitiveness obvious that ergodic processes must
be stationary and, moreover, that a process which is ergodic
both in the mean and correlation is WSS.

WSS processes are not necessarily ergodic.

Ergodic is often used to mean both ergodic in the mean and
correlation.

In practice, only finite records of data are available, and
therefore an estimate of the time-average will be given by

〈g(x(n))〉 =
1

N

∑

n∈N

g(x(n))

where N is the number of data-points available. The
performance of this estimator will be discussed later in this
course.
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Joint Signal Statistics

Cross-correlation and cross-covariance A measure of the
dependence between values of two different stochastic
processes is given by the cross-correlation and
cross-covariance functions:

rxy(n1, n2) = E [x(n1) y
∗(n2)]

γxy(n1, n2) = rxy(n1, n2)− µx(n1)µ
∗
y(n2)
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Joint Signal Statistics

Cross-correlation and cross-covariance A measure of the
dependence between values of two different stochastic
processes is given by the cross-correlation and
cross-covariance functions:

rxy(n1, n2) = E [x(n1) y
∗(n2)]

γxy(n1, n2) = rxy(n1, n2)− µx(n1)µ
∗
y(n2)

Normalised cross-correlation (or cross-covariance) The
cross-covariance provides a measure of similarity of the
deviation from the respective means of two processes. It
makes sense to consider this deviation relative to their
standard deviations; thus, normalised cross-correlations:

ρxy(n1, n2) =
γxy(n1, n2)

σx(n1)σy(n2)
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Types of Joint Stochastic Processes

Statistically independence of two stochastic processes occurs when,
for every nx and ny,

fXY (x, y | nx, ny) = fX (x | nx) fY (y | ny)

Uncorrelated stochastic processes have, for all nx & ny 6= nx:

γxy(nx, ny) = 0

rxy(nx, ny) = µx(nx)µy(ny)
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Types of Joint Stochastic Processes

Statistically independence of two stochastic processes occurs when,
for every nx and ny,

fXY (x, y | nx, ny) = fX (x | nx) fY (y | ny)

Uncorrelated stochastic processes have, for all nx & ny 6= nx:

γxy(nx, ny) = 0

rxy(nx, ny) = µx(nx)µy(ny)

Joint stochastic processes that are statistically independent are
uncorrelated, but not necessarily vice-versa, except for Gaussian
processes. Nevertheless, a measure of uncorrelatedness is often
used as a measure of independence. More on this later.
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Types of Joint Stochastic Processes

Orthogonal joint processes have, for every n1 and n2 6= n1:

rxy(n1, n2) = 0

Joint WSS is a similar to WSS for a single stochastic process, and
is useful since it facilitates a spectral description, as discussed
later in this course:

rxy(l) = rxy(n1 − n2) = r∗yx(−l) = E [x(n) y∗(n− l)]

γxy(l) = γxy(n1 − n2) = γ∗
yx(−l) = rxy(l)− µx µ

∗
y

Joint-Ergodicity applies to two ergodic processes, x(n) and y(n),
whose ensemble cross-correlation can be estimated from a
time-average:

〈x(n) y∗(n− l)〉 = E [x(n) y∗(n− l)]
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Correlation Matrices

Let an M -dimensional random vector X(n, ζ) ≡ X(n) be derived
from the random process x(n) as follows:

X(n) ,
[

x(n) x(n− 1) · · · x(n−M + 1)
]T
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Correlation Matrices

Let an M -dimensional random vector X(n, ζ) ≡ X(n) be derived
from the random process x(n) as follows:

X(n) ,
[

x(n) x(n− 1) · · · x(n−M + 1)
]T

Then its mean is given by an M -vector

µ
X
(n) ,

[

µx(n) µx(n− 1) · · · µx(n−M + 1)
]T
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Correlation Matrices

Let an M -dimensional random vector X(n, ζ) ≡ X(n) be derived
from the random process x(n) as follows:

X(n) ,
[

x(n) x(n− 1) · · · x(n−M + 1)
]T

Then its mean is given by an M -vector

µ
X
(n) ,

[

µx(n) µx(n− 1) · · · µx(n−M + 1)
]T

and the M ×M correlation matrix is given by:

RX(n) ,









rxx(n, n) · · · rxx(n, n−M + 1)
...

. . .
...

rxx(n−M + 1, n) · · · rxx(n−M + 1, n−M + 1)
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Correlation Matrices

For stationary processes, the correlation matrix has an interesting
additional structure. Note that:

1. RX(n) is a constant matrix RX;

2. rxx(n− i, n− j) = rxx(j − i) = rxx(l), l = j − i;

3. conjugate symmetry gives rxx(l) = r∗xx(−l).
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Correlation Matrices

For stationary processes, the correlation matrix has an interesting
additional structure. Note that:

1. RX(n) is a constant matrix RX;

2. rxx(n− i, n− j) = rxx(j − i) = rxx(l), l = j − i;

3. conjugate symmetry gives rxx(l) = r∗xx(−l).

Hence, the matrix Rxx is given by:

RX ,

















rxx(0) rxx(1) rxx(2) · · · rxx(M − 1)

r∗xx(1) rxx(0) rxx(1) · · · rxx(M − 2)

r∗xx(2) r∗xx(1) rxx(0) · · · rxx(M − 3)
...

...
...

. . .
...

r∗xx(M − 1) r∗xx(M − 2) r∗xx(M − 3) · · · rxx(0)
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Markov Processes

A powerful model for a stochastic process known as a Markov
model is introduced; such a process that satisfies this model is
known as a Markov process.

Quite simply, a Markov process is one in which the probability of
any particular value in a sequence is dependent upon the
preceding sample values.
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Markov Processes

A powerful model for a stochastic process known as a Markov
model is introduced; such a process that satisfies this model is
known as a Markov process.

Quite simply, a Markov process is one in which the probability of
any particular value in a sequence is dependent upon the
preceding sample values.

The simplest kind of dependence arises when the probability of
any sample depends only upon the value of the immediately
preceding sample, and this is known as a first-order Markov
process.
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Markov Processes

A powerful model for a stochastic process known as a Markov
model is introduced; such a process that satisfies this model is
known as a Markov process.

Quite simply, a Markov process is one in which the probability of
any particular value in a sequence is dependent upon the
preceding sample values.

The simplest kind of dependence arises when the probability of
any sample depends only upon the value of the immediately
preceding sample, and this is known as a first-order Markov
process.

This simple process is a surprisingly good model for a number of
practical signal processing, communications and control
problems.
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Markov Processes

As an example of a Markov process, consider the process
generated by the difference equation

x(n) = −a x(n− 1) + w(n)

where a is a known constant, and w(n) is a sequence of

zero-mean i. i. d. Gaussian random variables with variance σ2
W

density:

fW (w(n)) =
1

√

2πσ2
W

exp

{

−
w(n)2

2σ2
W

}
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Markov Processes

As an example of a Markov process, consider the process
generated by the difference equation

x(n) = −a x(n− 1) + w(n)

where a is a known constant, and w(n) is a sequence of

zero-mean i. i. d. Gaussian random variables with variance σ2
W

density:

fW (w(n)) =
1

√

2πσ2
W

exp

{

−
w(n)2

2σ2
W

}

The conditional density of x(n) given x(n− 1) is also Gaussian,

fX (x(n) | x(n− 1)) =
1

√

2πσ2
W

exp

{

−
(x(n) + ax(n− 1))2

2σ2
W

}
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Markov Processes

Definition (Markov Process). A random process is a P th-order
Markov process if the distribution of x(n), given the infinite past,
depends only on the previous P samples
{x(n− 1), . . . , x(n− P )}; that is, if:

fX (x(n) | x(n− 1), x(n− 2), . . . ) = fX (x(n) | x(n− 1), . . . , x(n− P ))
♦
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Markov Processes

Definition (Markov Process). A random process is a P th-order
Markov process if the distribution of x(n), given the infinite past,
depends only on the previous P samples
{x(n− 1), . . . , x(n− P )}; that is, if:

fX (x(n) | x(n− 1), x(n− 2), . . . ) = fX (x(n) | x(n− 1), . . . , x(n− P ))
♦

Finally, it is noted that if x(n) takes on a countable (discrete) set
of values, a Markov random process is called a Markov chain.
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Introduction

Frequency- and transform-domain methods are very powerful
tools for the analysis of deterministic sequences. It seems natural
to extend these techniques to analysis stationary random
processes.
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Introduction

Frequency- and transform-domain methods are very powerful
tools for the analysis of deterministic sequences. It seems natural
to extend these techniques to analysis stationary random
processes.

So far in this course, stationary stochastic processes have been
considered in the time-domain through the use of the
autocorrelation function (ACF).
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Introduction

Frequency- and transform-domain methods are very powerful
tools for the analysis of deterministic sequences. It seems natural
to extend these techniques to analysis stationary random
processes.

So far in this course, stationary stochastic processes have been
considered in the time-domain through the use of the ACF.

Since the ACF for a stationary process is a function of a
single-discrete time process, then the question arises as to what
the discrete-time Fourier transform (DTFT) corresponds to.



Stochastic Processes

Power Spectral Density

• Introduction

•The power spectral

density

•Properties of the power

spectral density

•General form of the PSD

•The cross-power spectral

density

•Complex Spectral Density

Functions

Linear Systems Theory

Linear Signal Models

- p. 25/55

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Introduction

Frequency- and transform-domain methods are very powerful
tools for the analysis of deterministic sequences. It seems natural
to extend these techniques to analysis stationary random
processes.

So far in this course, stationary stochastic processes have been
considered in the time-domain through the use of the ACF.

Since the ACF for a stationary process is a function of a
single-discrete time process, then the question arises as to what
the DTFT corresponds to.

It turns out to be known as the power spectral density (PSD) of
a stationary random process, and the PSD is an extremely
powerful and conceptually appealing tool in statistical signal
processing.
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Introduction

In signal theory for deterministic signals, spectra are used to
represent a function as a superposition of exponential functions.
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Introduction

In signal theory for deterministic signals, spectra are used to
represent a function as a superposition of exponential functions.
For random signals, the notion of a spectrum has two
interpretations:

Transform of averages The first involves transform of averages (or
moments). As will be seen, this will be the Fourier transform
of the autocorrelation function.
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Introduction

In signal theory for deterministic signals, spectra are used to
represent a function as a superposition of exponential functions.
For random signals, the notion of a spectrum has two
interpretations:

Transform of averages The first involves transform of averages (or
moments). As will be seen, this will be the Fourier transform
of the autocorrelation function.

Stochastic decomposition The second interpretation represents a
stochastic process as a superposition of exponentials, where
the coefficients are themselves random variables. Hence, x(n)
can be represented as:

x(n) =
1

2π

∫ π

−π

X(ejω) ejωn dω, n ∈ R

where X(ejω) is a random variable for a given value of ω.
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The power spectral density

The discrete-time Fourier transform of the autocorrelation
function of a stationary stochastic process x[n, ζ] is known as the

power spectral density (PSD), is denoted by Pxx(e
jω), and is

given by:

Pxx(e
jω) =

∑

ℓ∈Z

rxx[ℓ] e
−jωℓ

where ω is frequency in radians per sample.
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The power spectral density

The discrete-time Fourier transform of the autocorrelation
function of a stationary stochastic process x[n, ζ] is known as the

power spectral density (PSD), is denoted by Pxx(e
jω), and is

given by:

Pxx(e
jω) =

∑

ℓ∈Z

rxx[ℓ] e
−jωℓ

where ω is frequency in radians per sample.

The autocorrelation function, rxx[ℓ], can be recovered from the
PSD by using the inverse-DTFT:

rxx[ℓ] =
1

2π

∫ π

−π

Pxx(e
jω) ejωℓ dω, ℓ ∈ Z
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Properties of the power spectral density

Pxx(e
jω) : ω → R

+; in otherwords, the PSD is real valued, and
nonnegative definite. i.e.

Pxx(e
jω) ≥ 0
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Properties of the power spectral density

Pxx(e
jω) : ω → R

+; in otherwords, the PSD is real valued, and
nonnegative definite. i.e.

Pxx(e
jω) ≥ 0

Pxx(e
jω) = Pxx(e

j(ω+2nπ)); in otherwords, the PSD is periodic
with period 2π.
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Properties of the power spectral density

Pxx(e
jω) : ω → R

+; in otherwords, the PSD is real valued, and
nonnegative definite. i.e.

Pxx(e
jω) ≥ 0

Pxx(e
jω) = Pxx(e

j(ω+2nπ)); in otherwords, the PSD is periodic
with period 2π.

If x[n] is real-valued, then:
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Properties of the power spectral density

Pxx(e
jω) : ω → R

+; in otherwords, the PSD is real valued, and
nonnegative definite. i.e.

Pxx(e
jω) ≥ 0

Pxx(e
jω) = Pxx(e

j(ω+2nπ)); in otherwords, the PSD is periodic
with period 2π.

If x[n] is real-valued, then:

rxx[ℓ] is real and even;
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Properties of the power spectral density

Pxx(e
jω) : ω → R

+; in otherwords, the PSD is real valued, and
nonnegative definite. i.e.

Pxx(e
jω) ≥ 0

Pxx(e
jω) = Pxx(e

j(ω+2nπ)); in otherwords, the PSD is periodic
with period 2π.

If x[n] is real-valued, then:

rxx[ℓ] is real and even;

Pxx(e
jω) = Pxx(e

−jω) is an even function of ω.
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Properties of the power spectral density

Pxx(e
jω) : ω → R

+; in otherwords, the PSD is real valued, and
nonnegative definite. i.e.

Pxx(e
jω) ≥ 0

Pxx(e
jω) = Pxx(e

j(ω+2nπ)); in otherwords, the PSD is periodic
with period 2π.

If x[n] is real-valued, then:

rxx[ℓ] is real and even;

Pxx(e
jω) = Pxx(e

−jω) is an even function of ω.

The area under Pxx(e
jω) is nonnegative and is equal to the

average power of x[n]. Hence:

1

2π

∫ π

−π

Pxx(e
jω) dω = rxx[0] = E

[

|x[n] |2
]

≥ 0
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General form of the PSD

A process, x(n), and therefore its corresponding autocorrelation
function (ACF), rxx(l), can always be decomposed into a

zero-mean aperiodic component, r
(a)
xx (l), and a non-zero-mean

periodic component, r
(p)
xx (l):

rxx(l) = r(a)xx (l) + r(p)xx (l)
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General form of the PSD

A process, x(n), and therefore its corresponding autocorrelation
function (ACF), rxx(l), can always be decomposed into a

zero-mean aperiodic component, r
(a)
xx (l), and a non-zero-mean

periodic component, r
(p)
xx (l):

rxx(l) = r(a)xx (l) + r(p)xx (l)

Theorem (PSD of a non-zero-mean process with periodic compo nent).
The most general definition of the PSD for a non-zero-mean
stochastic process with a periodic component is

Pxx(e
jω) = P (a)

xx (ejω) +
2π

K

∑

k∈K

P (p)
xx (k) δ (ω − ωk) ♦

P
(a)
xx (ejω) is the DTFT of r

(a)
xx (l), while P

(p)
xx (k) are the discrete

Fourier transform (DFT) coefficients for r
(p)
xx (l) .
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General form of the PSD

Example ( [Manolakis:2001, Harmonic Processes, Page 110-1 11]).
Determine the PSD of the harmonic process defined by:

x[n] =

M
∑

k=1

Ak cos(ωkn+ φk), ωk 6= 0

⋊⋉
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General form of the PSD

Example ( [Manolakis:2001, Harmonic Processes, Page 110-1 11]).
Determine the PSD of the harmonic process defined by:

x[n] =

M
∑

k=1

Ak cos(ωkn+ φk), ωk 6= 0

SOLUTION. x[n] is a stationary process with zero-mean, and
autocorrelation function (ACF):

rxx[ℓ] =
1

2

M
∑

k=1

|Ak|
2 cosωkℓ, −∞ < ℓ < ∞

�
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General form of the PSD

Example ( [Manolakis:2001, Harmonic Processes, Page 110-1 11]).
Determine the PSD of the harmonic process defined by:

x[n] =

M
∑

k=1

Ak cos(ωkn+ φk), ωk 6= 0

SOLUTION. Hence, the ACF can be written as:

rxx[ℓ] =
M
∑

k=−M

|Ak|2

4
ejωkℓ, −∞ < ℓ < ∞ �

where the following are defined: A0 = 0, Ak = A−k, and
ω−k = −ωk.
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General form of the PSD

Example ( [Manolakis:2001, Harmonic Processes, Page 110-1 11]).
Determine the PSD of the harmonic process defined by:

x[n] =

M
∑

k=1

Ak cos(ωkn+ φk), ωk 6= 0

SOLUTION. Hence, the ACF can be written as:

rxx[ℓ] =
M
∑

k=−M

|Ak|2

4
ejωkℓ, −∞ < ℓ < ∞

where the following are defined: A0 = 0, Ak = A−k, and
ω−k = −ωk.

Hence, it directly follows

Pxx(e
jω) = 2π

M
∑

k=−M

|Ak|
2

4
δ(ω−ωk) =

π

2

M
∑

k=−M

|Ak|
2δ(ω−ωk) �
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The cross-power spectral density

The cross-power spectral density (CPSD) of two jointly stationary
stochastic processes, x(n) and y(n), provides a description of
their statistical relations in the frequency domain.

It is defined, naturally, as the DTFT of the cross-correlation,

rxy(ℓ) , E [x(n) y∗(n− ℓ)]:

Pxy(e
jω) = F{rxy(ℓ)} =

∑

l∈Z

rxy(ℓ) e
−jωℓ
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The cross-power spectral density

The cross-power spectral density (CPSD) of two jointly stationary
stochastic processes, x(n) and y(n), provides a description of
their statistical relations in the frequency domain.

It is defined, naturally, as the DTFT of the cross-correlation,

rxy(ℓ) , E [x(n) y∗(n− ℓ)]:

Pxy(e
jω) = F{rxy(ℓ)} =

∑

l∈Z

rxy(ℓ) e
−jωℓ

The cross-correlation rxy(l) can be recovered by using the

inverse-DTFT:

rxy(l) =
1

2π

∫ π

−π

Pxy(e
jω) ejωl dω, l ∈ R



Stochastic Processes

Power Spectral Density

• Introduction

•The power spectral

density

•Properties of the power

spectral density

•General form of the PSD

•The cross-power spectral

density

•Complex Spectral Density

Functions

Linear Systems Theory

Linear Signal Models

- p. 29/55

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

The cross-power spectral density

The cross-power spectral density (CPSD) of two jointly stationary
stochastic processes, x(n) and y(n), provides a description of
their statistical relations in the frequency domain.

It is defined, naturally, as the DTFT of the cross-correlation,

rxy(ℓ) , E [x(n) y∗(n− ℓ)]:

Pxy(e
jω) = F{rxy(ℓ)} =

∑

l∈Z

rxy(ℓ) e
−jωℓ

The cross-correlation rxy(l) can be recovered by using the

inverse-DTFT:

rxy(l) =
1

2π

∫ π

−π

Pxy(e
jω) ejωl dω, l ∈ R

The cross-spectrum Pxy(e
jω) is, in general, a complex function of

ω.
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The cross-power spectral density

Some properties of the CPSD and related definitions include:

1. Pxy(e
jω) is periodic in ω with period 2π.

2. Since rxy(l) = r∗yx(−l), then it follows:

Pxy(e
jω) = P ∗

yx(e
jω)

3. If the process x(n) is real, then rxy(l) is real, and:

Pxy(e
jω) = P ∗

xy(e
−jω)

4. The coherence function, is given by:

Γxy(e
jω) ,

Pxy(e
jω)

√

Pxx(ejω)
√

Pyy(ejω)
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Complex Spectral Density Functions

The second moment quantities that described a random process
in the transform domain are known as the complex spectral
density and complex cross-spectral density functions.
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Complex Spectral Density Functions

The second moment quantities that described a random process
in the transform domain are known as the complex spectral
density and complex cross-spectral density functions.

Hence, rxx(l)
z
⇋ Pxx(z) and rxy(l)

z
⇋ Pxy(z), where:

Pxx(z) =
∑

l∈Z

rxx(l) z
−l

Pxy(z) =
∑

l∈Z

rxy(l) z
−l
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Complex Spectral Density Functions

The second moment quantities that described a random process
in the transform domain are known as the complex spectral
density and complex cross-spectral density functions.

Hence, rxx(l)
z
⇋ Pxx(z) and rxy(l)

z
⇋ Pxy(z), where:

Pxx(z) =
∑

l∈Z

rxx(l) z
−l

Pxy(z) =
∑

l∈Z

rxy(l) z
−l

If the unit circle, defined by z = ejω is within the region of
convergence of these summations, then:

Pxx(e
jω) = Pxx(z)|z=ejω

Pxy(e
jω) = Pxy(z)|z=ejω
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Complex Spectral Density Functions

The inverse of the complex spectral and cross-spectral densities
are given by the contour integral:

rxx(l) =
1

2πj

∮

C

Pxx(z) z
l−1 dz

rxy(l) =
1

2πj

∮

C

Pxy(z) z
l−1 dz
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Complex Spectral Density Functions

The inverse of the complex spectral and cross-spectral densities
are given by the contour integral:

rxx(l) =
1

2πj

∮

C

Pxx(z) z
l−1 dz

rxy(l) =
1

2πj

∮

C

Pxy(z) z
l−1 dz

Some properties of the complex spectral densities include:

1. Conjugate-symmetry:

Pxx(z) = P ∗
xx(1/z

∗) and Pxy(z) = P ∗
xy(1/z

∗)

2. For the case when x(n) is real, then:

Pxx(z) = Pxx(z
−1)
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Systems with Stochastic Inputs

A graphical representation of a random process at the
output of a system in relation to a random process at the

input of the system.

What does it mean to apply a stochastic signal to the input of a
system?



Stochastic Processes

Power Spectral Density

Linear Systems Theory

•Systems with Stochastic

Inputs

•LTI Systems with

Stationary Inputs

• Input-output Statistics of a

LTI System

•System identification

•LTV Systems with

Nonstationary Inputs

•Difference Equation

•Frequency-Domain

Analysis of LTI systems

Linear Signal Models

- p. 32/55

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Systems with Stochastic Inputs

In principle, the statistics of the output of a system can be
expressed in terms of the statistics of the input. However, in
general this is a complicated problem except in special cases.
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Systems with Stochastic Inputs

In principle, the statistics of the output of a system can be
expressed in terms of the statistics of the input. However, in
general this is a complicated problem except in special cases.

A special case is that of linear systems, and this is considered
next.
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LTI Systems with Stationary Inputs

Since each sequence (realisation) of a stochastic process is a
deterministic signal, there is a well-defined input signal
producing a well-defined output signal corresponding to a single
realisation of the output stochastic process:

y(n, ζ) =
∞
∑

k=−∞

h(k)x(n− k, ζ)
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LTI Systems with Stationary Inputs

Since each sequence (realisation) of a stochastic process is a
deterministic signal, there is a well-defined input signal
producing a well-defined output signal corresponding to a single
realisation of the output stochastic process:

y(n, ζ) =
∞
∑

k=−∞

h(k)x(n− k, ζ)

A complete description of y(n, ζ) requires the computation of
an infinite number of convolutions, corresponding to each
value of ζ.

Thus, a better description would be to consider the statistical
properties of y(n, ζ) in terms of the statistical properties of the
input and the characteristics of the system.
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LTI Systems with Stationary Inputs

To investigate the statistical input-output properties of a linear
system, note the following fundamental theorem:

Theorem (Expectation in Linear Systems). For any linear system,

E [L[x(n)]] = L[E [x(n)]]

In other words, the mean µy(n) of the output y(n) equals the
response of the system to the mean µx(n) of the input:

µy(n) = L[µx(n)] ♦
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Input-output Statistics of a LTI System

If a stationary stochastic process x[n] with mean value µx and
correlation rxx[ℓ] is applied to the input of a LTI system with

impulse response h[n] and transfer function H(ejω), then the:

Output mean value is given by:

µy = µx

∞
∑

k=−∞

h[k] = µx H(ej0)
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Input-output Statistics of a LTI System

If a stationary stochastic process x[n] with mean value µx and
correlation rxx[ℓ] is applied to the input of a LTI system with

impulse response h[n] and transfer function H(ejω), then the:

Output mean value is given by:

µy = µx

∞
∑

k=−∞

h[k] = µx H(ej0)

Input-output cross-correlation is given by:

rxy[ℓ] = h∗[−ℓ] ∗ rxx[ℓ] =
∞
∑

k=−∞

h∗[−k] rxx[ℓ− k]

Similarly, it follows that ryx(l) = h(l) ∗ rxx(l).
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Input-output Statistics of a LTI System

Output autocorrelation is obtained by pre-multiplying the
system-output by y∗(n− l) and taking expectations:

ryy(l) =
∞
∑

k=−∞

h(k)E [x(n− k) y∗(n− l)] = h(l) ∗ rxy(l)

Substituting the expression for rxy(l) gives:

ryy(l) = h(l) ∗ h∗(−l) ∗ rxx(l) = rhh(l) ∗ rxx(l)

An equivalent LTI system for autocorrelation filtration.
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Input-output Statistics of a LTI System

Output-power of the process y(n) is given by ryy(0) = E
[

|y(n)|2
]

,

and therefore since ryy(l) = rhh(l) ∗ rxx(l),

Noting power, Pyy, is real, then taking complex-conjugates using
r∗xx(−l) = rxx(l):

Pyy =
∑∞

k=−∞ r∗hh(k) rxx(k) =
∑∞

n=−∞
h∗(n)

∑∞

k=−∞
rxx(n+ k)h(k)

Output pdf In general, it is very difficult to calculate the pdf of the
output of a LTI system, except in special cases, namely
Gaussian processes.
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System identification

System identification by cross-correlation.

The system is excited with a white Gaussian noise (WGN) input
with autocorrelation function:

rxx(l) = δ(l)

Since the output-input cross-correlation can be written as:

ryx(l) = h(l) ∗ rxx(l)

then, with rxx(l) = δ(l), it follows:

ryx(l) = h(l) ∗ δ(l) = h(l)
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LTV Systems with Nonstationary Inputs

General LTV system with nonstationary input

The input and output are related by the generalised convolution:

y(n) =
∞
∑

k=−∞

h(n, k)x(k)

where h(n, k) is the response at time-index n to an impulse
occurring at the system input at time-index k.
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LTV Systems with Nonstationary Inputs

General LTV system with nonstationary input

The input and output are related by the generalised convolution:

y(n) =
∞
∑

k=−∞

h(n, k)x(k)

where h(n, k) is the response at time-index n to an impulse
occurring at the system input at time-index k.

The mean, autocorrelation and autocovariance sequences of the
output, y(n), as well as the cross-correlation and cross-covariance
functions between the input and the output, can be calculated in
a similar way as for LTI systems with stationary inputs.
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Difference Equation

Consider a LTI system that can be represented by a difference
equation:

P
∑

p=0

ap y(n− p) =

Q
∑

q=0

bq x(n− q)

where a0 , 1.
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Difference Equation

Consider a LTI system that can be represented by a difference
equation:

P
∑

p=0

ap y(n− p) =

Q
∑

q=0

bq x(n− q)

where a0 , 1.

Assuming that both x(n) and y(n) are stationary processes, then
taking expectations of both sides gives,

µy =

∑Q

q=0 bq

1 +
∑P

p=1 ap
µx
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Difference Equation

Next, multiplying the system equation throughout by y∗(m) and
taking expectations gives:

P
∑

p=0

ap ryy(n− p,m) =

Q
∑

q=0

bq rxy(n− q,m)
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Difference Equation

Next, multiplying the system equation throughout by y∗(m) and
taking expectations gives:

P
∑

p=0

ap ryy(n− p,m) =

Q
∑

q=0

bq rxy(n− q,m)

Similarly, instead multiply though by x∗(m) to give:

P
∑

p=0

ap ryx(n− p,m) =

Q
∑

q=0

bq rxx(n− q,m)

These two difference equations may be used to solve for
ryy(n1, n2) and rxy(n1, n2). Similar expressions can be obtained
for the covariance functions.
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Difference Equation

Example ( [Manolakis:2000, Example 3.6.2, Page 141]). Let x(n) be a
random process generated by the first order difference equation
given by:

x(n) = αx(n− 1) + w(n), |α| ≤ 1, n ∈ Z ⋊⋉

where w(n) ∼ N
(

µw, σ
2
w

)

is an i. i. d. WGN process.

Demonstrate that the process x(n) is stationary, and
determine the mean µx.

Determine the autocovariance and autocorrelation function,
γxx(l) and rxx(l).
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Frequency-Domain Analysis of LTI systems

The PSD at the input and output of a LTI system with
stationary input.

Pxy(e
jω) = H∗(ejω)Pxx(e

jω)

Pyx(e
jω) = H(ejω)Pxx(e

jω)

Pyy(e
jω) = |H(ejω)|2 Pxx(e

jω)
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Frequency-Domain Analysis of LTI systems

The PSD at the input and output of a LTI system with
stationary input.

Pxy(e
jω) = H∗(ejω)Pxx(e

jω)

Pyx(e
jω) = H(ejω)Pxx(e

jω)

Pyy(e
jω) = |H(ejω)|2 Pxx(e

jω)

If the input and output autocorrelations or autospectral
densities are known, the magnitude response of a system
|H(ejω)| can be determined, but not the phase response.
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Abstract

In the last lecture, the response of a linear-system when a
stochastic process is applied at the input was considered.
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Abstract

In the last lecture, the response of a linear-system when a
stochastic process is applied at the input was considered.

This lecture looks at the special class of stationary signals that
are obtained by driving a LTI system with white noise. A
particular focus is placed on system functions that are
rational; that is, they can be expressed at the ratio of two
polynomials.
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Abstract

In the last lecture, the response of a linear-system when a
stochastic process is applied at the input was considered.

This lecture looks at the special class of stationary signals that
are obtained by driving a LTI system with white noise. A
particular focus is placed on system functions that are
rational; that is, they can be expressed at the ratio of two
polynomials.

The following models are considered in detail:
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Abstract

In the last lecture, the response of a linear-system when a
stochastic process is applied at the input was considered.

This lecture looks at the special class of stationary signals that
are obtained by driving a LTI system with white noise. A
particular focus is placed on system functions that are
rational; that is, they can be expressed at the ratio of two
polynomials.

The following models are considered in detail:

All-pole systems and autoregressive (AR) processes;
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Abstract

In the last lecture, the response of a linear-system when a
stochastic process is applied at the input was considered.

This lecture looks at the special class of stationary signals that
are obtained by driving a LTI system with white noise. A
particular focus is placed on system functions that are
rational; that is, they can be expressed at the ratio of two
polynomials.

The following models are considered in detail:

All-pole systems and autoregressive (AR) processes;

All-zero systems and moving average (MA) processes;
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Abstract

In the last lecture, the response of a linear-system when a
stochastic process is applied at the input was considered.

This lecture looks at the special class of stationary signals that
are obtained by driving a LTI system with white noise. A
particular focus is placed on system functions that are
rational; that is, they can be expressed at the ratio of two
polynomials.

The following models are considered in detail:

All-pole systems and autoregressive (AR) processes;

All-zero systems and moving average (MA) processes;

and pole-zero systems and autoregressive moving
average (ARMA) processes.
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Abstract

In the last lecture, the response of a linear-system when a
stochastic process is applied at the input was considered.

This lecture looks at the special class of stationary signals that
are obtained by driving a LTI system with white noise. A
particular focus is placed on system functions that are
rational; that is, they can be expressed at the ratio of two
polynomials.

The following models are considered in detail:

All-pole systems and autoregressive (AR) processes;

All-zero systems and moving average (MA) processes;

and pole-zero systems and autoregressive moving
average (ARMA) processes.

Pole-zero models are widely used for modelling stationary
signals with short memory; the concepts will be extended, in
overview at least, to nonstationary processes.
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The Ubiquitous WGN Sequence

The simplest random signal model is the WSS WGN sequence:

w(n) ∼ N
(

0, σ2
w

)

The sequence is i. i. d., and Pww(e
jω) = σ2

w, −π < ω ≤ π. It is
also easy to generate samples using simple algorithms.
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Filtration of WGN

By filtering a WGN through a stable LTI system, it is possible to
obtain a stochastic signal at the output with almost any arbitrary
aperiodic correlation function or continuous PSD.
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Filtration of WGN

By filtering a WGN through a stable LTI system, it is possible to
obtain a stochastic signal at the output with almost any arbitrary
aperiodic correlation function or continuous PSD.

Random signals with line PSDs can be generated by using the
harmonic process model, which is a linear combination of
sinusoidal sequences with statistically independent random
phases. Signal models with mixed PSDs can be obtained by
combining these two models; a process justified by the Wold
decomposition.
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Filtration of WGN
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LTI System

H z D z A z A z( ) or ( )/ ( ) or 1/ ( )

Desired
signal
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Signal models with continuous and discrete (line) power
spectrum densities.
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Filtration of WGN

The speech synthesis model.
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Nonparametric and parametric models

Nonparametric models have no restriction on its form, or the
number of parameters characterising the model. For example,
specifying a LTI filter by its impulse response is a
nonparametric model.

Parametric models, on the other hand, describe a system with a
finite number of parameters. For example, if a LTI filter is
specified by a finite-order rational system function, it is a
parametric model.
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Nonparametric and parametric models

Nonparametric models have no restriction on its form, or the
number of parameters characterising the model. For example,
specifying a LTI filter by its impulse response is a
nonparametric model.

Parametric models, on the other hand, describe a system with a
finite number of parameters. For example, if a LTI filter is
specified by a finite-order rational system function, it is a
parametric model.

Two important analysis tools present themselves for
parametric modelling:

1. given the model parameters, analyse the characteristics of
that model (in terms of moments etc.);

2. design of a parametric system model to produce a random
signal with a specified autocorrelation function or PSD.
This is signal modelling.
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Parametric Pole-Zero Signal Models

Consider a system described by the following linear
constant-coefficient difference equation:

x(n) = −
P
∑

k=1

ak x(n− k) +

Q
∑

k=0

dk w(n− k)
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Parametric Pole-Zero Signal Models

Consider a system described by the following linear
constant-coefficient difference equation:

x(n) = −
P
∑

k=1

ak x(n− k) +

Q
∑

k=0

dk w(n− k)

Taking z-transforms gives the system function:

H(z) =
X(z)

W (z)
=

∑Q

k=0 dk z
−k

1 +
∑P

k=1 ak z
−k

,
D(z)

A(z)
= G

∏Q

k=1(1− zk z
−1)

∏P

k=1(1− pk z−1)

This system has Q zeros, {zk, k ∈ Q} where Q = {1, . . . , Q}, and
P poles, {pk, k ∈ P}. The term G is the system gain.
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Types of pole-zero models

All-pole model when Q = 0. The input-output difference equation
is given by:

x(n) = −
P
∑

k=1

ak x(n− k) + d0 w(n)

All-zero model when P = 0. The input-output relation is given by:

x(n) =

Q
∑

k=0

dk w(n− k)

Pole-zero model when P > 0 and Q > 0.
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Types of pole-zero models

Different types of linear model
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Types of pole-zero models

If a parametric model is excited with WGN, the resulting output
signal has second-order moments determined by the parameters
of the model.
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Types of pole-zero models

If a parametric model is excited with WGN, the resulting output
signal has second-order moments determined by the parameters
of the model.

These stochastic processes have special names in the literature,
and are known as:

a moving average (MA) process when it is the output of an all-zero
model;

an autoregressive (AR) process when it is the output of an all-pole
model;

an autoregressive moving average (ARMA) process when it is the
output of an pole-zero model;

each subject to a WGN process at the input.
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All-pole Models

All-pole models are frequently used in signal processing
applications since they are:

mathematically convenient since model parameters can be
estimated by solving a set of linear equations, and

they widely parsimoniously approximate rational transfer
functions, especially resonant systems.
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All-pole Models

All-pole models are frequently used in signal processing
applications since they are:

mathematically convenient since model parameters can be
estimated by solving a set of linear equations, and

they widely parsimoniously approximate rational transfer
functions, especially resonant systems.

There are various model properties of the all-pole model that are
useful; these include:

1. the systems impulse response;

2. the autocorrelation of the impulse response;

3. and minimum-phase conditions.
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Frequency Response of an All-Pole Filter

The all-pole model has form:

H(z) =
d0

A(z)
=

d0

1 +
∑P

k=1 ak z
−k

=
d0

∏P

k=1(1− pk z−1)

and therefore its frequency response is given by:

H(ejω) =
d0

1 +
∑P

k=1 ak e
−jkω

=
d0

∏P

k=1(1− pk e−jω)
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Frequency Response of an All-Pole Filter

The all-pole model has form:

H(z) =
d0

A(z)
=

d0

1 +
∑P

k=1 ak z
−k

=
d0

∏P

k=1(1− pk z−1)

and therefore its frequency response is given by:

H(ejω) =
d0

1 +
∑P

k=1 ak e
−jkω

=
d0

∏P

k=1(1− pk e−jω)

When each of the poles are written in the form pk = rke
jωk , then

the frequency response can be written as:

H(ejω) =
d0

∏P

k=1(1− rk e−j(ω−ωk))

Hence, it can be deduced that resonances occur near the
frequencies corresponding to the phase position of the poles.



Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

•Abstract

•The Ubiquitous WGN

Sequence

•Filtration of WGN

•Nonparametric and

parametric models

•Parametric Pole-Zero Signal

Models
•Types of pole-zero models

•All-pole Models

•Frequency Response of an

All-Pole Filter
• Impulse Response of an

All-Pole Filter
•All-Pole Modelling and

Linear Prediction
•Autoregressive Processes

•All-Zero models

•Frequency Response of an

All-Zero Filter
•Moving-average processes

•Pole-Zero Models

•Pole-Zero Frequency

Response

- p. 47/55

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Frequency Response of an All-Pole Filter

Hence, the PSD of the output of an all-pole filter is given by:

Pxx(e
jω) = σ2

w

∣

∣H(ejω)
∣

∣

2
=

G2

∏P

k=1

∣

∣1− rk e−j(ω−ωk)
∣

∣

2

where G = σw d0 is the overall gain of the system.
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Frequency Response of an All-Pole Filter

Hence, the PSD of the output of an all-pole filter is given by:

Pxx(e
jω) = σ2

w

∣

∣H(ejω)
∣

∣

2
=

G2

∏P

k=1

∣

∣1− rk e−j(ω−ωk)
∣

∣

2

where G = σw d0 is the overall gain of the system.

Consider the all-pole model with poles at positions:

{pk} = {rk e
jωk} where

{

{rk} = {0.985, 0.951, 0.942, 0.933}

{ωk} = 2π × {270, 550, 844, 1131}/2450;
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Frequency Response of an All-Pole Filter
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Frequency Response of an All-Pole Filter
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Impulse Response of an All-Pole Filter

The impulse response of the all-pole filter satisfies the equation:

h(n) = −
P
∑

k=1

ak h(n− k) + d0 δ(n)

If H(z) has its poles inside the unit circle, then h(n) is a causal,
stable sequence, and the system is minimum-phase.
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Impulse Response of an All-Pole Filter

The impulse response of the all-pole filter satisfies the equation:

h(n) = −
P
∑

k=1

ak h(n− k) + d0 δ(n)

If H(z) has its poles inside the unit circle, then h(n) is a causal,
stable sequence, and the system is minimum-phase.

Assuming causality, such that h(n) = 0, n < 0 then it follows
h(−k) = 0, k > 0, and therefore:

h(n) =











0 if n < 0

d0 if n = 0

−
∑P

k=1 ak h(n− k) if n > 0
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All-Pole Modelling and Linear Prediction

A linear predictor forms an estimate, or prediction, x̂(n), of the
present value of a stochastic process x(n) from a linear
combination of the past P samples; that is:

x̂(n) = −
P
∑

k=1

ak x(n− k)
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All-Pole Modelling and Linear Prediction

A linear predictor forms an estimate, or prediction, x̂(n), of the
present value of a stochastic process x(n) from a linear
combination of the past P samples; that is:

x̂(n) = −
P
∑

k=1

ak x(n− k)

The coefficients {ak} of the linear predictor are determined by
attempting to minimise some function of the prediction error
given by:

e(n) = x(n)− x̂(n)

Usually the objective function is equivalent to mean-squared
error (MSE), given by E =

∑

n e
2(n).
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All-Pole Modelling and Linear Prediction

Hence, the prediction error can be written as:

e(n) = x(n)− x̂(n) = x(n) +
P
∑

k=1

ak x(n− k)
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All-Pole Modelling and Linear Prediction

Hence, the prediction error can be written as:

e(n) = x(n)− x̂(n) = x(n) +
P
∑

k=1

ak x(n− k)

Thus, the prediction error is equal to the excitation of the
all-pole model; e(n) = w(n). Clearly, finite impulse
response (FIR) linear prediction and all-pole modelling are
closely related.

Many of the properties and algorithms developed for either
linear prediction or all-pole modelling can be applied to the
other.
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All-Pole Modelling and Linear Prediction

Hence, the prediction error can be written as:

e(n) = x(n)− x̂(n) = x(n) +
P
∑

k=1

ak x(n− k)

Thus, the prediction error is equal to the excitation of the
all-pole model; e(n) = w(n). Clearly, FIR linear prediction
and all-pole modelling are closely related.

Many of the properties and algorithms developed for either
linear prediction or all-pole modelling can be applied to the
other.

To all intents and purposes, linear prediction, all-pole
modelling, and AR processes (discussed next) are equivalent
terms for the same concept.
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Autoregressive Processes

While all-pole models refer to the properties of a rational
system containing only poles, AR processes refer to the resulting
stochastic process that occurs as the result of WGN being applied
to the input of an all-pole filter.
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Autoregressive Processes

While all-pole models refer to the properties of a rational
system containing only poles, AR processes refer to the resulting
stochastic process that occurs as the result of WGN being applied
to the input of an all-pole filter.

As such, the same input-output equations for all-pole models still
apply.
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Autoregressive Processes

While all-pole models refer to the properties of a rational
system containing only poles, AR processes refer to the resulting
stochastic process that occurs as the result of WGN being applied
to the input of an all-pole filter.

As such, the same input-output equations for all-pole models still
apply.

Thus:

x(n) = −
P
∑

k=1

ak x(n− k) + w(n), w(n) ∼ N
(

0, σ2
w

)

The autoregressive output, x(n), is a stationary sequence with a

mean value of zero, µx = 0.
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Autoregressive Processes

While all-pole models refer to the properties of a rational
system containing only poles, AR processes refer to the resulting
stochastic process that occurs as the result of WGN being applied
to the input of an all-pole filter.

Thus:

x(n) = −
P
∑

k=1

ak x(n− k) + w(n), w(n) ∼ N
(

0, σ2
w

)

The autoregressive output, x(n), is a stationary sequence with a

mean value of zero, µx = 0.

The autocorrelation function (ACF) can be calculated in a similar
approach to finding the output autocorrelation and
cross-correlation for linear systems.
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Autoregressive Processes

Multiply the difference through by x∗(n− l) and take
expectations to obtain:

rxx(l) +
P
∑

k=1

ak rxx(l − k) = rwx(l)
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Autoregressive Processes

Multiply the difference through by x∗(n− l) and take
expectations to obtain:

rxx(l) +
P
∑

k=1

ak rxx(l − k) = rwx(l)

Observing that x(n) cannot depend on future values of w(n)
since the system is causal, then rwx(l) = E [w(n)x∗(n− l)] is

zero if l > 0, and σ2
w if l = 0.
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Autoregressive Processes

Multiply the difference through by x∗(n− l) and take
expectations to obtain:

rxx(l) +
P
∑

k=1

ak rxx(l − k) = rwx(l)

Thus, writing Equation ?? for l = {0, 1, . . . , P}

matrix-vector form (noting that rxx(l) = r∗xx(−l) and that the
parameters {ak} are real) as:













rxx(0) r∗xx(1) · · · r∗xx(P )

rxx(1) rxx(0) · · · r∗xx(P − 1)
...

...
. . .

...

rxx(P ) rxx(P − 1) · · · r∗xx(0)

























1

a1
...

aP
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σ2
w

0
...

0















Stochastic Processes

Power Spectral Density

Linear Systems Theory

Linear Signal Models

•Abstract

•The Ubiquitous WGN

Sequence

•Filtration of WGN

•Nonparametric and

parametric models

•Parametric Pole-Zero Signal

Models
•Types of pole-zero models

•All-pole Models

•Frequency Response of an

All-Pole Filter
• Impulse Response of an

All-Pole Filter
•All-Pole Modelling and

Linear Prediction
•Autoregressive Processes

•All-Zero models

•Frequency Response of an

All-Zero Filter
•Moving-average processes

•Pole-Zero Models

•Pole-Zero Frequency

Response

- p. 51/55

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

All-Zero models

Whereas all-pole models can capture resonant features of a
particular PSD, it cannot capture nulls in the frequency response.
These can only be modelled using a pole-zero or all-zero model.
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All-Zero models

Whereas all-pole models can capture resonant features of a
particular PSD, it cannot capture nulls in the frequency response.
These can only be modelled using a pole-zero or all-zero model.

The output of an all-zero model is the weighted average of
delayed versions of the input signal. Thus, assume an all-zero
model of the form:

x(n) =

Q
∑

k=0

dk w(n− k)

where Q is the order of the model, and the corresponding system
function is given by:

H(z) = D(z) =

Q
∑

k=0

dk z
−k
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Frequency Response of an All-Zero Filter

The all-zero model has form:

H(z) = D(z) =

Q
∑

k=0

dk z
−k = d0

Q
∏

k=1

(

1− zk z
−1

)

Therefore, its frequency response is given by:

H(ejω) =

Q
∑

k=0

dk e
−jkω = d0

Q
∏

k=1

(

1− zk e
−jω

)
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Frequency Response of an All-Zero Filter

The all-zero model has form:

H(z) = D(z) =

Q
∑

k=0

dk z
−k = d0

Q
∏

k=1

(

1− zk z
−1

)

Therefore, its frequency response is given by:

H(ejω) =

Q
∑

k=0

dk e
−jkω = d0

Q
∏

k=1

(

1− zk e
−jω

)

When each of the zeros are written in the form zk = rke
jωk , then

the frequency response can be written as:

H(ejω) = d0

Q
∏

k=1

(

1− rk e
−j(ω−ωk)

)

Hence, it can be deduced that troughs or nulls occur near
frequencies corresponding to the phase position of the zeros.
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Frequency Response of an All-Zero Filter

Hence, the PSD of the output of an all-zero filter is given by:

Pxx(e
jω) = σ2

w

∣

∣H(ejω)
∣

∣

2
= G2

Q
∏

k=1

∣

∣

∣
1− rk e

−j(ω−ωk)
∣

∣

∣

2

where G = σw d0 is the overall gain of the system.
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Frequency Response of an All-Zero Filter

Hence, the PSD of the output of an all-zero filter is given by:

Pxx(e
jω) = σ2

w

∣

∣H(ejω)
∣

∣

2
= G2

Q
∏

k=1

∣

∣

∣
1− rk e

−j(ω−ωk)
∣

∣

∣

2

where G = σw d0 is the overall gain of the system.

Consider the all-zero model with zeros at positions:

{zk} = {rk e
jωk} where

{

{rk} = {0.985, 1, 0.942, 0.933}

{ωk} = 2π × {270, 550, 844, 1131}/2450;
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Frequency Response of an All-Zero Filter
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The frequency response and position of the zeros in an all-zero
system.
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Frequency Response of an All-Zero Filter

0 0.2 0.4 0.6 0.8 1
−80

−60

−40

−20

0

20

ω / π
10

 lo
g 10

 |P
xx

(e
jω

)|

All−Zero Model Power Spectrum

Power spectral response of an all-zero model.
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Moving-average processes

A MA process refers to the stochastic process that is obtained at
the output of an all-zero filter when a WGN sequence is applied
to the input.
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Moving-average processes

A MA process refers to the stochastic process that is obtained at
the output of an all-zero filter when a WGN sequence is applied
to the input.

Thus, a MA process is an AZ(Q) model with d0 = 1 driven by
WGN.

x[n] = w[n] +

Q
∑

k=1

dk w[n− k] , w[n] ∼ N
(

0, σ2
w

)
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Moving-average processes

A MA process refers to the stochastic process that is obtained at
the output of an all-zero filter when a WGN sequence is applied
to the input.

Thus, a MA process is an AZ(Q) model with d0 = 1 driven by
WGN.

x[n] = w[n] +

Q
∑

k=1

dk w[n− k] , w[n] ∼ N
(

0, σ2
w

)

The output x(n) has zero-mean, and variance of

σ2
x = σ2

w

[

1 +

Q
∑

k=1

|dk|
2

]

The autocorrelation function is given by:

rxx[ℓ] = σ2
wrhh[ℓ] = σ2

w

Q−ℓ
∑

dk+l d
∗
k, for 0 ≤ ℓ ≤ Q
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Pole-Zero Models

The output of a causal pole-zero model is given by the recursive
input-output relationship:

x[n] = −
P
∑

k=1

ak x[n− k] +

Q
∑

k=0

dk w[n− k]

The corresponding system function is given by:

H(z) =
D(z)

A(z)
=

∑Q

k=0 dk z
−k

1 +
∑P

k=1 ak z
−k
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Pole-Zero Frequency Response

The pole-zero model can be written as

H(z) =
D(z)

A(z)
= d0

∏Q

k=1

(

1− zk z
−1

)

∏P

k=1 (1− pk z−1)

Therefore, its frequency response is given by:

H(ejω) = d0

∏Q

k=1

(

1− zk e
−jω

)

∏P

k=1 (1− pk e−jω)
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Pole-Zero Frequency Response

The pole-zero model can be written as

H(z) =
D(z)

A(z)
= d0

∏Q

k=1

(

1− zk z
−1

)

∏P

k=1 (1− pk z−1)

Therefore, its frequency response is given by:

H(ejω) = d0

∏Q

k=1

(

1− zk e
−jω

)

∏P

k=1 (1− pk e−jω)

The PSD of the output of a pole-zero filter is given by:

Pxx(e
jω) = σ2

w

∣

∣H(ejω)
∣

∣

2
= G2

∏Q

k=1

∣

∣1− zk e
−jω

∣

∣

2

∏P

k=1 |1− pk e−jω|2

where G = σw d0 is the overall gain of the system.
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The frequency response and position of the poles and zeros in an
pole-zero system.
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Power spectral response of an pole-zero model.
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