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Obtaining the Latest Version of these Hand-
outs
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Source localisation and blind source separation (BSS). An
example of topics using statistical signal processing.
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Obtaining the Latest Version of these Hand-
outs

Direct

paths Indirect

paths

Observer

Walls

and other

obstacles

Sound

Source 1

Sound

Source 2

Sound

Source 3

Humans turn their head in the direction of interest in order
to reduce inteference from other directions; joint detection,
localisation, and enhancement. An application of probability

and estimation theory, and statistical signal processing.
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Obtaining the Latest Version of these Hand-
outs

This research tutorial is intended to cover a wide range of
aspects which cover the fundamentals of statistical signal
processing.

This tutorial is being continually updated, and feedback is
welcomed. The documents published on the USB stick may
differ to the slides presented on the day.

The latest version of this document can be found online and
downloaded at:

http://www.mod-udrc.org/events/2015-summer-school

Extended thanks are given to the many MSc students over the
past 11 years who have helped proof-read and improve these
documents.

http://www.mod-udrc.org/events/2015-summer-school
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Module Abstract

This topic is covered in two related lecture modules:

1. Probability, Random Variables, and Estimation Theory, and

2. Statistical Signal Processing,

Random signals are extensively used in algorithms, and are:

constructively used to model real-world processes;

described using probability and statistics.



Aims and Objectives

•Module Abstract

• Introduction and Overview

•Description and Learning

Outcomes
•Structure of the Module

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

- p. 5/85

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Module Abstract

This topic is covered in two related lecture modules:

1. Probability, Random Variables, and Estimation Theory, and

2. Statistical Signal Processing,

Random signals are extensively used in algorithms, and are:

constructively used to model real-world processes;

described using probability and statistics.

Their properties are estimated by assumming:

an infinite number of observations or data points;

time-invariant statistics.
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Module Abstract

This topic is covered in two related lecture modules:

1. Probability, Random Variables, and Estimation Theory, and

2. Statistical Signal Processing,

Random signals are extensively used in algorithms, and are:

constructively used to model real-world processes;

described using probability and statistics.

Their properties are estimated by assumming:

an infinite number of observations or data points;

time-invariant statistics.

In practice, these statistics must be estimated from
finite-length data signals in noise.
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Module Abstract

This topic is covered in two related lecture modules:

1. Probability, Random Variables, and Estimation Theory, and

2. Statistical Signal Processing,

Random signals are extensively used in algorithms, and are:

constructively used to model real-world processes;

described using probability and statistics.

Their properties are estimated by assumming:

an infinite number of observations or data points;

time-invariant statistics.

In practice, these statistics must be estimated from
finite-length data signals in noise.

Module investigates relevant statistical properties, how they
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Introduction and Overview
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Solutions to the so-called blind deconvolution problem require
statistical signal processing methods.

Blind deconvolution requires statistical signal processing.

Signal processing is concerned with the modification or
manipulation of a signal, defined as an
information-bearing representation of a real process, to
the fulfillment of human needs and aspirations.
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Description and Learning Outcomes

Module Aims to provide a unified introduction to the theory,
implementation, and applications of statistical signal
processing.
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Description and Learning Outcomes

Module Aims to provide a unified introduction to the theory,
implementation, and applications of statistical signal
processing.

Module Objectives At the end of these modules, a student should
be able to:

1. acquired sufficient expertise in this area to understand and
implement spectral estimation, signal modelling,
parameter estimation, and adaptive filtering techniques;
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Description and Learning Outcomes

Module Aims to provide a unified introduction to the theory,
implementation, and applications of statistical signal
processing.

Module Objectives At the end of these modules, a student should
be able to:

1. acquired sufficient expertise in this area to understand and
implement spectral estimation, signal modelling,
parameter estimation, and adaptive filtering techniques;

2. developed an understanding of the basic concepts and
methodologies in statistical signal processing that provides
the foundation for further study, research, and application
to new problems.
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Structure of the Module

These topics are:

1. review of the fundamentals of probability theory;
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Structure of the Module

These topics are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;
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Structure of the Module

These topics are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;

3. principles of estimation theory;
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Structure of the Module

These topics are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;

3. principles of estimation theory;

4. Bayesian estimation theory;
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Structure of the Module

These topics are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;

3. principles of estimation theory;

4. Bayesian estimation theory;

5. review of Fourier transforms and discrete-time systems;
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Structure of the Module

These topics are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;

3. principles of estimation theory;

4. Bayesian estimation theory;

5. review of Fourier transforms and discrete-time systems;

6. linear systems with stationary random inputs, and linear
system models;
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These topics are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;

3. principles of estimation theory;

4. Bayesian estimation theory;

5. review of Fourier transforms and discrete-time systems;

6. linear systems with stationary random inputs, and linear
system models;

7. signal modelling and parametric spectral estimation;
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Structure of the Module

These topics are:

1. review of the fundamentals of probability theory;

2. random variables and stochastic processes;

3. principles of estimation theory;

4. Bayesian estimation theory;

5. review of Fourier transforms and discrete-time systems;

6. linear systems with stationary random inputs, and linear
system models;

7. signal modelling and parametric spectral estimation;

8. an application investigating the estimation of sinusoids in
noise, outperforming the Fourier transform.
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Introduction

The theory of probability deals with averages of mass
phenomena occurring sequentially or simultaneously;

this might include radar detection, signal detection,
anomaly detection, parameter estimation, ...

It is observed that certain averages approach a constant value
as the number of observations increases, and this value
remains the same if the averages are evaluated over any
subsequence specified before the experiment is performed.
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Introduction

If an experiment is performed n times, and the event A
occurs nA times, then with a high degree of certainty, the
relative frequency nA/n is close to Pr (A), such that:

Pr (A) ≈ nA

n

provided that n is sufficiently large.

Note that this interpretation and the language used is all very
imprecise.
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Classical Definition of Probability

For several centuries, the theory of probability was based on the
classical definition, which states that the probability Pr (A) of an
event A is determine a priori without actual experimentation. It
is given by the ratio:

Pr (A) =
NA

N

where:

N is the total number of outcomes,

and NA is the total number of outcomes that are favourable to
the event A, provided that all outcomes are equally probable.
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Bertrand’s Paradox

Consider a circle C of radius r; what is the probability p that the
length ℓ of a randomly selected cord AB is greater than the

length, r
√
3, of the inscribed equilateral triangle?

r/2

r

Bertrand’s paradox, problem definition.
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Bertrand’s Paradox

A

B

M

Different selection methods.

1. In the random midpoints method, a cord is selected by
choosing a point M anywhere in the circle, an end-point A on
the circumference of the circle, and constructing a chord AB
through these chosen points.

p =
π
(
r
2

)2

πr2
=

1

4
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Bertrand’s Paradox

A

B

M

A

BD

E

Different selection methods.

1. In the random endpoints method, consider selecting two
random points on the circumference of the (outer) circle, A
and B, and drawing a chord between them.

p =
2πr
3

2πr
=

1

3
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Bertrand’s Paradox

A

B

M

A

BD

E

A B
R

Different selection methods.

1. Finally, in the random radius method, a radius of the circle is
chosen at random, and a point on the radius is chosen at
random. The chord AB is constructed as a line perpendicular
to the chosen radius through the chosen point.

p =
r

2r
=

1

2

There are thus three different but reasonable solutions to the
same problem. Which one is valid?
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Using the Classical Definition

The difficulty with the classical definition, as seen in Bertrand’s
Paradox, is in determining N and NA.

Example (Rolling two dice). Two dice are rolled; find the
probability, p, that the sum of the numbers shown equals 7.

Consider three possibilities:

1. The possible outcomes total 11 which are the sums
{2, 3, . . . , 12}. Of these, only one (the sum 7) is favourable.

Hence, p = 1
11 .
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Using the Classical Definition

The difficulty with the classical definition, as seen in Bertrand’s
Paradox, is in determining N and NA.

Example (Rolling two dice). Two dice are rolled; find the
probability, p, that the sum of the numbers shown equals 7.

Consider three possibilities:

1. The possible outcomes total 11 which are the sums
{2, 3, . . . , 12}. Of these, only one (the sum 7) is favourable.

Hence, p = 1
11 .

2. Therefore, to count all possible outcomes which are equally
probable, it is necessary to could all pairs of numbers
distinguishing between the first and second die. This will give
the correct probability.
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Using the Classical Definition

The difficulty with the classical definition, as seen in Bertrand’s
Paradox, is in determining N and NA.

Example (Rolling two dice). Two dice are rolled; find the
probability, p, that the sum of the numbers shown equals 7.

Consider three possibilities:

1. The possible outcomes total 11 which are the sums
{2, 3, . . . , 12}. Of these, only one (the sum 7) is favourable.

Hence, p = 1
11 .

2. Therefore, to count all possible outcomes which are equally
probable, it is necessary to could all pairs of numbers
distinguishing between the first and second die. This will give
the correct probability.
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Difficulties with the Classical Definition

1. The term equally probable in the definition of probability is
making use of a concept still to be defined!
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Difficulties with the Classical Definition

1. The term equally probable in the definition of probability is
making use of a concept still to be defined!

2. The definition can only be applied to a limited class of
problems.

In the die experiment, for example, it is applicable only if the
six faces have the same probability. If the die is loaded and the
probability of a “4” equals 0.2, say, then this cannot be
determined from the classical ratio.
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Difficulties with the Classical Definition

1. The term equally probable in the definition of probability is
making use of a concept still to be defined!

2. The definition can only be applied to a limited class of
problems.

In the die experiment, for example, it is applicable only if the
six faces have the same probability. If the die is loaded and the
probability of a “4” equals 0.2, say, then this cannot be
determined from the classical ratio.

3. If the number of possible outcomes is infinite, then some other
measure of infinity for determining the classical probability
ration is needed, such as length, or area. This leads to
difficulties, as discussed in Bertrand’s paradox.
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Axiomatic Definition

The axiomatic approach to probability is based on the following
three postulates and on nothing else:

1. The probability Pr (A) of an event A is a non-negative number
assigned to this event:

Pr (A) ≥ 0

2. Defining the certain event, S, as the event that occurs in
every trial, then the probability of the certain event equals 1,
such that:

Pr (S) = 1

3. If the events A and B are mutually exclusive, then the
probability of one event or the other occurring separately is:

Pr (A ∪B) = Pr (A) + Pr (B)



Aims and Objectives

Probability Theory

• Introduction

•Classical Definition of

Probability

•Bertrand’s Paradox

•Using the Classical

Definition
•Difficulties with the

Classical Definition
•Axiomatic Definition

•Set Theory

•Properties of Axiomatic

Probability

•Countable Spaces

•The Real Line

•Conditional Probability

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

- p. 16/85

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Set Theory

Unions and Intersections Unions and intersections are
commutative, associative, and distributive, such that:

A ∪B = B ∪A, (A ∪B) ∪ C = A ∪ (B ∪ C)

AB = BA, (AB)C = A(BC), A(B ∪ C) = AB ∪AC
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Set Theory

Unions and Intersections Unions and intersections are
commutative, associative, and distributive, such that:

A ∪B = B ∪A, (A ∪B) ∪ C = A ∪ (B ∪ C)

AB = BA, (AB)C = A(BC), A(B ∪ C) = AB ∪AC

Complements The complement A of a set A ⊂ S is the set
consisting of all elements of S that are not in A. Note that:

A ∪A = S and A ∩A ≡ AA = {∅}
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Set Theory

Unions and Intersections Unions and intersections are
commutative, associative, and distributive, such that:

A ∪B = B ∪A, (A ∪B) ∪ C = A ∪ (B ∪ C)

AB = BA, (AB)C = A(BC), A(B ∪ C) = AB ∪AC

Complements The complement A of a set A ⊂ S is the set
consisting of all elements of S that are not in A. Note that:

A ∪A = S and A ∩A ≡ AA = {∅}

Partitions A partition U of a set S is a collection of mutually
exclusive subsets Ai of S whose union equations S:

∞⋃

i=1

Ai = S, Ai ∩Aj = {∅}, i 6= j ⇒ U = [A1, . . . , An]
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Set Theory

De Morgan’s Law Using Venn diagrams, it is relatively
straightforward to show

A ∪ B = A ∩B ≡ AB and A ∩B ≡ AB = A ∪B
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Set Theory

De Morgan’s Law Using Venn diagrams, it is relatively
straightforward to show

A ∪ B = A ∩B ≡ AB and A ∩B ≡ AB = A ∪B

As an application of this, note that:

A ∪BC = ABC = A
(
B ∪ C

)

=
(
AB

)
∪
(
AC

)

= A ∪B ∪A ∪ C

⇒ A ∪BC = (A ∪B) (A ∪ C)
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Properties of Axiomatic Probability

Impossible Event The probability of the impossible event is 0, and
therefore:

Pr (∅) = 0
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Properties of Axiomatic Probability

Impossible Event The probability of the impossible event is 0, and
therefore:

Pr (∅) = 0

Complements Since A ∪A = S and AA = {∅}, then

Pr
(
A ∪A

)
= Pr (A) + Pr

(
A
)
= Pr (S) = 1, such that:

Pr
(
A
)
= 1− Pr (A)
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Properties of Axiomatic Probability

Impossible Event The probability of the impossible event is 0, and
therefore:

Pr (∅) = 0

Complements Since A ∪A = S and AA = {∅}, then

Pr
(
A ∪A

)
= Pr (A) + Pr

(
A
)
= Pr (S) = 1, such that:

Pr
(
A
)
= 1− Pr (A)

Sum Rule The addition law of probability or the sum rule for
any two events A and B is given by:

Pr (A ∪B) = Pr (A) + Pr (B)− Pr (A ∩B)



Aims and Objectives

Probability Theory

• Introduction

•Classical Definition of

Probability

•Bertrand’s Paradox

•Using the Classical

Definition
•Difficulties with the

Classical Definition
•Axiomatic Definition

•Set Theory

•Properties of Axiomatic

Probability

•Countable Spaces

•The Real Line

•Conditional Probability

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

- p. 17/85

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Properties of Axiomatic Probability

Example (Proof of the Sum Rule). SOLUTION. To prove this,
separately write A ∪B and B as the union of two mutually
exclusive events.

First, note that

A ∪
(
AB

)
=

(
A ∪A

)
(A ∪B) = A ∪B

and that since A
(
AB

)
=

(
AA

)
B = {∅}B = {∅}, then A and

AB are mutually exclusive events.

Second, note that:

B =
(
A ∪A

)
B = (AB) ∪

(
AB

)
�

and that (AB) ∩
(
AB

)
= AAB = {∅}B = {∅} and are

therefore mutually exclusive events.
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Properties of Axiomatic Probability

Example (Proof of the Sum Rule). SOLUTION. Using these two
disjoint unions, then:

Pr (A ∪B) = Pr
(
A ∪

(
AB

))
= Pr (A) + Pr

(
AB

)

Pr (B) = Pr
(
(AB) ∪

(
AB

))
= Pr (AB) + Pr

(
AB

)

Eliminating Pr
(
AB

)
by subtracting these equations gives the

desired result:

Pr (A ∪B)− Pr (B) = Pr
(
A ∪

(
AB

))
= Pr (A)− Pr (AB) �
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Properties of Axiomatic Probability

Example (Sum Rule). Let A and B be events with probabilities
Pr (A) = 3/4 and Pr (B) = 1/3. Show that 1/12 ≤ Pr (AB) ≤ 1/3.
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Properties of Axiomatic Probability

Example (Sum Rule). Let A and B be events with probabilities
Pr (A) = 3/4 and Pr (B) = 1/3. Show that 1/12 ≤ Pr (AB) ≤ 1/3.

SOLUTION. Using the sum rule, that:

Pr (AB) = Pr (A)+Pr (B)−Pr (A ∪B) ≥ Pr (A)+Pr (B)−1 =
1

12
�

which is the case when the whole sample space is covered by
the two events. The second bound occurs since A ∩B ⊂ B and
similarly A ∩B ⊂ A, where ⊂ denotes subset. Therefore, it can
be deduced Pr (AB) ≤ min{Pr (A) , Pr (B)} = 1/3.



Aims and Objectives

Probability Theory

• Introduction

•Classical Definition of

Probability

•Bertrand’s Paradox

•Using the Classical

Definition
•Difficulties with the

Classical Definition
•Axiomatic Definition

•Set Theory

•Properties of Axiomatic

Probability

•Countable Spaces

•The Real Line

•Conditional Probability

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

- p. 18/85

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Countable Spaces

If the certain event, S, consists of N outcomes, and N is a finite
number, then the probabilities of all events can be expressed in
terms of the probabilities Pr (ζi) = pi of the elementary events
{ζi}.

Example (Cups and Saucers). Six cups and saucers come in pairs:
there are two cups and saucers which are red, two which are
while, and two which are blue. If the cups are placed randomly
onto the saucers (one each), find the probability that no cup is
upon a saucer of the same pattern.
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Countable Spaces

Example (Cups and Saucers). SOLUTION. Lay the saucers in
order, say as RRWWBB.
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Countable Spaces

Example (Cups and Saucers). SOLUTION. Lay the saucers in
order, say as RRWWBB.

The cups may be arranged in 6! ways, but since each pair of a
given colour may be switched without changing the
appearance, there are 6!/(2!)3 = 90 distinct arrangements.
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Countable Spaces

Example (Cups and Saucers). SOLUTION. Lay the saucers in
order, say as RRWWBB.

The cups may be arranged in 6! ways, but since each pair of a
given colour may be switched without changing the
appearance, there are 6!/(2!)3 = 90 distinct arrangements.

The arrangements in which cups never match their saucers
are:

WWBBRR, WBRBWR, BWBRRW, BBRRWW

WBBRWR, BWRBRW

WBRBRW, BWRBWR

WBBRWR, BWBRRW

�
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Countable Spaces

Example (Cups and Saucers). SOLUTION. Lay the saucers in
order, say as RRWWBB.

The cups may be arranged in 6! ways, but since each pair of a
given colour may be switched without changing the
appearance, there are 6!/(2!)3 = 90 distinct arrangements.

The arrangements in which cups never match their saucers
are:

WWBBRR, WBRBWR, BWBRRW, BBRRWW

WBBRWR, BWRBRW

WBRBRW, BWRBWR

WBBRWR, BWBRRW

�

Hence, the required probability is 10/90 = 1/9.
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The Real Line

If the certain event, S, consists of a non-countable infinity of
elements, then its probabilities cannot be determined in terms of
the probabilities of elementary events.



Aims and Objectives

Probability Theory

• Introduction

•Classical Definition of

Probability

•Bertrand’s Paradox

•Using the Classical

Definition
•Difficulties with the

Classical Definition
•Axiomatic Definition

•Set Theory

•Properties of Axiomatic

Probability

•Countable Spaces

•The Real Line

•Conditional Probability

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

- p. 19/85

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

The Real Line

If the certain event, S, consists of a non-countable infinity of
elements, then its probabilities cannot be determined in terms of
the probabilities of elementary events.

Suppose that S is the set of all real numbers. To construct a
probability space on the real line, consider events as intervals
x1 < x ≤ x2, and their countable unions and intersections.
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The Real Line

If the certain event, S, consists of a non-countable infinity of
elements, then its probabilities cannot be determined in terms of
the probabilities of elementary events.

Suppose that S is the set of all real numbers. To construct a
probability space on the real line, consider events as intervals
x1 < x ≤ x2, and their countable unions and intersections.

To complete the specification of probabilities for this set, it
suffices to assign probabilities to the events {x ≤ xi}.
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The Real Line

If the certain event, S, consists of a non-countable infinity of
elements, then its probabilities cannot be determined in terms of
the probabilities of elementary events.

Suppose that S is the set of all real numbers. To construct a
probability space on the real line, consider events as intervals
x1 < x ≤ x2, and their countable unions and intersections.

To complete the specification of probabilities for this set, it
suffices to assign probabilities to the events {x ≤ xi}.

This notion leads to cumulative distribution functions (cdfs)
and probability density functions (pdfs) in the next handout.
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Conditional Probability

If an experiment is repeated n times, and on each occasion the
occurrences or non-occurrences of two events A and B are
observed. Suppose that only those outcomes for which B occurs
are considered, and all other experiments are disregarded.
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Conditional Probability

If an experiment is repeated n times, and on each occasion the
occurrences or non-occurrences of two events A and B are
observed. Suppose that only those outcomes for which B occurs
are considered, and all other experiments are disregarded.

In this smaller collection of trials, the proportion of times that A
occurs, given that B has occurred, is:

Pr
(
A
∣
∣B

)
≈ nAB

nB

=
nAB/n
nB/n

=
Pr (AB)

Pr (B)

provided that n is sufficiently large.

It can be shown that this definition satisfies the Kolmogorov
Axioms.
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Conditional Probability

Example (Two Children). A family has two children. What is the
probability that both are boys, given that at least one is a boy?

SOLUTION. The younger and older children may each be male or
female, and it is assumed that each is equally likely.
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Abstract

Deterministic signals interesting because their signal values
are uniquely specified by a functional form.
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Abstract

Deterministic signals interesting because their signal values
are uniquely specified by a functional form.

This precise description cannot be obtained for real-world
signals.
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Abstract

Deterministic signals interesting because their signal values
are uniquely specified by a functional form.

This precise description cannot be obtained for real-world
signals.

Moreover, it can be argued that real-world signals are
inherently stochastic in nature.
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Abstract

Deterministic signals interesting because their signal values
are uniquely specified by a functional form.

This precise description cannot be obtained for real-world
signals.

Moreover, it can be argued that real-world signals are
inherently stochastic in nature.

Although random signals evolve in time stochastically, their
average properties are often deterministic, and thus can be
specified by an explicit functional form.
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Definition

R
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sample space, S
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X( )z3 R

R

Outcome

z1=“Red”

Outcome

z2=“Green”

Outcome

z3=“Blue”

real number line

Physical
Experiment
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A graphical representation of a random variable.
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Definition

A random variable (RV) X (ζ) is a mapping that assigns a real
number X ∈ (−∞, ∞) to every outcome ζ from an abstract
probability space.

1. the interval {X (ζ) ≤ x} is an event in the abstract probability
space for every x ∈ R;

2. Pr (X (ζ) = ∞) = 0 and Pr (X (ζ) = −∞) = 0.
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Definition

Example (Rolling die). Consider rolling a die, with six outcomes
{ζi, i ∈ {1, . . . , 6}}. In this experiment, assign the number 1 to
every even outcome, and the number 0 to every odd outcome.
Then the RV X (ζ) is given by:

X (ζ1) = X (ζ3) = X (ζ5) = 0 and X (ζ2) = X (ζ4) = X (ζ6) = 1
⋊⋉
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Distribution functions

The probability set function Pr (X (ζ) ≤ x) is a function of
the set {X (ζ) ≤ x}, and therefore of the point x ∈ R.

This probability is the cumulative distribution
function (cdf), FX (x) of a RV X (ζ), and is defined by:

FX (x) , Pr (X (ζ) ≤ x)
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Density functions

The probability density function (pdf), fX (x) of a RV X (ζ),
is defined as a formal derivative:

fX (x) ,
dFX (x)

dx

Note fX (x) is not a probability on its own; it must be
multiplied by a certain interval ∆x to obtain a probability:

fX (x) ∆x ≈ FX (x+∆x)−FX (x) ≈ Pr (x < X (ζ) ≤ x+∆x)



Aims and Objectives

Probability Theory

Scalar Random Variables

•Abstract

•Definition

•Distribution functions

•Density functions

•Properties: Distributions

and Densities
•Kolmogorov’s Axioms

•Common Continuous RVs

•Probability transformation

rule
•Expectations

•Properties of expectation

operator

•Moments

•Characteristic Functions

•Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

- p. 25/85

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Density functions

The probability density function (pdf), fX (x) of a RV X (ζ),
is defined as a formal derivative:

fX (x) ,
dFX (x)

dx

Note fX (x) is not a probability on its own; it must be
multiplied by a certain interval ∆x to obtain a probability:

fX (x) ∆x ≈ FX (x+∆x)−FX (x) ≈ Pr (x < X (ζ) ≤ x+∆x)

It directly follows that:

FX(x) =

∫ x

−∞

fX(v) dv
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Density functions

The probability density function (pdf), fX (x) of a RV X (ζ),
is defined as a formal derivative:

fX (x) ,
dFX (x)

dx

Note fX (x) is not a probability on its own; it must be
multiplied by a certain interval ∆x to obtain a probability:

fX (x) ∆x ≈ FX (x+∆x)−FX (x) ≈ Pr (x < X (ζ) ≤ x+∆x)

It directly follows that:

FX(x) =

∫ x

−∞

fX(v) dv

For discrete-valued RV, use the pmf, pk, the probability that

X (ζ) takes on a value equal to xk: pk , Pr (X (ζ) = xk).
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Properties: Distributions and Densities

Properties of cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1

FX(x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b
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Properties: Distributions and Densities

Properties of cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1

FX(x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b

Properties of pdfs:

fX (x) ≥ 0,

∫ ∞

−∞

fX (x) dx = 1
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Properties: Distributions and Densities

Properties of cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1

FX(x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b

Properties of pdfs:

fX (x) ≥ 0,

∫ ∞

−∞

fX (x) dx = 1

Probability of arbitrary events:

Pr (x1 < X (ζ) ≤ x2) = FX (x2)− FX (x1) =

∫ x2

x1

fX (x) dx
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Kolmogorov’s Axioms

The events {x ≤ x1} and {x1 < x ≤ x2} are mutually exclussive
events. Therefore, their union equals {x ≤ x2}, and therefore:

Pr (x ≤ x1) + Pr (x1 < x ≤ x2) = Pr (x ≤ x2)
∫ x1

−∞

p (v) dv + Pr (x1 < x ≤ x2) =

∫ x2

−∞

p (v) dv

⇒ Pr (x1 < x ≤ x2) =

∫ x2

x1

p (v) dv

Moreover, it follows that Pr (−∞ < x ≤ ∞) = 1 and the
probability of the impossible event, Pr (x ≤ −∞) = 0. Hence, the
cdf satisfies the axiomatic definition of probability.
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Common Continuous RVs

Uniform distribution

fX (x) =

{
1

b−a
if a < x ≤ b,

0 otherwise

Normal distribution

fX (x) =
1

√

2πσ2
X

exp

[

−1

2

(
x− µX

σX

)2
]

, x ∈ R

Cauchy distribution

fX (x) =
β

π

1

(x− µX)2 + β2

The Cauchy random variable has mean µX , but its variance
does not exist.
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Probability transformation rule

Suppose a random variable Y (ζ) is a function, g, of a random
variable X (ζ), which has pdf given by fX (x). What is fY (y)?
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Probability transformation rule

Suppose a random variable Y (ζ) is a function, g, of a random
variable X (ζ), which has pdf given by fX (x). What is fY (y)?

Theorem (Probability transformation rule). Denote the real roots of
y = g(x) by {xn, n ∈ N}, such that

y = g(x1) = · · · = g(xN )

♦
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Probability transformation rule

Suppose a random variable Y (ζ) is a function, g, of a random
variable X (ζ), which has pdf given by fX (x). What is fY (y)?

Theorem (Probability transformation rule). Denote the real roots of
y = g(x) by {xn, n ∈ N}, such that

y = g(x1) = · · · = g(xN )

Then, if the Y (ζ) = g[X (ζ)], the pdf of Y (ζ) in terms of the pdf
of X (ζ) is given by:

fY (y) =
N∑

n=1

fX (xn)

|g′(xn)|
♦

where g′(x) is the derivative with respect to (w. r. t.) x of g(x).
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Probability transformation rule

Example (Log-normal distribution). Let Y = eX , where
X ∼ N (0, 1). Find the pdf for the RV Y .
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Probability transformation rule

Example (Log-normal distribution). Let Y = eX , where
X ∼ N (0, 1). Find the pdf for the RV Y .

SOLUTION. Since X ∼ N (0, 1), then:

fX (x) =
1√
2π

e−
x2

2

�



Aims and Objectives

Probability Theory

Scalar Random Variables

•Abstract

•Definition

•Distribution functions

•Density functions

•Properties: Distributions

and Densities
•Kolmogorov’s Axioms

•Common Continuous RVs

•Probability transformation

rule
•Expectations

•Properties of expectation

operator

•Moments

•Characteristic Functions

•Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

- p. 29/85

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Probability transformation rule

Example (Log-normal distribution). Let Y = eX , where
X ∼ N (0, 1). Find the pdf for the RV Y .

SOLUTION. Since X ∼ N (0, 1), then:

fX (x) =
1√
2π

e−
x2

2 �

Considering the transformation y = g(x) = ex, there is one root,
given by x = ln y. Therefore, the derivative of this expression is
g′(x) = ex = y.
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Probability transformation rule

Example (Log-normal distribution). Let Y = eX , where
X ∼ N (0, 1). Find the pdf for the RV Y .

SOLUTION. Since X ∼ N (0, 1), then:

fX (x) =
1√
2π

e−
x2

2

Considering the transformation y = g(x) = ex, there is one root,
given by x = ln y. Therefore, the derivative of this expression is
g′(x) = ex = y.

Hence, it follows:

fY (y) =
fX (x)

g′(x)
=

1

y
√
2π

e−
(ln y)2

2 �
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Expectations

To completely characterise a RV, the pdf must be known.
However, it is desirable to summarise key aspects of the pdf by
using a few parameters rather than having to specify the entire
density function.

The expected or mean value of a function of a RV X (ζ) is
given by:

E [X (ζ)] =

∫

R

x fX(x) dx
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Expectations

If X (ζ) is discrete, then its corresponding pdf may be written
in terms of its pmf as:

fX(x) =
∑

k

pk δ(x− xk)

where the Dirac-delta, δ(x− xk), is unity if x = xk, and zero
otherwise.
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Expectations

If X (ζ) is discrete, then its corresponding pdf may be written
in terms of its pmf as:

fX(x) =
∑

k

pk δ(x− xk)

where the Dirac-delta, δ(x− xk), is unity if x = xk, and zero
otherwise.

Hence, for a discrete RV, the expected value is given by:

µx =

∫

R

x fX(x) dx =

∫

R

x
∑

k

pk δ(x− xk) dx =
∑

k

xk pk

where the order of integration and summation have been
interchanged, and the sifting-property applied.
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Properties of expectation operator

The expectation operator computes a statistical average by using
the density fX(x) as a weighting function. Hence, the mean µx

can be regarded as the center of gravity of the density.
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Properties of expectation operator

The expectation operator computes a statistical average by using
the density fX(x) as a weighting function. Hence, the mean µx

can be regarded as the center of gravity of the density.

If fX(x) is an even function, then µX = 0. Note that since
fX(x) ≥ 0, then fX(x) cannot be an odd function.

If fX(x) is symmetrical about x = a, such that
fX(a− x) = fX(x+ a), then µX = a.
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Properties of expectation operator

The expectation operator computes a statistical average by using
the density fX(x) as a weighting function. Hence, the mean µx

can be regarded as the center of gravity of the density.

If fX(x) is an even function, then µX = 0. Note that since
fX(x) ≥ 0, then fX(x) cannot be an odd function.

If fX(x) is symmetrical about x = a, such that
fX(a− x) = fX(x+ a), then µX = a.

The expectation operator is linear:

E [αX (ζ) + β] = αµX + β
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Properties of expectation operator

The expectation operator computes a statistical average by using
the density fX(x) as a weighting function. Hence, the mean µx

can be regarded as the center of gravity of the density.

If fX(x) is an even function, then µX = 0. Note that since
fX(x) ≥ 0, then fX(x) cannot be an odd function.

If fX(x) is symmetrical about x = a, such that
fX(a− x) = fX(x+ a), then µX = a.

The expectation operator is linear:

E [αX (ζ) + β] = αµX + β

If Y (ζ) = g{X (ζ)} is a RV obtained by transforming X (ζ)
through a suitable function, the expectation of Y (ζ) is:

E [Y (ζ)] , E [g{X (ζ)}] =
∫ ∞

−∞

g(x) fX(x) dx
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Moments

Recall that mean and variance can be defined as:

E [X (ζ)] = µX =

∫

R

x fX(x) dx

var [X (ζ)] = σ2
X =

∫

R

x2 fX(x) dx− µ2
X = E

[
X2(ζ)

]
− E

2 [X (ζ)]

Thus, key characteristics of the pdf of a RV can be calculated if
the expressions E [Xm(ζ)] , m ∈ {1, 2} are known.
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Moments

Recall that mean and variance can be defined as:

E [X (ζ)] = µX =

∫

R

x fX(x) dx

var [X (ζ)] = σ2
X =

∫

R

x2 fX(x) dx− µ2
X = E

[
X2(ζ)

]
− E

2 [X (ζ)]

Thus, key characteristics of the pdf of a RV can be calculated if
the expressions E [Xm(ζ)] , m ∈ {1, 2} are known.

Further aspects of the pdf can be described by defining various
moments of X (ζ): the m-th moment of X (ζ) is given by:

r
(m)
X , E [Xm(ζ)] =

∫

R

xm fX(x) dx

Note, of course, that in general: E [Xm(ζ)] 6= E
m [X (ζ)].
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Characteristic Functions

The characteristic function of a rv X (ζ) is defined by the
integral:

ΦX(ξ) , E

[

ejξ X(ζ)
]

=

∫ ∞

−∞

fX (x) ejξx dx
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Characteristic Functions

The characteristic function of a rv X (ζ) is defined by the
integral:

ΦX(ξ) , E

[

ejξ X(ζ)
]

=

∫ ∞

−∞

fX (x) ejξx dx

When jξ is replaced by a complex variable s, the moment

generating function is obtained, as defined by:

Φ̄X(s) , E

[

esX(ζ)
]

=

∫ ∞

−∞

fX (x) esx dx



Aims and Objectives

Probability Theory

Scalar Random Variables

•Abstract

•Definition

•Distribution functions

•Density functions

•Properties: Distributions

and Densities
•Kolmogorov’s Axioms

•Common Continuous RVs

•Probability transformation

rule
•Expectations

•Properties of expectation

operator

•Moments

•Characteristic Functions

•Higher-order statistics

Multiple Random Variables

Estimation Theory

MonteCarlo

- p. 33/85

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Characteristic Functions

The characteristic function of a rv X (ζ) is defined by the
integral:

ΦX(ξ) , E

[

ejξ X(ζ)
]

=

∫ ∞

−∞

fX (x) ejξx dx

When jξ is replaced by a complex variable s, the moment

generating function is obtained, as defined by:

Φ̄X(s) , E

[

esX(ζ)
]

=

∫ ∞

−∞

fX (x) esx dx

Using a series expansion for esX(ζ) gives:

Φ̄X(s) =
∞∑

n=0

sn

n!
r
(n)
X

Thus, if all moments of X (ζ) are known upon inverse Laplace
transformation, the pdf fX (x) can be determined.
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Characteristic Functions

Φ̄X(s) =
∞∑

n=0

sn

n!
r
(n)
X

Differentiating Φ̄X(s) m-times w. r. t. s, provides the mth-order
moment of the RV X (ζ):

r
(m)
X =

dmΦ̄X(s)

dsm

∣
∣
∣
∣
s=0

= (−j)m
dmΦX(ξ)

dξm

∣
∣
∣
∣
ξ=0

, m ∈ Z
+
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Higher-order statistics

Two important and commonly used higher-order statistics that
are useful for characterising a random variable are:

Skewness characterises the degree of asymmetry of a distribution
about its mean. It is defined as a normalised third-order
central moment:

κ̃
(3)
X , E

[{
X (ζ)− µX

σX

}3
]

=
1

σ3
X

γ
(3)
X

and is a dimensionless quantity.

In otherwords, if the left side or left tail of the distribution is
more pronounced than the right tail, the function is said to
have negative skewness (and leans to the left). If the reverse
is true, it has positive skewness (and leans to the right). If the
two are equal, it has zero skewness.
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Higher-order statistics

Two important and commonly used higher-order statistics that
are useful for characterising a random variable are:

Skewness characterises the degree of asymmetry of a distribution
about its mean. It is defined as a normalised third-order
central moment:

κ̃
(3)
X , E

[{
X (ζ)− µX

σX

}3
]

=
1

σ3
X

γ
(3)
X

and is a dimensionless quantity.

The skewness is:

κ̃
(3)
X =







< 0 if the density leans towards the left

0 if the density is symmetric about µX

> 0 if the density leans towards the right

In otherwords, if the left side or left tail of the distribution is

more pronounced than the right tail, the function is said to
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Higher-order statistics

Kurtosis measures relative flatness or peakedness of a distribution
about its mean value.

This measure is relative with respect to a normal distribution,

which has the property γ
(4)
X = 3σ4

X , therefore having zero
kurtosis.
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Higher-order statistics

Kurtosis measures relative flatness or peakedness of a distribution
about its mean value.

It is defined based on a normalised fourth-central moment:

κ̃
(4)
X , E

[{
X (ζ)− µX

σX

}4
]

− 3 =
1

σ4
X

γ
(4)
X − 3

This measure is relative with respect to a normal

distribution, which has the property γ
(4)
X = 3σ4

X , therefore
having zero kurtosis.
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Abstract

A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random
vector, or vector RV.

This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.
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Abstract

A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random
vector, or vector RV.

This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.

Note that each element of a random vector is not necessarily
generated independently from a separate experiment.
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Abstract

A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random
vector, or vector RV.

This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.

Note that each element of a random vector is not necessarily
generated independently from a separate experiment.

Random vectors also lead to the notion of the relationship
between the random elements.
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Abstract

A group of signal observations can be modelled as a collection of
random variables (RVs) that can be grouped to form a random
vector, or vector RV.

This is an extension of the concept of a RV, and generalises
many of the results presented for scalar RVs.

Note that each element of a random vector is not necessarily
generated independently from a separate experiment.

Random vectors also lead to the notion of the relationship
between the random elements.

This course mainly deals with real-valued random vectors,
although the concept can be extended to complex-valued
random vectors.
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Definition of Random Vectors

A real-valued random vector X (ζ) containing N real-valued RVs,
each denoted by Xn(ζ) for n ∈ N = {1, . . . , N}, is denoted by
the column-vector:

X (ζ) =
[

X1(ζ) X2(ζ) · · · XN (ζ)
]T
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Definition of Random Vectors

A real-valued random vector X (ζ) containing N real-valued RVs,
each denoted by Xn(ζ) for n ∈ N = {1, . . . , N}, is denoted by
the column-vector:

X (ζ) =
[

X1(ζ) X2(ζ) · · · XN (ζ)
]T

A real-valued random vector can be thought as a mapping from

an abstract probability space to a vector-valued, real space R
N .
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Definition of Random Vectors

A real-valued random vector X (ζ) containing N real-valued RVs,
each denoted by Xn(ζ) for n ∈ N = {1, . . . , N}, is denoted by
the column-vector:

X (ζ) =
[

X1(ζ) X2(ζ) · · · XN (ζ)
]T

A real-valued random vector can be thought as a mapping from

an abstract probability space to a vector-valued, real space R
N .

Denote a specific value for a random vector as:

x =
[

x1 x2 · · · xN

]T

Then the notation X (ζ) ≤ x is equivalent to the event
{Xn(ζ) ≤ xn, n ∈ N}.
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Distribution and Density Functions

The joint cdf completely characterises a random vector, and is
defined by:

FX (x) , Pr ({Xn(ζ) ≤ xn, n ∈ N}) = Pr (X (ζ) ≤ x)
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Distribution and Density Functions

The joint cdf completely characterises a random vector, and is
defined by:

FX (x) , Pr ({Xn(ζ) ≤ xn, n ∈ N}) = Pr (X (ζ) ≤ x)

A random vector can also be characterised by its joint pdf,

which is defined by

fX (x) = lim
∆x→0

Pr ({xn < Xn(ζ) ≤ xn +∆xn, n ∈ N})
∆x1 · · ·∆xN

=
∂

∂x1

∂

∂x2
· · · ∂

∂xN

FX (x)
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Distribution and Density Functions

The joint cdf completely characterises a random vector, and is
defined by:

FX (x) , Pr ({Xn(ζ) ≤ xn, n ∈ N}) = Pr (X (ζ) ≤ x)

A random vector can also be characterised by its joint pdf,

which is defined by

fX (x) = lim
∆x→0

Pr ({xn < Xn(ζ) ≤ xn +∆xn, n ∈ N})
∆x1 · · ·∆xN

=
∂

∂x1

∂

∂x2
· · · ∂

∂xN

FX (x)

Hence, it follows:

FX (x) =

∫ x1

−∞

· · ·
∫ xN

−∞

fX (v) dvN · · · dv1 =

∫ x

−∞

fX (v) dv
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Distribution and Density Functions

Properties of joint-cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1

FX (x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b
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Distribution and Density Functions

Properties of joint-cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1

FX (x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b

Properties of joint-pdfs:

fX (x) ≥ 0,

∫
∞

−∞

fX (x) dx = 1
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Distribution and Density Functions

Properties of joint-cdf:

0 ≤ FX (x) ≤ 1, lim
x→−∞

FX (x) = 0, lim
x→∞

FX (x) = 1

FX (x) is a monotonically increasing function of x:

FX (a) ≤ FX (b) if a ≤ b

Properties of joint-pdfs:

fX (x) ≥ 0,

∫
∞

−∞

fX (x) dx = 1

Probability of arbitrary events; note that

Pr (x1 < X (ζ) ≤ x2) 6= FX (x2)− FX (x1) =

∫ x2

x1

fX (v) dv
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]). The joint-pdf of a
random vector Z(ζ) which has two elements and therefore two
random variables given by X (ζ) and Y (ζ) is given by:

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise
⋊⋉

Calculate the joint-cumulative distribution function, FZ (z).
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]). The joint-pdf of a
random vector Z(ζ) which has two elements and therefore two
random variables given by X (ζ) and Y (ζ) is given by:

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. First note that the pdf integrates to unity since:

∫
∞

−∞

fZ (z) dz =

∫ 1

0

∫ 1

0

1

2
(x+ 3y) dx dy =

∫ 1

0

1

2

[
1

2
x2 + 3xy

]1

0

dy

�
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]). The joint-pdf of a
random vector Z(ζ) which has two elements and therefore two
random variables given by X (ζ) and Y (ζ) is given by:

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. First note that the pdf integrates to unity since:

∫
∞

−∞

fZ (z) dz =

∫ 1

0

∫ 1

0

1

2
(x+ 3y) dx dy =

∫ 1

0

1

2

[
1

2
x2 + 3xy

]1

0

dy

=

∫ 1

0

1

4
+

3

2
y dy =

[
y

4
+

3y2

4

]1

0

=
1

4
+

3

4
= 1

�
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. The pdf is shown here:

−2

0

2

−2

0

2
0

0.5

1

1.5

2

x

PDF

y

f Z
(z

)

Region of support for pdf. �
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. For x ≤ 0 or y ≤ 0, fZ (z) = 0, and thus FZ (z) = 0 .
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. For x ≤ 0 or y ≤ 0, fZ (z) = 0, and thus FZ (z) = 0 .

If 0 < x ≤ 1 and 0 < y ≤ 1, the cdf is given by:

FZ (z) =

∫ z

−∞

fZ (z̄) dz̄ =

∫ y

0

∫ x

0

1

2
(x̄+ 3ȳ) dx̄ dȳ

�
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. For x ≤ 0 or y ≤ 0, fZ (z) = 0, and thus FZ (z) = 0 .

If 0 < x ≤ 1 and 0 < y ≤ 1, the cdf is given by:

FZ (z) =

∫ z

−∞

fZ (z̄) dz̄ =

∫ y

0

∫ x

0

1

2
(x̄+ 3ȳ) dx̄ dȳ

=

∫ y

0

1

2

(
x2

2
+ 3xȳ

)

dȳ =
1

2

(
x2

2
y +

3xy2

2

)

=
xy

4
(x+ 3y)

�
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. For x ≤ 0 or y ≤ 0, fZ (z) = 0, and thus FZ (z) = 0 .

If 0 < x ≤ 1 and 0 < y ≤ 1, the cdf is given by:

FZ (z) =

∫ z

−∞

fZ (z̄) dz̄ =

∫ y

0

∫ x

0

1

2
(x̄+ 3ȳ) dx̄ dȳ

=

∫ y

0

1

2

(
x2

2
+ 3xȳ

)

dȳ =
1

2

(
x2

2
y +

3xy2

2

)

=
xy

4
(x+ 3y)�

Finally, if x > 1 or y > 1, the upper limit of integration for the
corresponding variable becomes equal to 1.
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. Hence, in summary, it follows:

FZ (z) =







0 x ≤ 0 or y ≤ 0
xy
4 (x+ 3y) 0 < x, y ≤ 1
x
4 (x+ 3) 0 < x ≤ 1, 1 < y
y
4 (1 + 3y) 0 < y ≤ 1, 1 < x

1 1 < x, y < ∞
�
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Distribution and Density Functions

Example ( [Therrien:1992, Example 2.1, Page 20]).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the joint-cumulative distribution function, FZ (z).

SOLUTION. The cdf is plotted here:
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A plot of the cumulative distribution function. �
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Marginal Density Function

The joint pdf characterises the random vector; the so-called
marginal pdf describes a subset of RVs from the random vector.
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Marginal Density Function

The joint pdf characterises the random vector; the so-called
marginal pdf describes a subset of RVs from the random vector.

Let k be an M -dimensional vector containing unique indices to
elements in the N -dimensional random vector X (ζ),

k =









k1

k2
...

kM
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Marginal Density Function

The joint pdf characterises the random vector; the so-called
marginal pdf describes a subset of RVs from the random vector.

Let k be an M -dimensional vector containing unique indices to
elements in the N -dimensional random vector X (ζ),

Now define a M -dimensional random vector, Xk(ζ), that
contains the M random variables which are components of X (ζ)
and indexed by the elements of k. In other-words, if

k =









k1

k2
...

kM









then Xk(ζ) =









Xk1(ζ)

Xk2(ζ)
...

XkM
(ζ)
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Marginal Density Function

The marginal pdf is then given by:

fXk
(xk) =

∫ ∞

−∞

· · ·
∫ ∞

−∞
︸ ︷︷ ︸

N − M integrals

fX (x) dx−k
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Marginal Density Function

The marginal pdf is then given by:

fXk
(xk) =

∫ ∞

−∞

· · ·
∫ ∞

−∞
︸ ︷︷ ︸

N − M integrals

fX (x) dx−k

A special case is the marginal pdf describing the individual RV

Xj:

fXj
(xj) =

∫ ∞

−∞

· · ·
∫ ∞

−∞
︸ ︷︷ ︸

N − 1 integrals

fX (x) dx1 · · · dxj−1dxj+1 · · · dxN
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Marginal Density Function

The marginal pdf is then given by:

fXk
(xk) =

∫ ∞

−∞

· · ·
∫ ∞

−∞
︸ ︷︷ ︸

N − M integrals

fX (x) dx−k

A special case is the marginal pdf describing the individual RV

Xj:

fXj
(xj) =

∫ ∞

−∞

· · ·
∫ ∞

−∞
︸ ︷︷ ︸

N − 1 integrals

fX (x) dx1 · · · dxj−1dxj+1 · · · dxN

Marginal pdfs will become particular useful when dealing with
Bayesian parameter estimation later in the course.
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Marginal Density Function

Example (Marginalisation). The joint-pdf of a random vector Z(ζ)
which has two elements and therefore two random variables
given by X (ζ) and Y (ζ) is given by:

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise
⋊⋉

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).
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Marginal Density Function

Example (Marginalisation). The joint-pdf of a random vector Z(ζ)
which has two elements and therefore two random variables
given by X (ζ) and Y (ζ) is given by:

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).

SOLUTION. By definition:

fX (x) =

∫

R

fZ (z) dy

fY (y) =

∫

R

fZ (z) dx
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Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).

SOLUTION. Taking fX (x), then:

fX (x) =

{
1
2

∫ 1

0
(x+ 3y) dy 0 ≤ x ≤ 1

0 otherwise
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Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).

SOLUTION. Taking fX (x), then:

fX (x) =

{
1
2

∫ 1

0
(x+ 3y) dy 0 ≤ x ≤ 1

0 otherwise

which after a simple integration gives:

fX (x) =

{
1
2

(
x+ 3

2

)
0 ≤ x ≤ 1

0 otherwise
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Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).

SOLUTION. The cdf, FX (x), is thus given by:

FX (x) =

∫ x

−∞

fX (u) du =







0 x ≤ 0
1
2

∫ x

0

(
u+ 3

2

)
du 0 ≤ x ≤ 1

1
2

∫ 1

0

(
u+ 3

2

)
du x > 1
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Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).

SOLUTION. The cdf, FX (x), is thus given by:

FX (x) =

∫ x

−∞

fX (u) du =







0 x ≤ 0
1
2

∫ x

0

(
u+ 3

2

)
du 0 ≤ x ≤ 1

1
2

∫ 1

0

(
u+ 3

2

)
du x > 1

FX (x) =







0 x ≤ 0
x
4 (x+ 3) 0 ≤ x ≤ 1

1 x > 1
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Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

Calculate the marginal-pdfs, fX (x) and fY (y), and their
corresponding marginal-cdfs, FX (x) and FY (y).

SOLUTION. Similarly, it can be shown that:

fY (y) =

{
1
2

(
1
2 + 3y

)
0 ≤ y ≤ 1

0 otherwise

and

FY (y) =







0 y ≤ 0
y
4 (1 + 3y) 0 ≤ y ≤ 1

1 y > 1

�
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Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

SOLUTION. The marginal-pdfs and cdfs are shown below.
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The marginal-pdf, fX (x), and cdf, FX (x), for the RV, X (ζ).
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Marginal Density Function

Example (Marginalisation).

fZ (z) =

{
1
2 (x+ 3y) 0 ≤ x, y ≤ 1

0 otherwise

SOLUTION. The marginal-pdfs and cdfs are shown below.
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The marginal-pdf, fY (y), and cdf, FY (y), for the RV, Y (ζ).
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Independence

Two random variables, X1(ζ) and X2(ζ) are independent if the
events {X1(ζ) ≤ x1} and {X2(ζ) ≤ x2} are jointly independent;
that is, the events do not influence one another, and

Pr (X1(ζ) ≤ x1, X2(ζ) ≤ x2) = Pr (X1(ζ) ≤ x1) Pr (X2(ζ) ≤ x2)
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Independence

Two random variables, X1(ζ) and X2(ζ) are independent if the
events {X1(ζ) ≤ x1} and {X2(ζ) ≤ x2} are jointly independent;
that is, the events do not influence one another, and

Pr (X1(ζ) ≤ x1, X2(ζ) ≤ x2) = Pr (X1(ζ) ≤ x1) Pr (X2(ζ) ≤ x2)

This then implies that

FX1,X2 (x1, x2) = FX1 (x1)FX2 (x2)

fX1,X2 (x1, x2) = fX1 (x1) fX2 (x2)
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Conditionals and Bayes’s

The notion of joint probabilities and pdf also leads to the notion
of conditional probabilities; what is the probability of a random
vector Y (ζ), given the random vector X (ζ).
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Conditionals and Bayes’s

The notion of joint probabilities and pdf also leads to the notion
of conditional probabilities; what is the probability of a random
vector Y (ζ), given the random vector X (ζ).

The conditional pdf of Y (ζ) given X (ζ) is defined as:

fY|X (y | x) = fXY (x, y)

fX (x)
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Conditionals and Bayes’s

The notion of joint probabilities and pdf also leads to the notion
of conditional probabilities; what is the probability of a random
vector Y (ζ), given the random vector X (ζ).

The conditional pdf of Y (ζ) given X (ζ) is defined as:

fY|X (y | x) = fXY (x, y)

fX (x)

If the random vectors X (ζ) and Y (ζ) are independent, then the
conditional pdf must be identical to the unconditional pdf:
fY|X (y | x) = fY (y). Hence, it follows that:

fXY (x, y) = fX (x) fY (y)
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Conditionals and Bayes’s

Since

fXY (x, y) = fY|X (y | x) fX (x) = fX|Y (x | y) fY (y) = fYX (y, x)

it follows

fX|Y (x | y) = fY|X (y | x) fX (x)

fY (y)
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Conditionals and Bayes’s

Since

fXY (x, y) = fY|X (y | x) fX (x) = fX|Y (x | y) fY (y) = fYX (y, x)

it follows

fX|Y (x | y) = fY|X (y | x) fX (x)

fY (y)

Since fY (y) can be expressed as:

fY (y) =

∫

R

fXY (x, y) dx =

∫

R

fY|X (y | x) fX (x) dx

then it follows

fX|Y (x | y) = fY|X (y | x) fX (x)
∫

R
fY|X (y | x) fX (x) dx
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Statistical Description

Statistical averages are more manageable, but less of a complete
description of random vectors.
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Statistical Description

Statistical averages are more manageable, but less of a complete
description of random vectors.

With care, it is possible to extend many of the statistical
descriptors for scalar RVs to random vectors.
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Statistical Description

Statistical averages are more manageable, but less of a complete
description of random vectors.

With care, it is possible to extend many of the statistical
descriptors for scalar RVs to random vectors.

However, it is important to understand that multiple RVs leads to
the notion of measuring their interaction or dependence. This
concept is useful in abstract, but also when dealing with
stochastic processes or time-series.
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Statistical Description

Mean vector The mean vector is the first-moment of the random
vector, and is given by:

µX = E [X (ζ)] =







E [X1(ζ)]
...

E [XN (ζ)]






=







µX1

...

µXN
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Statistical Description

Mean vector The mean vector is the first-moment of the random
vector, and is given by:

µX = E [X (ζ)] =







E [X1(ζ)]
...

E [XN (ζ)]






=







µX1

...

µXN







Correlation Matrix The second-order moments of the random
vector describe the spread of the distribution. The
autocorrelation matrix is defined by:

RX , E
[
X (ζ)XH(ζ)

]
=







rX1X1 · · · rX1XN

...
. . .

...

rXNX1 · · · rXNXN
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Statistical Description

Correlation Matrix The diagonal terms

rXiXi
, E

[

|Xi(ζ)|2
]

, i ∈ {1, . . . , N}

are the second-order moments of each of the RVs, Xi(ζ).
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Statistical Description

Correlation Matrix The diagonal terms

rXiXi
, E

[

|Xi(ζ)|2
]

, i ∈ {1, . . . , N}

are the second-order moments of each of the RVs, Xi(ζ).

The off-diagonal terms

rXiXj
, E

[
Xi(ζ)X

∗
j (ζ)

]
= r∗XjXi

, i 6= j

measure the correlation, or statistical similarity between the
RVs Xi(ζ) and Xj(ζ).
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Statistical Description

Correlation Matrix The diagonal terms

rXiXi
, E

[

|Xi(ζ)|2
]

, i ∈ {1, . . . , N}

are the second-order moments of each of the RVs, Xi(ζ).

The off-diagonal terms

rXiXj
, E

[
Xi(ζ)X

∗
j (ζ)

]
= r∗XjXi

, i 6= j

measure the correlation, or statistical similarity between the
RVs Xi(ζ) and Xj(ζ).

If the Xi(ζ) and Xj(ζ) are orthogonal then their correlation
is zero:

rXiXj
= E

[
Xi(ζ)X

∗
j (ζ)

]
= 0, i 6= j
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Statistical Description

Covariance Matrix The autocovariance matrix is defined by:

ΓX , E

[

(X (ζ)− µX) (X (ζ)− µX)
H
]

=







γX1X1 · · · γX1XN

...
. . . · · ·

γXNX1 · · · γXNXN









Aims and Objectives

Probability Theory

Scalar Random Variables

Multiple Random Variables

•Abstract

•Definition of Random

Vectors
•Distribution and Density

Functions
•Marginal Density Function

• Independence

•Conditionals and Bayes’s

•Statistical Description

•Probability Transformation

Rule
•Polar Transformation

•Linear Transformations

•Auxiliary Variables

•Multivariate Gaussian

Density Function

•Characteristic Functions

•Sum of Independent

Random Variables
•Central limit theorem

Estimation Theory

MonteCarlo

- p. 42/85

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Statistical Description

Covariance Matrix The autocovariance matrix is defined by:

ΓX , E

[

(X (ζ)− µX) (X (ζ)− µX)
H
]

=







γX1X1 · · · γX1XN

...
. . . · · ·

γXNX1 · · · γXNXN







The diagonal terms

γXiXi
, σ2

Xi
= E

[

|Xi(ζ)− µXi
|2
]

, i ∈ {1, . . . , N}

are the variances of each of the RVs, Xi(ζ).
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Statistical Description

Covariance Matrix The off-diagonal terms

γXiXj
, E

[

(Xi(ζ)− µXi
)
(
Xj(ζ)− µXj

)∗
]

= rXiXj
− µXi

µ∗
Xj

= γ∗
XjXi

, i 6= j

measure the covariance Xi(ζ) and Xj(ζ).
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Statistical Description

Covariance Matrix The off-diagonal terms

γXiXj
, E

[

(Xi(ζ)− µXi
)
(
Xj(ζ)− µXj

)∗
]

= rXiXj
− µXi

µ∗
Xj

= γ∗
XjXi

, i 6= j

measure the covariance Xi(ζ) and Xj(ζ).

It should also be noticed that the covariance and correlation
matrices are positive semidefinite; that is, they satisfy the
relations:

aH RXa ≥0

aH ΓXa ≥0

for any complex vector a.
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Statistical Description

The autocorrelation and autocovariance matrices are related,
and it can easily be seen that:

ΓX , E

[

[X (ζ)− µX] [X (ζ)− µX]H
]

= RX − µXµH
X

In fact, if µX = 0, then ΓX = RX.
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Statistical Description

The autocorrelation and autocovariance matrices are related,
and it can easily be seen that:

ΓX , E

[

[X (ζ)− µX] [X (ζ)− µX]H
]

= RX − µXµH
X

In fact, if µX = 0, then ΓX = RX.

If the random variables Xi(ζ) and Xj(ζ) are independent, then
they are also uncorrelated since:

rXiXj
= E [Xi(ζ)Xj(ζ)

∗] = E [Xi(ζ)]E
[
X∗

j (ζ)
]

= µXi
µ∗
Xj

⇒ γXiXj
= 0
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Statistical Description

The autocorrelation and autocovariance matrices are related,
and it can easily be seen that:

ΓX , E

[

[X (ζ)− µX] [X (ζ)− µX]H
]

= RX − µXµH
X

In fact, if µX = 0, then ΓX = RX.

If the random variables Xi(ζ) and Xj(ζ) are independent, then
they are also uncorrelated since:

rXiXj
= E [Xi(ζ)Xj(ζ)

∗] = E [Xi(ζ)]E
[
X∗

j (ζ)
]

= µXi
µ∗
Xj

⇒ γXiXj
= 0

Note, however, that uncorrelatedness does not imply
independence, unless the RVs are jointly-Gaussian.
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Statistical Description

Cross-correlation is defined as

RXY , E
[
X (ζ)YH(ζ)

]
=







E [X1(ζ)Y
∗
1 (ζ)] · · · E [X1(ζ)Y

∗
M (ζ)]

...
. . .

...

E [XN (ζ)Y ∗
1 (ζ)] · · · E [XN (ζ)Y ∗

M (ζ)]
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Statistical Description

Cross-correlation is defined as

RXY , E
[
X (ζ)YH(ζ)

]
=







E [X1(ζ)Y
∗
1 (ζ)] · · · E [X1(ζ)Y

∗
M (ζ)]

...
. . .

...

E [XN (ζ)Y ∗
1 (ζ)] · · · E [XN (ζ)Y ∗

M (ζ)]







Cross-covariance is defined as

ΓXY , E

[

{X (ζ)− µX} {Y (ζ)− µY}H
]

= RXY − µXµH
Y
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Statistical Description

Cross-correlation is defined as

RXY , E
[
X (ζ)YH(ζ)

]
=







E [X1(ζ)Y
∗
1 (ζ)] · · · E [X1(ζ)Y

∗
M (ζ)]

...
. . .

...

E [XN (ζ)Y ∗
1 (ζ)] · · · E [XN (ζ)Y ∗

M (ζ)]







Cross-covariance is defined as

ΓXY , E

[

{X (ζ)− µX} {Y (ζ)− µY}H
]

= RXY − µXµH
Y

Uncorrelated if ΓXY = 0 ⇒ RXY = µXµH
Y.

Orthogonal if RXY = 0.
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Probability Transformation Rule

Theorem (Probability Transformation Rule). The set of random
variables X (ζ) = {Xn(ζ), n ∈ N} are transformed to a new set
of RVs, Y (ζ) = {Yn(ζ), n ∈ N}, using the transformations:

Yn(ζ) = gn(X (ζ)), n ∈ N
♦
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Probability Transformation Rule

Theorem (Probability Transformation Rule). The set of random
variables X (ζ) = {Xn(ζ), n ∈ N} are transformed to a new set
of RVs, Y (ζ) = {Yn(ζ), n ∈ N}, using the transformations:

Yn(ζ) = gn(X (ζ)), n ∈ N

Assuming M -real vector-roots of the equation y = g(x) by
{xm, m ∈ M},

y = g(x1) = · · · = g(xM )

then the joint-pdf of Y (ζ) in terms of (i. t. o.) the joint-pdf of
X (ζ)is:

fY (y) =
M∑

m=1

fX (xm)

|J(xm)| ♦

The Jacobian is defined in the notes, but is the usual definition!
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Polar Transformation

Consider the transformation from the random vector
C(ζ) = [X (ζ) , Y (ζ)]T to P(ζ) = [r(ζ), θ(ζ)]T , where

r(ζ) =
√

X2(ζ) + Y 2(ζ)

θ(ζ) = arctan
Y (ζ)

X (ζ)
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Polar Transformation

Consider the transformation from the random vector
C(ζ) = [X (ζ) , Y (ζ)]T to P(ζ) = [r(ζ), θ(ζ)]T , where

r(ζ) =
√

X2(ζ) + Y 2(ζ)

θ(ζ) = arctan
Y (ζ)

X (ζ)

The Jacobian is given by:

Jg(c) =

∣
∣
∣
∣
∣

cos θ −r sin θ

sin θ r cos θ

∣
∣
∣
∣
∣

−1

=
1

r

Thus, it follows that:

fR,Θ (r, θ) = rfXY (r cos θ, r sin θ)



Aims and Objectives

Probability Theory

Scalar Random Variables

Multiple Random Variables

•Abstract

•Definition of Random

Vectors
•Distribution and Density

Functions
•Marginal Density Function

• Independence

•Conditionals and Bayes’s

•Statistical Description

•Probability Transformation

Rule
•Polar Transformation

•Linear Transformations

•Auxiliary Variables

•Multivariate Gaussian

Density Function

•Characteristic Functions

•Sum of Independent

Random Variables
•Central limit theorem

Estimation Theory

MonteCarlo

- p. 45/85

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Linear Transformations

Since linear systems represent such an important class if signal
processing systems, it is important to consider linear
transformations of random vectors.
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Linear Transformations

Since linear systems represent such an important class if signal
processing systems, it is important to consider linear
transformations of random vectors.

Thus, consider a random vector Y (ζ) defined by a linear
transformation of the random vector X (ζ) through the matrix
A:

Y (ζ) = AX (ζ)
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Linear Transformations

Since linear systems represent such an important class if signal
processing systems, it is important to consider linear
transformations of random vectors.

Thus, consider a random vector Y (ζ) defined by a linear
transformation of the random vector X (ζ) through the matrix
A:

Y (ζ) = AX (ζ)

The Jacobian of a nonsingular linear transformation defined by a
matrix A is simply the absolute value of the determinant of A.
Thus, assuming X (ζ), Y (ζ), and A are all real, then:

fY (y) =
fX

(
A−1y

)

|detA|
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Linear Transformations

In general, determining fY (y) is a laborious exercise, except in
the case of Gaussian random vectors.

In practice, however, the knowledge of µY, ΓY, ΓXY or ΓYX is
sufficient information for many algorithms.
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Linear Transformations

In general, determining fY (y) is a laborious exercise, except in
the case of Gaussian random vectors.

In practice, however, the knowledge of µY, ΓY, ΓXY or ΓYX is
sufficient information for many algorithms.

Taking expectations of both sides of Equation ??, the following
relations are found:

Mean vector:

µY = E [AX (ζ)] = AµX
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Linear Transformations

In general, determining fY (y) is a laborious exercise, except in
the case of Gaussian random vectors.

In practice, however, the knowledge of µY, ΓY, ΓXY or ΓYX is
sufficient information for many algorithms.

Taking expectations of both sides of Equation ??, the following
relations are found:

Mean vector:

µY = E [AX (ζ)] = AµX

Autocorrelation matrix:

RY = E
[
Y (ζ)YH(ζ)

]
= E

[

AX (ζ)XH(ζ)AH
]

= AE
[
X (ζ)XH(ζ)

]
AH = ARXAH
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Linear Transformations

Autocovariance matrix:

ΓY = AΓXAH
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Linear Transformations

Autocovariance matrix:

ΓY = AΓXAH

Cross-correlation matrix:

RXY = E
[
X (ζ)YH(ζ)

]
= E

[

X (ζ)XH(ζ)AH
]

= E
[
X (ζ)XH(ζ)

]
AH = RX AH

and hence RYX = ARX.
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Linear Transformations

Autocovariance matrix:

ΓY = AΓXAH

Cross-correlation matrix:

RXY = E
[
X (ζ)YH(ζ)

]
= E

[

X (ζ)XH(ζ)AH
]

= E
[
X (ζ)XH(ζ)

]
AH = RX AH

and hence RYX = ARX.

Cross-covariance matrices:

ΓXY = ΓX AH and ΓYX = AΓX

These results will be used to show what happens to a Gaussian
random vector under a linear transformation .
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Auxiliary Variables

The density of a RV that is one function Z(ζ) = g(X (ζ) , Y (ζ))
of two RVs can be determined by choosing a auxiliary variable.
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Auxiliary Variables

The density of a RV that is one function Z(ζ) = g(X (ζ) , Y (ζ))
of two RVs can be determined by choosing a auxiliary variable.

fZ (z) =

∫

R

fWZ (w, z) dw =
M∑

m=1

∫

R

fXY (xm, ym)

|J(xm, ym)| dw
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Auxiliary Variables

The density of a RV that is one function Z(ζ) = g(X (ζ) , Y (ζ))
of two RVs can be determined by choosing a auxiliary variable.

fZ (z) =

∫

R

fWZ (w, z) dw =
M∑

m=1

∫

R

fXY (xm, ym)

|J(xm, ym)| dw

Example (Sum of two RVs). If X (ζ) and Y (ζ) have joint-pdf
fXY (x, y), find the pdf of the RV Z(ζ) = aX (ζ) + bY (ζ) .
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Auxiliary Variables

The density of a RV that is one function Z(ζ) = g(X (ζ) , Y (ζ))
of two RVs can be determined by choosing a auxiliary variable.

fZ (z) =

∫

R

fWZ (w, z) dw =
M∑

m=1

∫

R

fXY (xm, ym)

|J(xm, ym)| dw

Example (Sum of two RVs). If X (ζ) and Y (ζ) have joint-pdf
fXY (x, y), find the pdf of the RV Z(ζ) = aX (ζ) + bY (ζ) .

SOLUTION. Use as the auxiliary variable the function
W (ζ) = Y (ζ). The system z = ax+ by, w = y has a single

solution at x = z−bw
a

, y = w.

Thus:

fZ (z) =
1

|a|

∫

R

fXY

(
z − bw

a
, w

)

dw �
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Multivariate Gaussian Density Function

Gaussian random vectors play a very important role in the design
and analysis of signal processing systems. A Gaussian random
vector is characterised by a multivariate Normal or Gaussian
density function.
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Multivariate Gaussian Density Function

Gaussian random vectors play a very important role in the design
and analysis of signal processing systems. A Gaussian random
vector is characterised by a multivariate Normal or Gaussian
density function.

For a real random vector, this density function has the form:

fX (x) =
1

(2π)
N
2 |ΓX| 12

exp

[

−1

2
(x− µX)T Γ−1

X (x− µX)

]

where N is the dimension of X (ζ), and X (ζ) has mean µX and
covariance ΓX. It is often denoted as:

fX (x) = N
(
x
∣
∣µX, ΓX

)
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Multivariate Gaussian Density Function

The normal distribution is a useful model of a random vector
because of its many important properties.

1. fX (x) = N
(
x
∣
∣µX, ΓX

)
is completely specified by its mean

µX and covariance ΓX.

2. If the components of X (ζ) are mutually uncorrelated, then
they are also independent.
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Multivariate Gaussian Density Function

The normal distribution is a useful model of a random vector
because of its many important properties.

1. fX (x) = N
(
x
∣
∣µX, ΓX

)
is completely specified by its mean

µX and covariance ΓX.

2. If the components of X (ζ) are mutually uncorrelated, then
they are also independent.

3. A linear transformation of a normal random vector is also
normal.

This is a particularly useful, since the output of a linear system
subject to a Gaussian input is also Gaussian.
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Multivariate Gaussian Density Function

The normal distribution is a useful model of a random vector
because of its many important properties.

1. fX (x) = N
(
x
∣
∣µX, ΓX

)
is completely specified by its mean

µX and covariance ΓX.

2. If the components of X (ζ) are mutually uncorrelated, then
they are also independent.

3. A linear transformation of a normal random vector is also
normal.

This is a particularly useful, since the output of a linear system
subject to a Gaussian input is also Gaussian.

4. If X (ζ) and Y (ζ) are jointly-Gaussian, then so are their
marginal-distributions, and their conditional-distributions.
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Characteristic Functions

The characteristic function and moment generating function
for a scalar random variable can be extended to deal with
random vectors. Essentially, these are defined as the
multi-dimensional Fourier transform of the joint-pdf.
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Characteristic Functions

The characteristic function and moment generating function
for a scalar random variable can be extended to deal with
random vectors. Essentially, these are defined as the
multi-dimensional Fourier transform of the joint-pdf.

Hence, the characteristic function is:

ΦX(ξ) , E

[

ejξ
T X(ζ)

]

=

∫
∞

−∞

fX (x) ejξ
Tx dx
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Characteristic Functions

The characteristic function and moment generating function
for a scalar random variable can be extended to deal with
random vectors. Essentially, these are defined as the
multi-dimensional Fourier transform of the joint-pdf.

Hence, the characteristic function is:

ΦX(ξ) , E

[

ejξ
T X(ζ)

]

=

∫
∞

−∞

fX (x) ejξ
Tx dx

Similarly, the moment generating function is given by:

Φ̄X(s) , E

[

es
T X(ζ)

]

=

∫
∞

−∞

fX (x) es
Tx dx
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Characteristic Functions

The characteristic function for a Gaussian random vector is

ΦX(ξ) =

∫
∞

−∞

fX (x) ejξ
Tx dx

=
1

(2π)
N
2 |ΓX| 12

∫
∞

−∞

exp

[

−1

2
(x− µX)

T
Γ−1
X (x− µX)

]

ejξ
Tx dx
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Characteristic Functions

The characteristic function for a Gaussian random vector is

ΦX(ξ) =

∫
∞

−∞

fX (x) ejξ
Tx dx

=
1

(2π)
N
2 |ΓX| 12

∫
∞

−∞

exp



−
xTΓ−1

X x− 2
(

µT
XΓ−1

X + jξT
)

x+ µT
XΓ−1

X µX

2
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Characteristic Functions

The characteristic function for a Gaussian random vector is

ΦX(ξ) =

∫
∞

−∞

fX (x) ejξ
Tx dx

=
1

(2π)
N
2 |ΓX| 12

∫
∞

−∞

exp



−
xTΓ−1

X x− 2
(

µT
XΓ−1

X + jξT
)

x+ µT
XΓ−1

X µX

2





Using the integral identity:

∫

RP

exp

{

−1

2

[
α+ 2yTβ + yTΓy

]
}

dy =
(2π)

P
2

|Γ| 12
exp

{

−1

2

[

α− βTΓ−1β
]}

gives:

ΦX(ξ) = exp

[

jξTµX − 1

2
ξTΓXξ

]



Aims and Objectives

Probability Theory

Scalar Random Variables

Multiple Random Variables

•Abstract

•Definition of Random

Vectors
•Distribution and Density

Functions
•Marginal Density Function

• Independence

•Conditionals and Bayes’s

•Statistical Description

•Probability Transformation

Rule
•Polar Transformation

•Linear Transformations

•Auxiliary Variables

•Multivariate Gaussian

Density Function

•Characteristic Functions

•Sum of Independent

Random Variables
•Central limit theorem

Estimation Theory

MonteCarlo

- p. 49/85

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Sum of Independent Random Variables

Theorem (Sum of Random Variables and Vectors). If X (ζ) and Y (ζ)
have joint-pdf, fXY (x, y), then Z(ζ) = X (ζ) +Y (ζ) has density
function:

fZ (z) , fX+Y (z) =

∫

R

fXY (x, z− x) dx ♦
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Sum of Independent Random Variables

Theorem (Sum of Random Variables and Vectors). If X (ζ) and Y (ζ)
have joint-pdf, fXY (x, y), then Z(ζ) = X (ζ) +Y (ζ) has density
function:

fZ (z) , fX+Y (z) =

∫

R

fXY (x, z− x) dx ♦

Theorem (Sum of Independent Random Variables and Vectors). If X (ζ)
and Y (ζ) are independent, this result becomes

fZ (z) , fX+Y (z) =

∫

R

fX (x) fY (z− x) dx

=

∫

R

fX (z− y) fY (y) dy = fX (z) ∗ fY (y)♦
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Sum of Independent Random Variables

Theorem (Sum of Random Variables and Vectors). If X (ζ) and Y (ζ)
have joint-pdf, fXY (x, y), then Z(ζ) = X (ζ) +Y (ζ) has density
function:

fZ (z) , fX+Y (z) =

∫

R

fXY (x, z− x) dx ♦

Theorem (Sum of Independent Random Variables and Vectors). If X (ζ)
and Y (ζ) are independent, this result becomes

fZ (z) , fX+Y (z) =

∫

R

fX (x) fY (z− x) dx

=

∫

R

fX (z− y) fY (y) dy = fX (z) ∗ fY (y)♦

Independent RVs can also be dealt with using characteristic
functions as introduced in the lecture on scalar random
variables.
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Sum of Independent Random Variables

If Z(ζ) = X (ζ) + Y (ζ), then its characteristic function is given
by:

ΦZ(ξ) , E

[

ejξ Z(ζ)
]

= E

[

ejξ[X(ζ)+Y (ζ)]
]

= E

[

ejξ X(ζ)
]

E

[

ejξ Y (ζ)
]

where the last inequality follows from independence.
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Sum of Independent Random Variables

If Z(ζ) = X (ζ) + Y (ζ), then its characteristic function is given
by:

ΦZ(ξ) , E

[

ejξ Z(ζ)
]

= E

[

ejξ[X(ζ)+Y (ζ)]
]

= E

[

ejξ X(ζ)
]

E

[

ejξ Y (ζ)
]

where the last inequality follows from independence.

Hence, from the convolution property of the Fourier transform,

fZ (z) = fX (x) ∗ fY (y)
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Sum of Independent Random Variables

If Z(ζ) = X (ζ) + Y (ζ), then its characteristic function is given
by:

ΦZ(ξ) , E

[

ejξ Z(ζ)
]

= E

[

ejξ[X(ζ)+Y (ζ)]
]

= E

[

ejξ X(ζ)
]

E

[

ejξ Y (ζ)
]

where the last inequality follows from independence.

Hence, from the convolution property of the Fourier transform,

fZ (z) = fX (x) ∗ fY (y)

This result can be generalised to the summation of M
independent RVs:

Y (ζ) =
M∑

k=1

ck Xk(ζ)

where {ck}M1 is a set of fixed (deterministic) coefficients.
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Sum of Independent Random Variables

It follows straightforwardly that:

ΦY (ξ) , E

[

ejξ Y (ζ)
]

=

M∏

k=1

E

[

ejξ ckXk(ζ)
]

=

M∏

k=1

ΦXk
(ckξ)
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Sum of Independent Random Variables

It follows straightforwardly that:

ΦY (ξ) , E

[

ejξ Y (ζ)
]

=

M∏

k=1

E

[

ejξ ckXk(ζ)
]

=

M∏

k=1

ΦXk
(ckξ)

Hence, the pdf of Y (ζ) is given by:

fY (y) =
1

|c1|
fX1

(
y

c1

)

∗ 1

|c2|
fX2

(
y

c2

)

∗ · · · ∗ 1

|cM |fXM

(
y

cM

)
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It follows straightforwardly that:

ΦY (ξ) , E

[

ejξ Y (ζ)
]

=

M∏

k=1

E

[

ejξ ckXk(ζ)
]

=

M∏

k=1

ΦXk
(ckξ)

Hence, the pdf of Y (ζ) is given by:

fY (y) =
1

|c1|
fX1

(
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)

∗ 1
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Finally, the cumulant generating, or second characteristic,

function can be used to determine the nth-order cumulants for
Y (ζ).
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It follows straightforwardly that:

ΦY (ξ) , E

[

ejξ Y (ζ)
]

=

M∏

k=1

E

[

ejξ ckXk(ζ)
]

=

M∏

k=1

ΦXk
(ckξ)

Hence, the pdf of Y (ζ) is given by:

fY (y) =
1

|c1|
fX1

(
y

c1

)

∗ 1

|c2|
fX2

(
y

c2

)

∗ · · · ∗ 1

|cM |fXM

(
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cM

)

Finally, the cumulant generating, or second characteristic,

function can be used to determine the nth-order cumulants for
Y (ζ).

Recall that

ΨX(ξ) , ln ΦX(ξ) = lnE
[

ek ξ X(ζ)
]
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ΨY (ξ) , lnE
[

ejξ Y (ζ)
]

=
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lnE
[

ejξ ckXk(ζ)
]

=
M∑
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(ckξ)
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ΨY (ξ) , lnE
[

ejξ Y (ζ)
]

=
M∑

k=1

lnE
[

ejξ ckXk(ζ)
]

=
M∑

k=1

ΨXk
(ckξ)

Therefore, it can readily be shown that the cumulants of Y (ζ)
are given by:

κ
(n)
Y =

M∑

k=1

cnk κ
(n)
Xk
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ΨY (ξ) , lnE
[

ejξ Y (ζ)
]

=
M∑

k=1

lnE
[

ejξ ckXk(ζ)
]

=
M∑

k=1

ΨXk
(ckξ)

Therefore, it can readily be shown that the cumulants of Y (ζ)
are given by:

κ
(n)
Y =

M∑

k=1

cnk κ
(n)
Xk

When these results are extended to the sum of an infinite
number of statistically independent random variables, a powerful
theorem known as the central limit theorem (CLT) is obtained.
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Sum of Independent Random Variables

ΨY (ξ) , lnE
[

ejξ Y (ζ)
]

=
M∑

k=1

lnE
[

ejξ ckXk(ζ)
]

=
M∑

k=1

ΨXk
(ckξ)

Therefore, it can readily be shown that the cumulants of Y (ζ)
are given by:

κ
(n)
Y =

M∑

k=1

cnk κ
(n)
Xk

When these results are extended to the sum of an infinite
number of statistically independent random variables, a powerful
theorem known as the central limit theorem (CLT) is obtained.

Another interesting concept develops when the sum of
independent and identically distributed (i. i. d.) random
variables preserve their distribution, which results in so-called
stable distributions.
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Central limit theorem

Consider the random variable Y (ζ) given by:

YM (ζ) =

M∑

k=1

ck Xk(ζ)

What is the distribution of YM (ζ) as M → ∞?
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Central limit theorem

Consider the random variable Y (ζ) given by:

YM (ζ) =

M∑

k=1

ck Xk(ζ)

What is the distribution of YM (ζ) as M → ∞?

Theorem (Central limit theorem). Let {Xk(ζ)}Mk=1 be a collection of
RVs that are independent and identically distributed for all
k = {1, . . . ,M}. Then the distribution of

ŶM (ζ) =
YM (ζ)− µYM

σYM

where YM (ζ) =
M∑

k=1

Xk(ζ)

approaches

lim
M→∞

fŶM
(y) = N

(
y
∣
∣ 0, 1

)
♦



- p. 51/85

Handout 5
Estimation Theory



Aims and Objectives

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

• Introduction

•Properties of Estimators

•Bias of estimator

•Variance of estimator

•Mean square error

•Cramer-Rao Lower Bound

•Consistency of an Estimator

•Estimating Multiple

Parameters
•Maximum Likelihood

Estimation
•Properties of the

maximum-likelihood

estimate (MLE)

•DC Level in white Gaussian

noise
•MLE for Transformed

Parameter
•Least Squares

•The Least Squares

Approach

•DC Level

•Linear Least Squares

MonteCarlo

- p. 52/85

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Introduction

Thus far, have assumed that either the pdf or statistical values,
such as mean, covariance, or higher order statistics,
associated with a problem are fully known.
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Introduction

Thus far, have assumed that either the pdf or statistical values,
such as mean, covariance, or higher order statistics,
associated with a problem are fully known.

In most practical applications, this is the exception rather than
the rule.
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Introduction

Thus far, have assumed that either the pdf or statistical values,
such as mean, covariance, or higher order statistics,
associated with a problem are fully known.

In most practical applications, this is the exception rather than
the rule.

The properties and parameters of random events must be
obtained by collecting and analysing finite set of
measurements.
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Introduction

Thus far, have assumed that either the pdf or statistical values,
such as mean, covariance, or higher order statistics,
associated with a problem are fully known.

In most practical applications, this is the exception rather than
the rule.

The properties and parameters of random events must be
obtained by collecting and analysing finite set of
measurements.

This handout will consider the problem of Parameter
Estimation. This refers to the estimation of a parameter that
is fixed, but is unknown.
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Properties of Estimators

Consider the set of N observations, X = {x[n]}N−1
0 , from a

random experiment; suppose they are used to estimate a
parameter θ of the process using some function:

θ̂ = θ̂ [X ] = θ̂
[
{x[n]}N−1

0

]
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Properties of Estimators

Consider the set of N observations, X = {x[n]}N−1
0 , from a

random experiment; suppose they are used to estimate a
parameter θ of the process using some function:

θ̂ = θ̂ [X ] = θ̂
[
{x[n]}N−1

0

]

The function θ̂ [X ] is known as an estimator whereas the value
taken by the estimator, using a particular set of observations, is
called a point-estimate.
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Properties of Estimators

Consider the set of N observations, X = {x[n]}N−1
0 , from a

random experiment; suppose they are used to estimate a
parameter θ of the process using some function:

θ̂ = θ̂ [X ] = θ̂
[
{x[n]}N−1

0

]

The function θ̂ [X ] is known as an estimator whereas the value
taken by the estimator, using a particular set of observations, is
called a point-estimate.

An aim is to design an estimator, θ̂, that should be as close to the
true value of the parameter, θ, as possible.
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Properties of Estimators

Consider the set of N observations, X = {x[n]}N−1
0 , from a

random experiment; suppose they are used to estimate a
parameter θ of the process using some function:

θ̂ = θ̂ [X ] = θ̂
[
{x[n]}N−1

0

]

The function θ̂ [X ] is known as an estimator whereas the value
taken by the estimator, using a particular set of observations, is
called a point-estimate.

An aim is to design an estimator, θ̂, that should be as close to the
true value of the parameter, θ, as possible.

Since θ̂ is a function of a number of particular realisations of a
random outcome (or experiment), then it is itself a RV, and thus
has a mean and variance.
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Bias of estimator

The bias of an estimator θ̂ of a parameter θ is defined as:

B(θ̂) , E

[

θ̂
]

− θ
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Bias of estimator

The bias of an estimator θ̂ of a parameter θ is defined as:

B(θ̂) , E

[

θ̂
]

− θ

If θ is large, then a small deviation would give what would
appear to be a large bias. Thus, the normalised bias is often
used instead:

ǫb(θ̂) ,
B(θ̂)

θ
=

E

[

θ̂
]

θ
− 1, θ 6= 0
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Bias of estimator

The bias of an estimator θ̂ of a parameter θ is defined as:

B(θ̂) , E

[

θ̂
]

− θ

If θ is large, then a small deviation would give what would
appear to be a large bias. Thus, the normalised bias is often
used instead:

ǫb(θ̂) ,
B(θ̂)

θ
=

E

[

θ̂
]

θ
− 1, θ 6= 0

Example (Biasness of sample mean estimator). Is the sample mean,

µ̂x = 1
N

∑N−1
n=0 x[n] biased?

SOLUTION. No, since

E [µ̂x] = E

[
1
N

∑N−1
n=0 x[n]

]

= 1
N

∑N−1
n=0 E [x[n]] = NµX

N
= µX .
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Variance of estimator

The variance of the estimator θ̂ is defined by:

var
[

θ̂
]

= σ2
θ̂
, E

[∣
∣
∣θ̂ − E

[

θ̂
]∣
∣
∣

2
]

However, a minimum variance criterion is not always compatible
with the minimum bias requirement; reducing the variance may
result in an increase in bias.
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Variance of estimator

The variance of the estimator θ̂ is defined by:

var
[

θ̂
]

= σ2
θ̂
, E

[∣
∣
∣θ̂ − E

[

θ̂
]∣
∣
∣

2
]

However, a minimum variance criterion is not always compatible
with the minimum bias requirement; reducing the variance may
result in an increase in bias.

Therefore, a compromise or balance between these two
conflicting criteria is required, and this is provided by the
mean-squared error (MSE) measure described below.
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Variance of estimator

The variance of the estimator θ̂ is defined by:

var
[

θ̂
]

= σ2
θ̂
, E

[∣
∣
∣θ̂ − E

[

θ̂
]∣
∣
∣

2
]

However, a minimum variance criterion is not always compatible
with the minimum bias requirement; reducing the variance may
result in an increase in bias.

Therefore, a compromise or balance between these two
conflicting criteria is required, and this is provided by the
mean-squared error (MSE) measure described below.

The normalised standard deviation is defined by:

ǫr ,
σ
θ̂

θ
, θ 6= 0
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Mean square error

Minimising estimator variance can increase bias. A compromise
criterion is the mean-squared error (MSE) of the estimator,
which is given by:

MSE(θ̂) = E

[∣
∣
∣θ̂ − θ

∣
∣
∣

2
]

= σ2
θ̂
+ |B(θ̂)|2
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Mean square error

Minimising estimator variance can increase bias. A compromise
criterion is the mean-squared error (MSE) of the estimator,
which is given by:

MSE(θ̂) = E

[∣
∣
∣θ̂ − θ

∣
∣
∣

2
]

= σ2
θ̂
+ |B(θ̂)|2

The estimator θ̂MSE = θ̂MSE [X ] which minimises MSE(θ̂) is known
as the minimum mean-square error:

θ̂MSE = arg
θ̂
min MSE(θ̂)
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Mean square error

Minimising estimator variance can increase bias. A compromise
criterion is the mean-squared error (MSE) of the estimator,
which is given by:

MSE(θ̂) = E

[∣
∣
∣θ̂ − θ

∣
∣
∣

2
]

= σ2
θ̂
+ |B(θ̂)|2

The estimator θ̂MSE = θ̂MSE [X ] which minimises MSE(θ̂) is known
as the minimum mean-square error:

θ̂MSE = arg
θ̂
min MSE(θ̂)

This measures the average mean squared deviation of the
estimator from its true value.

Unfortunately, adoption of this natural criterion leads to
unrealisable estimators; ones which cannot be written solely as a
function of the data.
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Cramer-Rao Lower Bound

If the MSE can be minimised when the bias is zero, then clearly
the variance is also minimised. Such estimators are called
minimum variance unbiased estimators (MVUEs).
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Cramer-Rao Lower Bound

If the MSE can be minimised when the bias is zero, then clearly
the variance is also minimised. Such estimators are called
MVUEs.

MVUE possess the important property that they attain a
minimum bound on the variance of the estimator, called the
Cramér-Rao lower-bound (CRLB).
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Cramer-Rao Lower Bound

Theorem (CRLB - scalar parameter). If

X(ζ) = [x[0, ζ] , · · · , x[N − 1, ζ]]
T

and fX (x | θ) is the joint
density of X(ζ) which depends on fixed but unknown parameter

θ, then the variance of the estimator θ̂ is bounded by:

var
[

θ̂
]

≥ 1

E

[(
∂ ln fX(x | θ)

∂θ

)2
]

♦
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Cramer-Rao Lower Bound

Theorem (CRLB - scalar parameter). If

X(ζ) = [x[0, ζ] , · · · , x[N − 1, ζ]]
T

and fX (x | θ) is the joint
density of X(ζ) which depends on fixed but unknown parameter

θ, then the variance of the estimator θ̂ is bounded by:

var
[

θ̂
]

≥ 1

E

[(
∂ ln fX(x | θ)

∂θ

)2
]

Alternatively, it may also be expressed as:

var
[

θ̂
]

≥ − 1

E

[
∂2 ln fX(x | θ)

∂θ2

]

♦
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Cramer-Rao Lower Bound

Theorem (CRLB - scalar parameter). If

X(ζ) = [x[0, ζ] , · · · , x[N − 1, ζ]]
T

and fX (x | θ) is the joint
density of X(ζ) which depends on fixed but unknown parameter

θ, then the variance of the estimator θ̂ is bounded by:

var
[

θ̂
]

≥ 1

E

[(
∂ ln fX(x | θ)

∂θ

)2
]

Alternatively, it may also be expressed as:

var
[

θ̂
]

≥ − 1

E

[
∂2 ln fX(x | θ)

∂θ2

] ♦

The function ln fX (x | θ) is called the log-likelihood of θ.
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Cramer-Rao Lower Bound

Theorem (CRLB - scalar parameter). If

X(ζ) = [x[0, ζ] , · · · , x[N − 1, ζ]]
T

and fX (x | θ) is the joint
density of X(ζ) which depends on fixed but unknown parameter

θ, then the variance of the estimator θ̂ is bounded by:

var
[

θ̂
]

≥ 1

E

[(
∂ ln fX(x | θ)

∂θ

)2
]

Alternatively, it may also be expressed as:

var
[

θ̂
]

≥ − 1

E

[
∂2 ln fX(x | θ)

∂θ2

]

Furthermore, an unbiased estimator may be found that attains
the bound for all θ if, and only if, (iff)

∂ ln fX (x | θ)
∂θ

= I(θ)
(

θ̂ − θ
)

♦
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Consistency of an Estimator

If the MSE of the estimator,

MSE(θ̂) = E

[

|θ̂ − θ|2
]

= σ2
θ̂
+ |B(θ̂)|2

approaches zero as the sample size N becomes large, then both
the bias and the variance tends toward zero.
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Consistency of an Estimator

If the MSE of the estimator,

MSE(θ̂) = E

[

|θ̂ − θ|2
]

= σ2
θ̂
+ |B(θ̂)|2

approaches zero as the sample size N becomes large, then both
the bias and the variance tends toward zero.

Thus, the sampling distribution tends to concentrate around θ,
and as N → ∞, it will become an impulse at θ.
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Consistency of an Estimator

If the MSE of the estimator,

MSE(θ̂) = E

[

|θ̂ − θ|2
]

= σ2
θ̂
+ |B(θ̂)|2

approaches zero as the sample size N becomes large, then both
the bias and the variance tends toward zero.

Thus, the sampling distribution tends to concentrate around θ,
and as N → ∞, it will become an impulse at θ.

This is a very important and desirable property, and such an
estimator is called a consistent estimator.
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Estimating Multiple Parameters

Multiple parameters occur in, for example, estimating the
statistical properties of a random time-series, estimating the
parameters of a curve fitted to a set of data, estimating any
model described by a set of parameters.
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Estimating Multiple Parameters

Multiple parameters occur in, for example, estimating the
statistical properties of a random time-series, estimating the
parameters of a curve fitted to a set of data, estimating any
model described by a set of parameters.

A vector of parameters, θ, of a random event X (ζ) can be

estimated from a set of observations, X = {x[n]}N−1
0 , using some

function:

θ̂ = θ̂ [X ] = θ̂
[
{x[n]}N−1

0

]
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Estimating Multiple Parameters

Multiple parameters occur in, for example, estimating the
statistical properties of a random time-series, estimating the
parameters of a curve fitted to a set of data, estimating any
model described by a set of parameters.

A vector of parameters, θ, of a random event X (ζ) can be

estimated from a set of observations, X = {x[n]}N−1
0 , using some

function:

θ̂ = θ̂ [X ] = θ̂
[
{x[n]}N−1

0

]

The definitions of unbiasedness, consistency, and the CRLB are
all straightforward extensions of the definitions and results for
scalar parameter estimates.
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Maximum Likelihood Estimation

The joint density of the RVs X(ζ) = {x[n, ζ]}N−1
0 , which depends

on fixed but unknown parameter θ, is fX (x | θ).
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Maximum Likelihood Estimation

The joint density of the RVs X(ζ) = {x[n, ζ]}N−1
0 , which depends

on fixed but unknown parameter θ, is fX (x | θ).

This same quantity, viewed as a function of the parameter θ
when a particular set of observations, x̂ is given, is known as the
likelihood function.
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Maximum Likelihood Estimation

The joint density of the RVs X(ζ) = {x[n, ζ]}N−1
0 , which depends

on fixed but unknown parameter θ, is fX (x | θ).

This same quantity, viewed as a function of the parameter θ
when a particular set of observations, x̂ is given, is known as the
likelihood function.

The maximum-likelihood estimate (MLE) of the parameter θ,

denoted by θ̂ml, is defined as that value of θ that maximises
fX ( x̂ | θ).
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Maximum Likelihood Estimation

The joint density of the RVs X(ζ) = {x[n, ζ]}N−1
0 , which depends

on fixed but unknown parameter θ, is fX (x | θ).

This same quantity, viewed as a function of the parameter θ
when a particular set of observations, x̂ is given, is known as the
likelihood function.

The maximum-likelihood estimate (MLE) of the parameter θ,

denoted by θ̂ml, is defined as that value of θ that maximises
fX ( x̂ | θ).

The MLE for θ is defined by:

θ̂ml(x) = argθ max fX (x | θ)

Note that since θ̂ml(x) depends on the random observation
vector x, and so is itself a RV.
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Properties of the MLE

1. The MLE satisfies

∇θfX (x | θ)|
θ=θ̂ml

= 0P×1

∇θ ln fX (x | θ)|
θ=θ̂ml

= 0P×1
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Properties of the MLE

1. The MLE satisfies

∇θfX (x | θ)|
θ=θ̂ml

= 0P×1

∇θ ln fX (x | θ)|
θ=θ̂ml

= 0P×1

2. If an MVUE exists and the MLE does not occur at a boundary,
then the MLE is the MVUE.

A single parameter MLE that occurs at a boundary
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Properties of the MLE

1. The MLE satisfies

∇θfX (x | θ)|
θ=θ̂ml

= 0P×1

∇θ ln fX (x | θ)|
θ=θ̂ml

= 0P×1

2. If an MVUE exists and the MLE does not occur at a boundary,
then the MLE is the MVUE.

A single parameter MLE that occurs at a boundary

3. If the pdf, fX (x | θ), satisfies certain regularity conditions,
then the MLE is asymptotically distributed according to a
Gaussian distribution:

θ̂ml ∼ N
(
θ, J−1(θ)

)
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DC Level in white Gaussian noise

Example ( [Therrien:1991, Example 6.1, Page 282]). A constant but
unknown signal is observed in additive white Gaussian
noise (WGN). That is,

x[n] = A+ w[n] where w[n] ∼ N
(
0, σ2

w

)
⋊⋉

for n ∈ N = {0, . . . , N − 1}. Calculate the MLE of the unknown
signal A.
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DC Level in white Gaussian noise

Example ( [Therrien:1991, Example 6.1, Page 282]). A constant but
unknown signal is observed in additive WGN. That is,

x[n] = A+ w[n] where w[n] ∼ N
(
0, σ2

w

)

for n ∈ N = {0, . . . , N − 1}. Calculate the MLE of the unknown
signal A.

SOLUTION. Since this is a memoryless system, and w(n) are
i. i. d., then so is x[n], and

the log-likelihood is given by:

ln fX (x | A) = −N

2
ln(2πσ2

w)−
∑

n∈N (x[n]−A)
2

2σ2
w

Differentiating this expression w. r. t. A

and setting to zero :

Âml =
1 ∑

x[n] �
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MLE for Transformed Parameter

Theorem (Invariance Property of the MLE). The MLE of the parameter
α = g(θ), where g is an r-dimensional function of the P × 1
parameter θ, and the pdf, fX (x | θ) is parameterised by θ, is
given by

α̂ml = g(θ̂ml) ♦

where θ̂ml is the MLE of θ.
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MLE for Transformed Parameter

Theorem (Invariance Property of the MLE). The MLE of the parameter
α = g(θ), where g is an r-dimensional function of the P × 1
parameter θ, and the pdf, fX (x | θ) is parameterised by θ, is
given by

α̂ml = g(θ̂ml)

where θ̂ml is the MLE of θ.

The MLE of θ, θ̂ml, is obtained by maximising fX (x | θ). If the
function g is not an invertible function, then α̂ maximises the
modified likelihood function p̄T (x | α) defined as:

p̄T (x | α) = max
θ:α=g(θ)

fX (x | θ) ♦
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Least Squares

The estimators discussed so far have attempted to find an
optimal or nearly optimal (for large data records) estimator for
example, the MVUE.
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Least Squares

The estimators discussed so far have attempted to find an
optimal or nearly optimal (for large data records) estimator for
example, the MVUE.

An alternate philosophy is a class of estimators that in general
have no optimality properties associated with them, but make
good sense for many problems of interest: the principle of least
squares.
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Least Squares

The estimators discussed so far have attempted to find an
optimal or nearly optimal (for large data records) estimator for
example, the MVUE.

An alternate philosophy is a class of estimators that in general
have no optimality properties associated with them, but make
good sense for many problems of interest: the principle of least
squares.

A salient feature of the method is that no probabilistic
assumptions are made about the data; only a signal model is
assumed.
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Least Squares

The estimators discussed so far have attempted to find an
optimal or nearly optimal (for large data records) estimator for
example, the MVUE.

An alternate philosophy is a class of estimators that in general
have no optimality properties associated with them, but make
good sense for many problems of interest: the principle of least
squares.

A salient feature of the method is that no probabilistic
assumptions are made about the data; only a signal model is
assumed.

As will be seen, it turns out that the least-squares estimate (LSE)
can be calculated when just the first and second moments are
known, and through the solution of linear equations.



Aims and Objectives

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

• Introduction

•Properties of Estimators

•Bias of estimator

•Variance of estimator

•Mean square error

•Cramer-Rao Lower Bound

•Consistency of an Estimator

•Estimating Multiple

Parameters
•Maximum Likelihood

Estimation
•Properties of the MLE

•DC Level in white Gaussian

noise
•MLE for Transformed

Parameter
•Least Squares

•The Least Squares

Approach

•DC Level

•Linear Least Squares

MonteCarlo

- p. 65/85

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

The Least Squares Approach

In the least-squares (LS) approach, it is sought to minimise the
squared difference between the given, or observed, data x[n] and
the assumed, or hidden, signal or noiseless data.
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The Least Squares Approach

In the LS approach, it is sought to minimise the squared
difference between the given, or observed, data x[n] and the
assumed, or hidden, signal or noiseless data.

Here it is assumed that the hidden or unobserved signal is
generated by some model which, in turn, depends on some
unknown parameter θ.



Aims and Objectives

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

• Introduction

•Properties of Estimators

•Bias of estimator

•Variance of estimator

•Mean square error

•Cramer-Rao Lower Bound

•Consistency of an Estimator

•Estimating Multiple

Parameters
•Maximum Likelihood

Estimation
•Properties of the MLE

•DC Level in white Gaussian

noise
•MLE for Transformed

Parameter
•Least Squares

•The Least Squares

Approach

•DC Level

•Linear Least Squares

MonteCarlo

- p. 65/85

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

The Least Squares Approach

In the LS approach, it is sought to minimise the squared
difference between the given, or observed, data x[n] and the
assumed, or hidden, signal or noiseless data.

Here it is assumed that the hidden or unobserved signal is
generated by some model which, in turn, depends on some
unknown parameter θ.

The LSE of θ chooses the value that makes s[n] closest to the
observed data x[n], and this closeness is measured by the LS error
criterion:

J(θ) =
N−1∑

n=0

(x[n]− s[n])2
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The Least Squares Approach

In the LS approach, it is sought to minimise the squared
difference between the given, or observed, data x[n] and the
assumed, or hidden, signal or noiseless data.

Here it is assumed that the hidden or unobserved signal is
generated by some model which, in turn, depends on some
unknown parameter θ.

The LSE of θ chooses the value that makes s[n] closest to the
observed data x[n], and this closeness is measured by the LS error
criterion:

J(θ) =
N−1∑

n=0

(x[n]− s[n])2

The LSE is given by:

θ̂LSE = argθ min J(θ)
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DC Level

Example ( [Kay:1993, Example 6.1, Page 221]). It is assumed that an
observed signal, x[n], is a perturbed version of an unknown
signal, s[n], which is modelled as s[n] = A, for
n ∈ N = {0, . . . , N − 1}. Calculate the LSE of the unknown
signal A.
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DC Level

Example ( [Kay:1993, Example 6.1, Page 221]). It is assumed that an
observed signal, x[n], is a perturbed version of an unknown
signal, s[n], which is modelled as s[n] = A, for
n ∈ N = {0, . . . , N − 1}. Calculate the LSE of the unknown
signal A.

SOLUTION. According to the LS approach, then:

ÂLSE = argA minJ(A) where J(A) =

N−1∑

n=0

(x[n]−A)
2

Differentiating w. r. t. A and setting the result to zero produces

ÂLSE =
1

N

N−1∑

n=0

x[n] �

which is the sample mean estimator.
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Linear Least Squares

Thus, the unknown random-vector s is linear in the unknown
parameter vector θ = [θ1, · · · , θP ],

s = Hθ

The LSE is found by minimising:

J(θ) =
N−1∑

n=0

|x[n]− s[n]|2 = (x−Hθ)T (x−Hθ)
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Linear Least Squares

Thus, the unknown random-vector s is linear in the unknown
parameter vector θ = [θ1, · · · , θP ],

s = Hθ

The LSE is found by minimising:

J(θ) =
N−1∑

n=0

|x[n]− s[n]|2 = (x−Hθ)T (x−Hθ)

Setting the gradient of J(θ) to zero yields the LSE:

θ̂LSE =
(

HTH
)−1

HTx
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Linear Least Squares

Thus, the unknown random-vector s is linear in the unknown
parameter vector θ = [θ1, · · · , θP ],

s = Hθ

The LSE is found by minimising:

J(θ) =
N−1∑

n=0

|x[n]− s[n]|2 = (x−Hθ)T (x−Hθ)

Setting the gradient of J(θ) to zero yields the LSE:

θ̂LSE =
(

HTH
)−1

HTx

The equations HTHθ = HTx, to be solved for θ̂, are termed the
normal equation.
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Introduction

Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:
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Introduction

Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:

Optimisation: involves finding the solution to

θ̂ = argmax
θ∈Θ

h(θ)

where h(·) is a scalar function of a multi-dimensional vector
of parameters, θ.

Typically, h(·) might represent some cost function, and it is
implicitly assumed that the optimisation cannot be calculated
explicitly.
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Introduction

Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:

Integration: involves evaluating an integral,

I =

∫

Θ

f(θ) dθ,

that cannot explicitly be calculated in closed form.
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Introduction

Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:

Integration: involves evaluating an integral,

I =

∫

Θ

f(θ) dθ,

that cannot explicitly be calculated in closed form.

For example, the Gaussian-error function:

Φ(t) =

∫ t

−∞

1√
2π

e−
θ2

2 dθ

Again, the integral may be multi-dimensional, and in general
θ is a vector.
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Introduction

Many signal processing problems can be reduced to either an
optimisation problem or an integration problem:

Optimisation and Integration Some problems involve both
integration and optimisation: a fundamental problem is the
maximisation of a marginal distribution:

θ̂ = argmax
θ∈Θ

∫

Ω

f(θ, ω) dω
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Deterministic Numerical Methods
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Function h(x) = (cos 50x + sin 20x)2

Plot of the function h(x) = (cos 50x+ sin 20x)
2
, 0 ≤ x ≤ 1.

There are various deterministic solutions to the optimisation and
integration problems.
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Deterministic Numerical Methods

Optimisation: 1. Golden-section search and Brent’s Method in one
dimension;

2. Nelder and Mead Downhill Simplex method in
multi-dimensions;

3. Gradient and Variable-Metric methods in
multi-dimensions, typically an extension of
Newton-Raphson methods.
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Deterministic Numerical Methods

Integration: Most deterministic integration rely on classic
formulas for equally spaced abscissas:

1. simple Riemann integration;

2. standard and extended Simpson’s and Trapezoidal rules;

3. refinements such as Romberg Integration.

Unfortunately, these methods are not easily extended to
multi-dimensions.



Aims and Objectives

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

• Introduction

•Deterministic Numerical

Methods
•Deterministic Optimisation

•Deterministic Integration

•Monte Carlo Numerical

Methods
•Monte Carlo Integration

•Stochastic Optimisation

•Generating Random

Variables
•Uniform Variates

•Transformation Methods

• Inverse Transform Method

•Acceptance-Rejection

Sampling

•Envelope and Squeeze

Methods
• Importance Sampling

•Other Methods

•Markov chain Monte Carlo

Methods
•The Metropolis-Hastings

algorithm

•Gibbs Sampling - p. 70/85

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Deterministic Numerical Methods

Integration: Most deterministic integration rely on classic
formulas for equally spaced abscissas:

1. simple Riemann integration;

2. standard and extended Simpson’s and Trapezoidal rules;

3. refinements such as Romberg Integration.

More sophisticated approaches allow non-uniformally spaced
abscissas at which the function is evaluated.

These methods tend to use Gaussian quadratures and
orthogonal polynomials. Splines are also used.

Unfortunately, these methods are not easily extended to
multi-dimensions.
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Deterministic Optimisation

The Nelder-Mead Downhill Simplex method simply crawls
downhill in a straightforward fashion that makes almost no
special assumptions about your function.

This can be extremely slow, but it can be robust.
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Deterministic Optimisation

Gradient methods are typically based on the Newton-Raphson
algorithm which solves ∇h(θ) = 0.

For a scalar function, h(θ), of a vector of independent variables
θ, a sequence θn is produced such that:
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Deterministic Optimisation

Gradient methods are typically based on the Newton-Raphson
algorithm which solves ∇h(θ) = 0.

For a scalar function, h(θ), of a vector of independent variables
θ, a sequence θn is produced such that:

θn+1 = θn −
(
∇∇Th (θn)

)−1 ∇h (θn)

Numerous variants of Newton-Raphson-type techniques exist,
and include the steepest descent method, or the
Levenberg-Marquardt method.
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Deterministic Integration

The integral

I =

∫ b

a

f(θ) dθ,

where θ is a scalar, and b > a, can be solved with the trapezoidal
rule using

Î =
1

2

N−1∑

k=0

(θk+1 − θk) (f(θk) + f(θk+1))

where the θk ’s constitute an ordered partition of [a, b].
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Deterministic Integration

The integral

I =

∫ b

a

f(θ) dθ,

where θ is a scalar, and b > a, can be solved with the trapezoidal
rule using

Î =
1

2

N−1∑

k=0

(θk+1 − θk) (f(θk) + f(θk+1))

where the θk ’s constitute an ordered partition of [a, b].

Another formula is Simpson’s rule:

Î =
δ

3

{

f(a) + 4
N∑

k=1

f(θ2k−1) + 2
N∑

k=1

h(θ2k) + f(b)

}

in the case of equally spaced samples with δ = θk+1 − θk.
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Monte Carlo Numerical Methods

Monte Carlo methods are stochastic techniques, in which random
numbers are generated and use to examine some problem.
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Monte Carlo Integration

Consider the integral,

I =

∫

Θ

f(θ) dθ.
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Monte Carlo Integration

Consider the integral,

I =

∫

Θ

f(θ) dθ.

Defining a function π(θ) which is non-zero and positive for all

θ ∈ Θ, this integral can be expressed in the alternate form:

I =

∫

Θ

f(θ)

π(θ)
π(θ) dθ,

where the function π(θ) > 0, θ ∈ Θ is a pdf which satisfies

∫

Θ

π(θ) dθ = 1
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Monte Carlo Integration

Consider the integral,

I =

∫

Θ

f(θ) dθ.

Defining a function π(θ) which is non-zero and positive for all

θ ∈ Θ, this integral can be expressed in the alternate form:

I =

∫

Θ

f(θ)

π(θ)
π(θ) dθ,

where the function π(θ) > 0, θ ∈ Θ is a pdf which satisfies

∫

Θ

π(θ) dθ = 1

This may be written as an expectation:

I = Eπ

[
f(θ)

π(θ)

]
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Monte Carlo Integration

This expectation can be estimated using the idea of the sample
expectation, and leads to the idea behind Monte Carlo
integration:

1. Sample N random variates from a density function π(θ),

θ(k) ∼ π(θ), k ∈ N = {0, . . . , N − 1}

2. Calculate the sample average of the expectation using

Î =
1

N

N−1∑

k=0

f(θ(k))

π(θ(k))
≈ Eπ

[
f(θ)

π(θ)

]
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Stochastic Optimisation

There are two distinct approaches to the Monte Carlo
optimisation of the objective function h(θ):

θ̂ = argmax
θ∈Θ

h(θ)

The first method is broadly known as an exploratory approach,
while the second approach is based on a probabilistic
approximation of the objective function.
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Stochastic Optimisation

Exploratory approach This approach is concerned with fast
explorations of the sample space rather than working with the
objective function directly.
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Stochastic Optimisation

Exploratory approach This approach is concerned with fast
explorations of the sample space rather than working with the
objective function directly.

For example, maximisation can be solved by sampling a large

number, N , of independent random variables, {θ(k)}, from a
pdf π(θ), and taking the estimate:

θ̂ ≈ argmax
{θ(k)}

h
(

θ(k)
)

Typically, when no specific features regarding the function
h (θ), are taken into account, π(θ) will take on a uniform
distribution over Θ.
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Stochastic Optimisation

Exploratory approach This approach is concerned with fast
explorations of the sample space rather than working with the
objective function directly.

For example, maximisation can be solved by sampling a large

number, N , of independent random variables, {θ(k)}, from a
pdf π(θ), and taking the estimate:

θ̂ ≈ argmax
{θ(k)}

h
(

θ(k)
)

Typically, when no specific features regarding the function
h (θ), are taken into account, π(θ) will take on a uniform
distribution over Θ.

Stochastic Approximation The Monte Carlo EM algorithm
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Generating Random Variables

This section discusses a variety of techniques for generating
random variables from a different distributions.



Aims and Objectives

Probability Theory

Scalar Random Variables

Multiple Random Variables

Estimation Theory

MonteCarlo

• Introduction

•Deterministic Numerical

Methods
•Deterministic Optimisation

•Deterministic Integration

•Monte Carlo Numerical

Methods
•Monte Carlo Integration

•Stochastic Optimisation

•Generating Random

Variables
•Uniform Variates

•Transformation Methods

• Inverse Transform Method

•Acceptance-Rejection

Sampling

•Envelope and Squeeze

Methods
• Importance Sampling

•Other Methods

•Markov chain Monte Carlo

Methods
•The Metropolis-Hastings

algorithm

•Gibbs Sampling - p. 77/85

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Uniform Variates

The foundation underpinning all stochastic simulations is the
ability to generate a sequence of i. i. d. uniform random variates
over the range (0, 1].
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Uniform Variates

The foundation underpinning all stochastic simulations is the
ability to generate a sequence of i. i. d. uniform random variates
over the range (0, 1].

Random variates are pseudo or synthetic and not truly random
since they are usually generated using a recurrence of the form:

xn+1 = (a xn + b) mod m
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Uniform Variates

The foundation underpinning all stochastic simulations is the
ability to generate a sequence of i. i. d. uniform random variates
over the range (0, 1].

Random variates are pseudo or synthetic and not truly random
since they are usually generated using a recurrence of the form:

xn+1 = (a xn + b) mod m

This is known as the linear congruential generator.

However, suitable values of a, b and m can be chosen such that
the random variates pass all statistical tests of randomness.
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Transformation Methods

It is possible to sample from a number of extremely important
probability distributions by applying various probability
transformation methods.

Theorem (Probability transformation rule). Denote the real roots of
y = g(x) by {xn, n ∈ N}, such that

y = g(x1) = · · · = g(xN )

PROOF. The proof is given in the handout on scalar random
variables.
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Inverse Transform Method

A simple derivation of the inverse transform method

X(ζ) and Y (ζ) are RVs related by the function Y (ζ) = Π(X(ζ)).

Π(ζ) is monotonically increasing so that there is only one

solution to the equation y = Π(x), x = Π−1(y).
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Inverse Transform Method

A simple derivation of the inverse transform method

fX (x) =
dΠ(x)

dx
fY (y)

Now, suppose Y (ζ) ∼ U[0, 1] is a uniform random variable. If

Π(x) is the cdf corresponding to a desired pdf π (x), then

fX (x) = π(x), where x = Π−1(y)
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Inverse Transform Method

In otherwords, if

U(ζ) ∼ U[0, 1], X(ζ) = Π−1U(ζ) ∼ π (x)
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Inverse Transform Method

In otherwords, if

U(ζ) ∼ U[0, 1], X(ζ) = Π−1U(ζ) ∼ π (x)

Example (Exponential variable generation). If X(ζ) ∼ Exp(1), such

that π(x) = e−x and Π(x) = 1− e−x, then solving for x in terms

of u = 1− e−x gives x = − log(1− u).
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Inverse Transform Method

In otherwords, if

U(ζ) ∼ U[0, 1], X(ζ) = Π−1U(ζ) ∼ π (x)

Example (Exponential variable generation). If X(ζ) ∼ Exp(1), such

that π(x) = e−x and Π(x) = 1− e−x, then solving for x in terms

of u = 1− e−x gives x = − log(1− u).

Therefore, if U(ζ) ∼ U[0, 1], then the RV from the transformation

X(ζ) = − logU(ζ) has the exponential distribution (since U(ζ)
and 1− U(ζ) are both uniform).
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Acceptance-Rejection Sampling

For most distributions, it is often difficult or even impossible to
directly simulate using either the inverse transform or probability
transformations.
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Acceptance-Rejection Sampling

On average, you would expect to have too many variates that
take on the value X by a factor of

u(X) =
Pp

Pπ

=
p (X)

π (X)
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Acceptance-Rejection Sampling

Thus, to reduce the number of variates that take on a value of X ,
simply throw away a number of samples in proportion to the
amount of over sampling.
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Acceptance-Rejection Sampling

Thus, to reduce the number of variates that take on a value of X ,
simply throw away a number of samples in proportion to the
amount of over sampling.

1. Generate the random variates X ∼ p(x) and U ∼ U[0, 1];

2. Accept X if U ≤ Pa = π(X)
Mp(x) ;

3. Otherwise, reject and return to first step.
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Envelope and Squeeze Methods

A problem with many sampling methods, which can make the
density π (x) difficult to simulate, is that the function may
require substantial computing time at each evaluation.

It is possible to reduce the algorithmic complexity by looking for
another computationally simple function, q (x) which bounds
π (x) from below.
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Envelope and Squeeze Methods

If X satisfies q (X) ≤ π (X), then it should be accepted when

U ≤ q(X)
Mp(x) , since this also satisfies U ≤ π(X)

Mp(x) .
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Envelope and Squeeze Methods

This leads to the envelope accept-reject algorithm:

1. Generate the random variates X ∼ p(x) and U ∼ U[0, 1];

2. Accept X if U ≤ q(X)
Mp(x) ;

3. Otherwise, accept X if U ≤ π(X)
Mp(x) ;

4. Otherwise, reject and return to first step.
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Envelope and Squeeze Methods

This leads to the envelope accept-reject algorithm:

1. Generate the random variates X ∼ p(x) and U ∼ U[0, 1];

2. Accept X if U ≤ q(X)
Mp(x) ;

3. Otherwise, accept X if U ≤ π(X)
Mp(x) ;

4. Otherwise, reject and return to first step.

By construction of a lower envelope on π (x), the number of
function evaluations is potentially decreased by a factor of

Pπ̄ =
1

M

∫

q (x) dx

which is the probability that π (x) is not evaluated.
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Importance Sampling

The problem with accept-reject sampling methods is finding the
envelope functions and the constant M .
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Importance Sampling

The problem with accept-reject sampling methods is finding the
envelope functions and the constant M .

The simplest application of importance sampling is in Monte
Carlo integration. Suppose that is is desired to evaluate the
function:

I =

∫

Θ

f(θ) dθ.
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Importance Sampling

The problem with accept-reject sampling methods is finding the
envelope functions and the constant M .

The simplest application of importance sampling is in Monte
Carlo integration. Suppose that is is desired to evaluate the
function:

I =

∫

Θ

f(θ) dθ.

Approximate by empirical average:

Î =
1

N

N−1∑

k=0

IΘ

(

θ(k)
)

, where θ(k) ∼ f(θ)

where IA (a) is the indicator function, and is equal to one if
a ∈ A and zero otherwise.
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Importance Sampling

Defining an easy-to-sample-from density π(θ) > 0, ∀θ ∈ Θ:

I =

∫

Θ

f(θ)

π(θ)
π(θ) dθ = Eπ

[
f(θ)

π(θ)

]

,
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Importance Sampling

Defining an easy-to-sample-from density π(θ) > 0, ∀θ ∈ Θ:

I =

∫

Θ

f(θ)

π(θ)
π(θ) dθ = Eπ

[
f(θ)

π(θ)

]

,

leads to an estimator based on the sample expectation;

Î =
1

N

N−1∑

k=0

f(θ(k))

π(θ(k))
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Other Methods

Include:

representing pdfs as mixture of distributions;

algorithms for log-concave densities, such as the adaptive
rejection sampling scheme;

generalisations of accept-reject;

method of composition (similar to Gibbs sampling);

ad-hoc methods, typically based on probability
transformations and order statistics (for example, generating
Beta distributions with integer parameters).
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Markov chain Monte Carlo Methods

A Markov chain is the first generalisation of an independent
process, where each state of a Markov chain depends on the
previous state only.
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The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm is an extremely flexible
method for producing a random sequence of samples from a
given density.

1. Generate a random sample from a proposal distribution:

Y ∼ g
(
y | X(k)

)
.

2. Set the new random variate to be:

X(k+1) =

{

Y with probability ρ(X(k), Y )

X(k) with probability 1− ρ(X(k), Y )

where the acceptance ratio function ρ(x, y) is given by:

ρ(x, y) = min

{

π (y)

g (y | x)

(
π (x)

g (x | y)

)−1

, 1

}

≡ min

{
π (y)

π (x)

g (x | y)
g (y | x) , 1

}
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The Metropolis-Hastings algorithm
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Gibbs Sampling

Gibbs sampling is a Monte Carlo method that facilitates sampling
from a multivariate density function, π (θ0, θ1, . . . , θM ) by
drawing successive samples from marginal densities of smaller
dimensions.
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Gibbs Sampling

Gibbs sampling is a Monte Carlo method that facilitates sampling
from a multivariate density function, π (θ0, θ1, . . . , θM ) by
drawing successive samples from marginal densities of smaller
dimensions.

Using the probability chain rule,

π
(
{θm}Mm=1

)
= π

(
θℓ | {θm}Mm=1,m6=ℓ

)
π
(
{θm}Mm=1,m6=ℓ

)

The Gibbs sampler works by drawing random variates from the

marginal densities π
(

θℓ | {θm}Mm=1,m6=ℓ

)

in a cyclic iterative

pattern.
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Gibbs Sampling

Second iteration:
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k + 1-th iteration:
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At the end of the j-th iteration, the samples θ
(j)
0 , θ

(j)
1 , . . . , θ

(j)
M

are considered to be drawn from the joint-density
π (θ0, θ1, . . . , θM ).
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