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Basics

Bayesian filtering

Principle

PYt
: “information” known by operator at time t on objects of interest or

targets
Zt: observations produced by the sensor system at time t and collected by
the operator
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Basics

Sensor system for target tracking

What is a sensor, from a tracking persective?

On top of the detection level: produces a set of observations Zt at each
time t
Known by the operator through a stochastic description

Stochastic description

Likelihood `t(z, x): how likely is obs. z to
come from a target with state x?
Probability of detection pd,t(x): how likely
is a target with state x to be detected?

Probability of false alarm pfa,t(z): how
likely is the sensor to produce a false
alarm with state z?

Delande (H-W U) Stochastic populations July 21, 2015 5 / 35



Basics

Sensor system for target tracking

What is a sensor, from a tracking persective?
On top of the detection level: produces a set of observations Zt at each
time t

Known by the operator through a stochastic description

Stochastic description

Likelihood `t(z, x): how likely is obs. z to
come from a target with state x?
Probability of detection pd,t(x): how likely
is a target with state x to be detected?

Probability of false alarm pfa,t(z): how
likely is the sensor to produce a false
alarm with state z?

Delande (H-W U) Stochastic populations July 21, 2015 5 / 35



Basics

Sensor system for target tracking

What is a sensor, from a tracking persective?
On top of the detection level: produces a set of observations Zt at each
time t
Known by the operator through a stochastic description

Stochastic description

Likelihood `t(z, x): how likely is obs. z to
come from a target with state x?
Probability of detection pd,t(x): how likely
is a target with state x to be detected?

Probability of false alarm pfa,t(z): how
likely is the sensor to produce a false
alarm with state z?

Delande (H-W U) Stochastic populations July 21, 2015 5 / 35



Basics

Sensor system for target tracking

What is a sensor, from a tracking persective?
On top of the detection level: produces a set of observations Zt at each
time t
Known by the operator through a stochastic description

Stochastic description

Likelihood `t(z, x): how likely is obs. z to
come from a target with state x?

Probability of detection pd,t(x): how likely
is a target with state x to be detected?

Probability of false alarm pfa,t(z): how
likely is the sensor to produce a false
alarm with state z?

Delande (H-W U) Stochastic populations July 21, 2015 5 / 35



Basics

Sensor system for target tracking

What is a sensor, from a tracking persective?
On top of the detection level: produces a set of observations Zt at each
time t
Known by the operator through a stochastic description

Stochastic description

Likelihood `t(z, x): how likely is obs. z to
come from a target with state x?
Probability of detection pd,t(x): how likely
is a target with state x to be detected?

Probability of false alarm pfa,t(z): how
likely is the sensor to produce a false
alarm with state z?

Delande (H-W U) Stochastic populations July 21, 2015 5 / 35



Basics

Sensor system for target tracking

What is a sensor, from a tracking persective?
On top of the detection level: produces a set of observations Zt at each
time t
Known by the operator through a stochastic description

Stochastic description

Likelihood `t(z, x): how likely is obs. z to
come from a target with state x?
Probability of detection pd,t(x): how likely
is a target with state x to be detected?

Probability of false alarm pfa,t(z): how
likely is the sensor to produce a false
alarm with state z?

Delande (H-W U) Stochastic populations July 21, 2015 5 / 35



Basics

Sensor system for target tracking (cont.)

Discrete observation space Zt

Localized false alarm process: at most one
false alarm, per cell and per scan
In each cell z ∈ Zt, false alarm occurs
with probability pfa,t(z)

Zt projected onto X shapes the sensor
field of view (FoV)
Outside of the sensor FoV, pd,t is always
zero (i.e. no target detection)
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Basics

Multi-object filtering: common assumptions

Common assumptions (time t)

1. Targets behave independently
2. Observations are produced independently
3. At most one observation per target (if none, target is miss-detected)
4. At most one target per observation (if none, obs. is a false alarm)

The assumptions above...

1. ... simplify the estimation problem (notably the data association)
2. ... will be used in the context of this presentation
3. ... are not necessary in the general multi-object estimation framework
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Traditional solutions: strengths and weaknesses The track-based approach

The track-based approach

General principle
“A potential target = one track.”

Track representation

A track y is...
... identified by its state distribution

(e.g.
mean + covariance)
... described by its history of past
estimates
... characterised by its observation path
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Traditional solutions: strengths and weaknesses The track-based approach

Track update

Data association

What is propagated to the next step?

All configurations, with associated probabilities → MHT filter
A weighted combination of all configurations → JPDA filter
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Traditional solutions: strengths and weaknesses The track-based approach

Challenges

Since tracks are created upon detections, how to model yet-to-be-detected
targets?

Sensor management problem: explore
B1 or B2?

Suppose prior information on target
population in B1 and B2 is available

How many tracks to create? Where?
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Traditional solutions: strengths and weaknesses The track-based approach

Challenges (cont.)

Track creation/deletion

When to create tracks?

For every new observation? For a sequence of
“close” unassociated observations?

When to delete tracks?

If miss-detected n times during the m last time
steps? If getting away from the surveillance scene?

Why deleting a track?

Because it is “unlikely” to represent a
target?

Because the target it represents has
“probably” left the scene?
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Traditional solutions: strengths and weaknesses The track-based approach

The track-based approach: pros and cons

Can handle spatial information on tracks “optimally”

Data association allows optimal single-observation/single-track update
(e.g. Kalman filter)
History of past estimates and observation path naturally maitained

Lacks probabilistic framework incorporating all system uncertainties
When to create a track, especially in high clutter environment?
When and why to delete a track (i.e. what is an “unlikely” track?)

Lacks natural description on collective rather than individual level

Populations of “non-separable” targets (e.g. those yet-to-be-detected) not
easily described
Regional statistics (e.g. mean, variance in target number) unavailable
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Traditional solutions: strengths and weaknesses The RFS-based approach

The RFS-based approach

General principle

“The population of potential targets = one random finite set (RFS).”

RFS representation

The target RFS Ξ...
... is a random object describing all the
targets in the scene

... whose realizations X = {x1, . . . , xn}
describe potential multi-target
configurations
... is described by probability distribution
PΞ
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Traditional solutions: strengths and weaknesses The RFS-based approach

First-moment density for usual RFS-based filters

First-moment density µΞ

Approximate description of RFS Ξ

Propagated in usual RFS filters (PHD,
CPHD)
Provides average number of target per
volume space, acc. to RFS Ξ

Data update
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Traditional solutions: strengths and weaknesses The RFS-based approach

Challenges

No equivalent of track history: what are the consequences?

No inherent solution to link individuals from successive populations
Introducing labelling on top of RFS framework recently explored (Labeled
Multi-Bernoulli filter, Vo et al.)
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Traditional solutions: strengths and weaknesses The RFS-based approach

The RFS-based approach: pros and cons

Provides probability framework incorporating all system uncertainties
Appearing targets, yet-to-be-detected targets, false alarms, etc. described
by RFSs
No need for track creation/deletion, for data association
Regional statistics (e.g. mean, variance in target number) naturally
available

Lacks natural description on individual rather than collective level
Each observation influences the spatial distribution of the whole
population (i.e. no “optimal” single-observation/single-target update)
Track histories or observation paths unavailable (unless through
heuristics)

Lacks intuitive interpretation (on some points)

Poisson (resp. i.i.d.) approximation in PHD (resp. CPHD) filter
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Stochastic populations for multi-object filtering

1 Multi-object filtering framework: basics

2 Traditional solutions: strengths and weaknesses

3 Stochastic populations for multi-object filtering
Multi-object estimation framework
Bayesian filtering
Closed-loop sensor management
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Stochastic populations for multi-object filtering Multi-object estimation framework

Estimation framework for stochastic populations

General principle
“A potential target is represented by a specific amount of information:
not too little, but not too much either.”

Outline
Well-defined probabilistic framework, developed by J. Houssineau
(supervisor: D. Clark)
Level of description depends whether individual is distinguishable or
indistinguishable
Ongoing developments beyond tracking (e.g. sensor management, sensor
calibration, performance assessment, ...)
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Stochastic populations for multi-object filtering Multi-object estimation framework

Target distinguishability

Indistinguishable target:
unidentified member of larger
population
no specific information available
e.g., “one of the potential
individuals that entered 10 time
steps ago and has not been
detected yet”

Distinguishable target:
individual characterised by specific
information
e.g., “the potential individual that
entered 10 time steps ago and
produced observations z3

21, z1
25”
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Stochastic populations for multi-object filtering Multi-object estimation framework

Individual management: where are the targets?

Spatial distribution and “empty state” ψ

Distinguishable target and associated track

First detection triggers distinguishability
Associated track y describes observation
path and current info on target state
Usual notion of track, except probability
of absence pyt ({ψ})
Note: 1− pyt ({ψ}) does not assess track
credibility, but its presence in the scene
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Stochastic populations for multi-object filtering Multi-object estimation framework

Population management: which are the true targets?

Joint probability of existence
Assesses joint existence of targets:

P (∅, 0)

P ({y}, 1)

P ({y, y′}, 2)

P (∅, 1)

. . .

At time t:
Set of tracks Yt, mt populations of indistinguishable targets

∑
Y⊆Yt

∑
n1≥0 · · ·

∑
nmt≥0 Pt(Y, n1, . . . , nmt) = 1
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Stochastic populations for multi-object filtering Multi-object estimation framework

Individual+population management: what is the true
multi-target configuration?

Elementary events

Compound events

Probability that there are at least two undetected targets in B
Probability that either y exists or y′ has left the scene, and there are no
undetected targets in the scene
. . ..
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Stochastic populations for multi-object filtering Bayesian filtering

Bayesian filtering with stochastic populations (1/2)

Principle
Maintain and update a dynamical stochastic
population reflecting the true multi-target
configuration

Filtering design: a few modelling choices

How to represent incoming targets at time
t?

One ind. population?

Two?

How to mitigate information loss?
Merge “close” ind. populations?

Merge
“close” tracks?

“Blend” a track into a “close” ind.
population?
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Stochastic populations for multi-object filtering Bayesian filtering

Bayesian filtering with stochastic populations (2/2)

Prediction step

Time update of spatial distributions
Single-object time update → KF, EKF,
UKF, SMC...
No additional observations → no update of
joint probabilities of existence

Data update step

Data association:
Update of joint probabilities of existence
Pop. management (indist. → tracks, etc.)
Data update of spatial distributions
Single-object data update: → KF, EKF,
UKF, SMC...
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Stochastic populations for multi-object filtering Bayesian filtering

The filter for Distinguishable and Independent Stochastic
Populations (DISP)

Assumptions on the incoming targets, at every time step t:

1. Described by a single indistinguishable population
2. Detected at once (i.e., they become immediately distinguishable)

Practical considerations

No propagated information on yet-to-be-detected targets
Full data association → information on every possible track is maintained
High computational cost (≈ MHT) → parallel implementation ongoing
Approximate DISP: HISP, similar cost to PHD but better tracking
performances (early analysis)
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Stochastic populations for multi-object filtering Closed-loop sensor management

Closed-loop sensor management: principle

Ut: pool of available actions at time t
ui ∈ Ut: describes a specific sensor (i.e. `ui , pd,ui , pfa,ui , Zui)
Question: which action ui should be selected to collect the “best”
observations Zt?
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Stochastic populations for multi-object filtering Closed-loop sensor management

Construction of information gain: principle

Objective
The operator has access to the predicted information PYt|t−1

and considers
some action u ∈ Ut for the next observation. Can we quantify the expected
information gain Gu of action u?

Outline

1. Suppose that observations Z ⊆ Zu are collected. How does the updated
information PYt

(·|Z) look like?
2. How much does the operator learn from PYt|t−1

to PYt(·|Z)?
3. How much can he expect to learn from PYt|t−1

if he chooses action u?

Filtering method: DISP
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Stochastic populations for multi-object filtering Closed-loop sensor management

First things first... what does the operator know
beforehand, i.e. what does PYt|t−1

look like?

Incoming targets (indistinguishable)

Per assumption, a single population describe all the incoming targets
All individuals are described by a unique spatial distribution pa

t

Previously detected targets (distinguishable)

Per construction, all possible tracks are maintained in the set Yt|t−1

Each track y ∈ Yt|t−1 has its own spatial distribution pyt|t−1

Joint probability of existence Pt|t−1

Pt|t−1(Y, n): how likely is the configuration with tracks y ∈ Y and n
incoming targets?∑
Y⊆Yt|t−1

∑
n≥0 Pt|t−1(Y, n) = 1
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Stochastic populations for multi-object filtering Closed-loop sensor management

First things first... (cont.)

Are all the subsets of tracks Y ⊆ Yt|t−1 worth considering?

→ ∅, {y}, {y′}, {y′′}, {y, y′}, {y′, y′′} OK
→ {y, y′′}, {y, y′, y′′} not OK

Set of hypotheses Ht|t−1

The hypotheses h ⊆ Yt|t−1 are the subsets of compatible tracks∑
Y⊆Yt|t−1

∑
n≥0 Pt|t−1(Y, n) = 1→

∑
h∈Ht|t−1

∑
n≥0 Pt|t−1(h, n) = 1
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Stochastic populations for multi-object filtering Closed-loop sensor management

If some Z ⊆ Zu is collected, how does PYt
(·|Z) look like?

Data association
Given a possible configuration (h ∈ Ht|t−1, n ∈ N) of the target population,
what are the possible associations with the collected observations Z?

Each association a = (h, n,h ∈ AdmZt
(h, n)) leads to a unique hyp. ĥ ∈ Ht:

Assessed by prob. P a
u (i.e. how likely is the association producing ĥ?)

Composed of tracks ĥ =
⋃
y∈hd
{y :ν(y)} ∪

⋃
y∈h\hd

{y :φ} ∪
⋃
z∈Za
{a:z}
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Composed of tracks ĥ =
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Stochastic populations for multi-object filtering Closed-loop sensor management

Then, what is the information gain for track y?

Rényi divergence

Suppose track y has been updated with observation z ∈ Z ∪ {φ}
What have we learnt from pyt|t−1 to py :z

u ?

We define Gy :z
u = 1

α−1 log
[ ∫ [

pyt|t−1(x)
]α[

py :z
u (x)

]1−α
µ(dx)

]
The track gain Gy :z

u is non-negative, and equals zero iff:
pyt|t−1 = py :z

u on X (i.e. nothing learnt on target localization)

, and

pyt|t−1(ψ) = py :z
u (ψ) (i.e. nothing learnt on target presence)
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Finally, what is the expected gain from action u?

What is the expected gain from action u, given Z?

1. Gain from y to y :z: Gy :z
u = 1

α−1 log
[ ∫ [

pyt|t−1(x)
]α[

py :z
u (x)

]1−α
µ(dx)

]
2. Gain from (h, n) to ĥ: Ga

u =
∑
y∈hd

G
y :ν(y)
u +

∑
y∈h\hd

Gy :φ
u +

∑
z∈Za

Ga:z
u

3. Expected gain from (h, n), given Z: Gh,nu (·|Z) =
∑

h∈AdmZ(h,n) P
a
uG

a
u

4. Expected gain from PYt|t−1
, given Z:

Gu(·|Z) =
∑
h∈Ht|t−1

∑
n≥0 Pt|t−1(h, n)Gh,nu (·|Z)

What is the expected gain from action u?

1. Expected gain from PYt|t−1
: Gu =

∑
Z⊆Zu

Gu(·|Z)
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Region-specific and/or track-specific information gain

Information gain Gu global by nature, but core element is track-based Rényi
divergence

Gy :z
u =

1

α− 1
log
[ ∫ [

pyt|t−1(x)
]α[

py :z
u (x)

]1−α
µ(dx)

]
Elementary changes in the divergence operator allow emphasis on specific

regions of the target state space and/or specific tracks, e.g.

Exclusion of regions from
decision policy

Exclusion of tracks from
decision policy
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Thank you for your attention!

Delande (H-W U) Stochastic populations July 21, 2015 35 / 35


	Multi-object filtering framework: basics
	Traditional solutions: strengths and weaknesses
	The track-based approach
	The RFS-based approach

	Stochastic populations for multi-object filtering
	Multi-object estimation framework
	Bayesian filtering
	Closed-loop sensor management


