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Abstract: Calibration of array shape error is a key issue for most existing source localisation algorithms. In this study, the far-field
self-calibration and near-field pilot-calibration are carried out using unconditional maximum likelihood (UML) estimator whose
objective function is optimised by particle swarm optimisation (PSO). A new technique, decaying diagonal loading (DDL), is
proposed to enhance the performance of PSO at high signal-to-noise ratio (SNR) by dynamically lowering it, based on the
counter-intuitive observation that the global optimum of the UML objective function is more prominent at lower SNR.
Numerical simulations demonstrate that the UML estimator optimised by PSO with DDL is robust to large shape errors,
optimally accurate and free of the initialisation problem. In addition, the DDL technique can be coupled with different global
optimisation algorithms for performance enhancement. Mathematical analysis indicates that the DDL is applicable to any
array processing problem where the UML estimator is employed.
1 Introduction

Errors in sensor location can severely degrade the source
localisation performance of a sensor array. A small
perturbation in sensor location can often dominate all other
causes of source localisation error [1, 2]. Therefore it is
crucial to calibrate the array shape. Calibration methods can
be classified into self-calibration and pilot-calibration,
dependent on whether calibration sources are at known or
unknown positions. The field region of an array can be
divided into far field and near field, based on the distance
from it. In this paper two physical scenarios are considered,
the self-calibration using far-field sources and the pilot-
calibration using near-field sources.

Rockah proposed a far-field self-calibration method that
requires sources to be separable in the time or the frequency
domain [3]. Weiss and Friedlander used objective functions
based on conditional maximum likelihood (CML) [4] (termed
WF1) and multiple signal classification (MUSIC) [5] (termed
WF2) for the far-field self-calibration problem. In Weiss and
Friedlander’s methods, a first-order Taylor approximation is
applied to the sensor location parameters to achieve an
analytical optimisation, which reduces the computational
complexity. However, the Taylor approximation requires that
the perturbation is small, and exacerbates the MSE of the
result. Flanagan and Bell [6] relieved the small perturbation
constraint by preceding WF2 with a ‘coarse calibration’
procedure. Chung and Wan [7] used EM algorithm to optimise
the CML objective function. This led to improved calibration
accuracy under conditions of large perturbation and closely
located sources, but lacks an initialisation mechanism.

The near-field problem emerges when a source is placed
close to an array, for example when array calibration is
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carried out in an anechoic chamber where the space is
limited because of the cost of construction. The fundamental
difference between near field and far field is whether the
range information is neglected by the plane-wave
approximation [8]. In the near field the range effect must be
taken into account, which makes near-field array processing
generally more complicated than far field. Previous work on
near-field array processing has largely been on source
localisation, where a popular technique for computational
simplification is a second-order Taylor expansion, see [9]
and the references therein. However, this technique is only
applicable to the ‘Fresnel region’, which is the outer part of
the near field, and the approximation error increases as the
source comes closer to the array. Recently He et al. [10]
proposed a non-parametric near-field calibration technique
based on calibration matrix interpolation; however, it
requires a single source at a large number of known
positions that form a two-dimensional grid.

We propose a method that employs unconditional
maximum likelihood (UML) estimator optimised by particle
swarm optimisation (PSO) with decaying diagonal loading
(DDL) for both far-field self-calibration and near-field pilot-
calibration. The array shape is calibrated with an UML
estimator, whose objective function is optimised by PSO. A
new technique, DDL is proposed to enhance the
performance of PSO at high signal-to-noise ratio (SNR) by
dynamically lowering it, based on the counter-intuitive
observation that the global optimum of the UML objective
function is more prominent at lower SNR. Since no
approximation is involved, the proposed method is
applicable to the entire near field and large shape errors.
Unlike local optimisation algorithms, PSO does not need
accurate initialisation to reach the global optimum of the
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objective function. Its failure at high SNR is prevented by the
novel DDL technique that dynamically lowers the SNR.
Thanks to the quality of the UML estimator, the calibration
accuracy attains the Cramer-Rao bound (CRB). Finally,
because of the parametric nature of the UML estimator the
method requires only a few sources to calibrate an array.

The rest of this paper is organised as follows. The problem
is formulated in Section 2, the PSO-DDL paradigm is laid out
in Section 3, followed by simulation results in Section
4. Section 5 summarises and concludes the paper.

2 Problem formulation

Consider an array of N sensors receiving signals emitted by M
sources. The sensors and the sources are assumed to be in a
plane for the simplicity of exposition. The geometry of one
sensor and one source is illustrated in Fig. 1. The sources are
with bearings u ¼ [u1, . . . , uM]T and ranges r ¼ [r1, . . . ,
rM]T. The known nominal location of the nth sensor is given
by [xn, yn]T, which is perturbed by unknown error [Dxn,
Dyn]T to the actual location [xn + Dxn, yn + Dyn]T. The
perturbations are summarised in vector d ¼ [Dx1, Dy1, . . . ,
DxN, DyN]T, which is considered constant in a calibration
process.

For narrow band signals, the K snapshots of the array
output can be expressed in the Fourier domain as

z(k) = Hs(k) + n(k), k = 1, . . . , K (1)

The n, mth element of the array manifold H is given by

Hnm = anm exp{jvtnm},

n = 1, . . . , N , m = 1, . . . , M
(2)

where anm is the attenuation factor and exp{jvtnm} is the
phase factor, both from the mth source to the nth sensor.
Here v is the angular frequency of the signal wave and tnm

is the time delay from the mth source to the nth sensor. For
a spherical wave travelling in free space, which is the case
considered in this paper

anm = 1

dnm

, tnm = dnm

c
, v = 2p

l
c (3)

where c is the wave speed, l is the wavelength and

dnm ={[rm sinum− (xn+Dxn)]2+ [rm cosum− (yn+Dyn)]2}1/2

Fig. 1 Sensor–source geometry in near field
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is the distance between the nth sensor and the mth source.
Inserting (3) into (2), Hnm can be expressed as

Hnm = 1

dnm

exp j
2p

l
dnm

{ }
(4)

If the sources are far from the array, rm . 2D2
a/l [8], where

Da is the dimension of the array, the far-field approximation
[11] simplifies Hnm to

Hnm = exp j
2p

l
[(xn + Dxn) sin um + (yn + Dyn) cos um]

{ }

(5)

The Hnm for near field differs from that for far field in two
aspects: one is the attenuation factor 1/dnm, which denotes
the signal strength loss in free space; and the other is the
phase shift (2p/l)dnm, which denotes the phase delay from
the source to the sensor. They are both functions of source
bearing and range. For the far-field case, the signal strength
is considered the same across the array, thus the magnitude
factor is absent; the plane wave approximation is applied,
thus the phase difference between two sensors is simply
determined by their distance projected to the source
bearing. As a result the information of source range is lost
and has to be recovered by other means.

In (1), the signal vector s(k) is considered to be stochastic.
The noise vector n(k) is independent, identically complex
normally distributed with zero mean and covariance matrix
nI, where n is an unknown noise spectral parameter and I is
an N × N identity matrix. Given the observations {z(k)}K

1 ,
the problem of central interest is to estimate the parameters
a of H(a). H(a) is H with its parameter vector a explicitly
expressed. The content of a is determined by the physical
scenario. For instance, for an self-calibration a contains
both the source and sensor positions, whereas for an pilot-
calibration a contains the sensor positions only. This will
be specified in Section 4. Following [11], the UML
estimator for a can be expressed as

â = arg min
a

det PH R̂PH + tr(P⊥
H R̂)P⊥

H

N − M

[ ]{ }
︸������������������︷︷������������������︸

F(a)

(6)

where PH ¼ H(H HH )21H H is the projection matrix of H, and
P⊥

H = I − PH is its orthogonal complement. R̂ = (1/K)
∑K

k=1
z(k)zH(k) is the sample covariance matrix. F(a) denotes the
objective function, and is notationally simplified to F where
appropriate.

The UML objective function in (6) is non-linear, multi-
dimensional and multi-modal, which poses a difficult
optimisation problem. Exhaustive search is computationally
unfeasible for high-dimensional optimisation; local
optimisation methods, such as the gradient algorithms and
the EM algorithm, although computationally efficient, suffer
from the initialisation problem. We thus propose stochastic
global optimisation for the task, which does not need
accurate initialisation, yet is computationally feasible.

In addition to the multimodality that fails the local
optimisers, the UML objective function presents another
difficulty to the global optimisers: modes of similar height
at high SNR. Although the height of the global optimum
compared with the local optimum is irrelevant to the
success of a local optimiser, this height contrast is essential
457

& The Institution of Engineering and Technology 2012



www.ietdl.org
to a global optimiser as a global optimiser searches the entire
solution space and a prominent global optimum is easier to
find. The height contrast between the global optimum and
the local optima of F is visualised at the end of this section,
and a mathematical analysis of the height contrast is
provided in the Appendix. The difficulty caused by the
similar height of the optima to the global optimiser is also
shown by simulations in Section 4.

The visualisation and mathematical analysis are carried out
after the concepts involved are established. It is a simple
matter to establish that lowering the SNR by adding
spatially white noise is asymptotically equivalent to
diagonally loading the covariance matrix: R̃ = R + nlI ,
where R = limK�1 R̂ and nl is the power of the loaded
noise. Assuming normalised signal power, the original
signal-to-noise ratio can be expressed as SNR ¼ 210 log n.
We then define the effective signal-to-noise ratio after DL as

SNRa = −10 log(n+ nl) (7)
458
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and consequently the loaded signal-to-noise ratio as
SNRl ¼ SNRa 2 SNR.

Since it is impossible to visualise a high-dimensional F(a),
we have to demonstrate the effect of DL using low-
dimensional problems such as two-dimensional direction of
arrival (DOA) estimation problem and calibration problem.
Fig. 2 shows the F(a) for a DOA estimation problem with the
two source DOA u1 and u2 being the content of the parameter
vector a. The DOA estimation problem can also be viewed as
a degenerated form of a far-field self-calibration problem.
Fig. 3 shows the F(a) for a near-field calibration problem
with one sensor’s deviation from its true location, dx1 and dy1,
being the content of the parameter vector a.

Comparing Fig. 2a with b, and Figs. 3a with b, we see that
diagonal loading of the sample covariance matrix R̂, which is
asymptotically equivalent to reducing the SNR, makes
prominent the global minimum of the objective function.
This eases searching it for a global optimiser. In addition to
the cases shown in Figs. 2 and 3, more visualisations reveal
that the prominence phenomenon is independent of the
Fig. 2 Negative objective function

a Before diagonal loading
b After diagonal loading
Far-field DOA estimation: 5-sensor uniform circular array, inter-sensor spacing l/2; 2 signals at [235 35]8, K ¼ 1000; SNR ¼ 14 dB, SNRa ¼ 210 dB

Fig. 3 Negative objective function

a Before diagonal loading
b After diagonal loading
Near-field pilot-calibration: 6-sensor uniform circular array with a ¼ l/2 inter-sensor spacing, perturbed by uniform random displacements with boundary
b ¼ 0.1a. three sources at bearings 21208, 08 and 1208, all with the same range r ¼ 2a relative to the centre of the nominal array, K ¼ 1000. SNR ¼ 14 dB,
SNRa ¼ 25 dB
IET Signal Process., 2012, Vol. 6, Iss. 5, pp. 456–465
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number of sensors and sources, the geometry of the array, and
the near-field and far-field scenarios. This SNR-varied
prominence of the global minimum of F is also indicated
by the mathematical analysis in the Appendix.

3 PSO-DDL technique

PSO [12] is chosen as the global optimiser to address the
multi-modality, multi-dimensionality and non-linearity of
the UML objective function, because of its optimisation
competence and implementation simplicity. A novel
technique, DDL, is proposed to solve the problem of modes
of similar height, based on the observation that the global
optimum of F is more prominent at lower SNR.

3.1 PSO for array shape calibration

PSO [12] is a stochastic global optimisation technique that is
simple in its kernel and robust in its control parameters. It is
reported that PSO is computationally less intensive than the
GA for a number of array processing and other problems
[13]. In the following, a basic PSO is introduced, which is
adequate for the problems considered. Other PSO variants
that are also applicable can be found in [14] and the
references therein. Firstly the problem-independent PSO
kernel is described, then the problem-specific strategies
follow.

The problem-independent PSO kernel is a constriction PSO
[15]. In it, a swarm particle is a point in the D-dimensional
solution space of the optimisation problem, whose
coordinate is ji(t) [ RD, where t is the time index and i
denotes the ith particle, i ¼ 1, 2, . . . , P. ji(t) consists of the
parameters to be estimated. For example, in a far-field self-
calibration problem ji(t) consists of the source DOA [u1, . . .
, uM]T and the sensor location errors [Dx1, Dy1, . . . , DxN,
DyN]T, thus D ¼ M + 2N. P particles constitute a swarm,
wherein each particle is propelled by random movement in
the solution space but is guided towards the global optimum
of the objective function by swarm intelligence – the
processing of shared information of the objective function.

At the tth time step, the velocity of the ith particle ci(t) is
updated according to

ci(t + 1) = x(ci(t) + w1r1 ⊙ [pi(t) − ji(t)]

+ w2r2 ⊙ [gi(t) − ji(t)]), i = 1, . . . , P (8)

where ⊙ is the element-wise product operator. The three terms
in the brackets of (8) account for inertia, individual experience
and group information, sequentially. Specifically, r1 and r2 are
random vectors uniformly distributed in [0,1] that propel the
particles, pi(t) is the particle best location of its own
experience from time step 1 to t, gi(t) is the group best
location at current time step t. ‘Best’ is in the sense of the
lowest value of the cost function to be minimised. The scalar
x = 2/|2 − w−

���������
w2 − 4w

√
| is the constriction factor that

progressively constricts the harmful particle oscillation
resulting from the random movement. Here w ¼ w1 + w2, in
which w1 is the acceleration constant towards the particle
best location and thus a large value of it encourages
exploration of the solution space; and w2 is the acceleration
constant towards the group best location and thus a large
value of it encourages exploitation of potential districts of
global optimum. w should be greater than 4 to prevent
particle oscillation [15], and in practice w ¼ 4.1 is a viable
value [14]. For unit time step, the position of the ith particle
IET Signal Process., 2012, Vol. 6, Iss. 5, pp. 456–465
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is updated as

ji(t + 1) = ji(t) + ci(t + 1), i = 1, . . . , P (9)

In order to prevent the particle from flying too fast and thus
overshooting the target or exceeding the boundary of the
solution space, the particle velocity is limited by a maximal
value C. If the velocity in any dimension d exceeds C, it is
clamped by

cid = C
cid

|cid|
, d = 1, . . . , D (10)

where cid is the dth component of ci. If a particle flies out of
the boundary of the solution space in any dimension, it is
reset to a random position in that dimension. In the case that
the parameters to be optimised have different boundaries,
one may map the feasible ranges into [0,1). As a result the
velocity can be updated uniformly, and C is the same for all
the dimensions.

Two strategies specific to the array calibration problem are
stated below.

1. If at any PSO iteration, two DOA’s happened to be closer
than a pre-specified value d, one of them is assigned a random
value [13]. This is to prevent H from rank-deficiency.
2. The group best location gi(t) in (8) is the coordinate of the
best particle in the ith group which is a subset of the particle
swarm. The definition of ‘group’ determines the topology of
the swarm. For instance, a swarm is of ‘star topology’ if one
of the particles compares its objective function value with all
the other’s and each of the other particles compares with the
one only. Swarm topologies with less comparisons between
the particles have a higher success probability of reaching
the global optimum, at the expense of more iterations [16].
We therefore design a ‘string topology’ in which a particle
only compares with its two immediate neighbours or one
immediate neighbour if it is at the either end, forming a
‘string’

Particles of the ith group
i, i + 1, i = 1
i − 1, i, i + 1, i = 2, . . . , P − 1
i − 1, i, i = P

⎧⎨
⎩

3.2 Decaying diagonal loading

When the PSO is used to optimise the objective function F in
(6), it often fails to reach the global minimum of F at high
SNR. Visualisation of F in Section 2 reveals the reason
being that the global minimum of F is more prominent at
lower SNR than at higher SNR. An analysis of the first
partial derivative of F in the Appendix indicates that this
observation is a general feature of F regardless of the
structure of H(a) and the content of the parameter vector
a. Therefore, a new technique, DDL is proposed to make
the global minimum more prominent and consequently
enhance the performance of PSO.

DL is a common technique for performance improvement in
adaptive beamforming, see [17] and the references therein. A
constant amount of DL is added to the data covariance matrix,
permanently changing the objective function, and an ‘optimal’
amount has to be determined to control the adverse effects
[17]. However, observing that the particles of PSO congregate
as the algorithm iterates on [14], which is a common
459
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characteristic of population-based stochastic optimisation
algorithms such as genetic, simulated annealing and differential
evolution (DE) algorithms, we propose a DDL, whose amount
reduces to zero at the end of the optimisation to avoid any
adverse effect DL may cause to the objective function.

In DDL, the amount of DL is sufficiently large in the
beginning to make the global minimum prominent and thus
guides the PSO. It reduces to zero in the end and thus
completely recovers the original F(a). DDL differs from
existing DL techniques for improving performance in that it
does not permanently alter the objective function. The
objective function eventually optimised is the original one,
therefore the quality of the estimator, such as precision and
resolution, is preserved.

In DDL, the amount of loading exponentially decays
(see (11))

where rl [ (0, 1) is the ratio of loaded iteration, T is the
maximum iteration and [.] stands for the rounding operator.
PSO-DDL is not sensitive to SNRl as indicated by
simulation. Therefore, in the case that the original SNR is
unknown, one can set the SNR in (11) to the highest
possible value and load R̂ in large amount without affecting
the results. [18] contains a DDL schedule that is
independent of the SNR based on this principle.

There also exist other transformations of objective function
to enhance optimisation result, such as eliminating local
460
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minima to make global minimum prominent [19], and
partially convexifying the objective function [20], which
differ from DDL in technique and effect on the objective
function. In addition, they both permanently change the
objective function.

To conclude Section 3, the PSO-DDL technique is
summarised in Fig. 4.

4 Simulation results

Two physical scenarios are used to demonstrated the
performance of PSO-DDL, the far-field self-calibration and
near-field pilot-calibration. In addition, DDL is also coupled
with the DE algorithm [21] to support the remark that the
DL effect is independent of specific optimisation algorithm.
For the far-field self-calibration, the array manifold is
expressed by (5), and the content of the parameter vector a
is the source DOA’s [u1, . . . , uM]T and the sensor location
perturbations d. For the near-field pilot-calibration, the array
manifold is expressed by (4), and the content of the
parameter vector a is the sensor location perturbations d.

4.1 Far-field self-calibration

A 5-sensor 3-source geometry is considered. The nominal
array is a uniform circular array with inter-sensor spacing
a ¼ (l/2), whose sensor locations are perturbed by Dxn and
Fig. 4 Particle swarm optimisation-decaying diagonal loading

nl(t) =
10−(SNR/10){10−(SNRl/10)(1−{(t−1)/[rlT ]}) − 1}, t = 1, . . . , [rlT ]
0, t = [rlT ] + 1, . . . , T

{
(11)
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Dyn that are independently, uniformly distributed in [2b, b], in
which b is the sensor location tolerance. Dx1, Dy1 and Dy2 are
set to zero according to [1] to fulfil the identifiability
condition. Following [4, 5], the three sources are set at
u0 ¼ [235 0 35]8, which however is unknown to the self-
calibration procedure. The three sources emit equi-power,
uncorrelated signals. The SNR simulated ranges from 218
to 38 dB with 4 dB step size, and 200 Monte Carlo (MC)
trials are performed for each SNR. The array shape is the
same for the entire SNR range but is different in each MC
trial. The error measure is the sum of squared error (SE
sum) of the three signals, ‖û− u0‖2, averaged over the 200
trials. The control parameters for PSO and DDL are
summarised in Table 1. PSO is terminated after the
maximum number of iterations, T, is reached, which amounts
to PT objective function evaluations per optimisation.

Firstly, the performances of PSO alone and PSO-DDL are
compared. PSO starts to fail when the SNR is higher than a
certain threshold, and the proportion of failure increases as
the SNR increases. An example of the threshold and failure
increase is shown in Fig. 5. The left-hand column shows
the convergence of the cost function F over 200 trial runs at

Table 1 PSO and DDL control parameters for far-field

self-calibration

PSO parameters DDL

parameters

w1 w2 D P C T SNRa rl

2.4 1.7 1024 rad 30 0.5 3000 215 dB 0.13

Fig. 5 PSO performance at critical SNR’s
Left column F: convergence over 200 MC trials at 4 values of SNR
Right column: Final converged value of the DOA estimates for each
of the trials
Nominal array is a 5-sensor uniform circular array with inter-sensor
spacing a ¼ l/2, perturbed to actual array shape by uniformly
distributed random displacements with boundary b ¼ 0.2a. Three
sources of opportunity reside at DOA u0 ¼ [2358 08 358]T, which
are unknown a priori to the estimator
IET Signal Process., 2012, Vol. 6, Iss. 5, pp. 456–465
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4 values of SNR. The right-hand column shows the final
converged value of the angle estimates for each of the
trials. It can be seen that at SNR ¼ 10 dB all the 200 DOA
estimates are close to true value, but from SNR ¼ 14 dB
on, spiky estimates appear indicating that some runs
produce poor estimates. The number of spikes increases as
the SNR increases.

In contrast, Fig. 6(1) shows that the PSO-DDL optimised
values of F are well grouped in one region instead of
separated in two bundles. In addition, for the first 800 PSO
iterations, which are diagonal loaded ones, the optimised F
value follows an approximately exponential decline that
expresses the effect of DDL; Fig. 6(2) shows that all the
calibrated DOA estimates are close to true values rather
than many an outlier straying far away in Fig. 5(8). The
SNR shown in Fig. 6 is 22 dB, which is the highest SNR in
Fig. 5. At the other SNR the improvements by DDL are
similar to Fig. 6 and thus the results are omitted.

Secondly, the statistical results of PSO-DDL are compared
with the WF1 and WF2 algorithms, and the CRB which is
based on stochastic signal assumption (Section 8.11.2 of
[11]). The K ¼ 1000 results are presented here. Cases with
a small number of snapshots (e.g. K ¼ 20) can be found in
[22] with similar results. WF2 is initialised at true DOA for
convenience. The results are not compared with [6] as its
final step is WF2 and are also not compared with [7] as it
lacks the initialisation step. Although the coarse calibration
steps of [6] can be applied to PSO-DDL for larger b, and
existing DOA estimation algorithms can be used to initialise
[7], a thorough investigation is out of the scope of this
work as initialisers differ in sensitivity to array shape
perturbation and consequently affect the self-calibration
result.

In the first experiment the perturbation boundary b ¼ 0.05a
is considered. The DOA ranges from 21808 to 1808. One
observes from Fig. 7 that both WF1 and WF2 succeed in
calibrating the array shape at SNR’s higher than 22 dB, with
a similar MSE sum. Owing to the fact that WF2 is based on
the eigen-structure objective function, it shows a threshold at
22 dB, below which the MSE sum increases dramatically.
WF1 shows a much lower threshold at 22 dB, because of its
CML objective function. Nevertheless, neither of the two
algorithms attains the CRB at an SNR higher than their
thresholds. This results from the Taylor approximation that
renders the bias the same order of magnitude as the STD,
making the MSE considerably higher than the CRB despite
the STD approaching the CRB [4–6]. PSO-DDL shows a
threshold at 26 dB which is lower than both WF1 and WF2.
Above this SNR, its MSE sum attains the CRB. This MSE
sum is apparently lower than that of both WF1 and WF2.
This experiment shows that under small perturbation, PSO-
DDL has optimal accuracy that is better than WF1 and WF2,

Fig. 6 PSO-DDL performance at SNR ¼ 22 dB

Nominal array is a 5-sensor uniform circular array with inter-sensor spacing
a ¼ l/2, perturbed to actual array shape by uniformly distributed random
displacements with boundary b ¼ 0.2a. Three sources of opportunity
reside at DOA u0 ¼ [2358 08 358]T, which are unknown a priori to the
estimator
461
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and has a lower threshold SNR. One also observes from Fig. 7
that PSO-DDL has almost identical performance with PSO
alone in this case, which reflects that DDL recovers the
original objective function eventually.

In the second experiment the perturbation boundary b is
enlarged to 0.2a. Two of the PSO and DDL parameters are
adjusted to T ¼ 8000 and rl ¼ 0.1 for the more challenging
case. Other settings are the same as in the first experiment.
It is observed from Fig. 8 that PSO-DDL succeeds in
calibrating the array with CRB-attaining MSE sum of DOA
parameters at SNR’s greater than 2 dB. Both WF1 and
WF2 fail with estimation errors much higher than PSO-
DDL and the CRB. The errors of WF1 and WF2 do not

Fig. 7 Comparison of self-calibration accuracy under small
sensor location error

5-sensor uniform circular array with a ¼ l/2 inter-sensor spacing, perturbed
by uniform random displacements with boundary b ¼ 0.05a. Three sources
of opportunity reside at DOA u0 ¼ [2358 08 358]T, which are unknown a
priori to the estimator

Fig. 8 Comparison of self-calibration accuracy under large
sensor location error

5-sensor uniform circular array with a ¼ l/2 inter-sensor spacing, perturbed
by uniform random displacements with boundary b ¼ 0.2a. Three sources of
opportunity reside at DOA u0 ¼ [2358 08 358]T, which are unknown a priori
to the estimator
462
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decrease as the SNR increases. We also note that without
DDL, PSO alone would fail with large estimation error,
comparable to WF1 and WF2, when the SNR is greater
than 10 dB. This experiment shows that PSO-DDL has
much higher robustness against large sensor location errors
than both WF1 and WF2, and it retains optimal accuracy at
large perturbation.

4.2 Near-field pilot-calibration

Two array geometries, the circular array (CA) and the linear
array (LA), are considered. The first case is the calibration of
a 20-sensor CA using three near-field sources. Specifically,
the nominal array is a 20-sensor CA with a ¼ l/2 inter-
sensor spacing, perturbed by Dxn and Dyn that are
independently, uniformly distributed in [2b, b], in which
b ¼ 0.65a is the sensor location tolerance. The perturbed
array shape is the same for all the MC trials. The three
sources reside at bearings 21208, 08 and 1208, all with range
5a relative to the centre of the nominal array, emitting equi-
power, uncorrelated signals. The source locations are known
to the pilot-calibration procedure. The SNR simulated varies
from 220 to 60 dB with 4 dB step size, and 200 MC trials
are performed for each SNR. The error measure is the sum of
squared errors for the 20 sensors, ‖d̂− d0‖2, averaged over
the 200 trials. d0 denotes the true perturbations. The control
parameters for PSO and DDL are specified in Table 2. As in
pilot-calibration the source locations are not parameters to be
estimated, the ‘collision avoidance’ step (line 13–15) in
Fig. 4 can be omitted and the PSO control parameter d is
absent in Table 2. Compared with the parameters for far-field
self-calibration in Table 1, the PSO is enhanced in search
ability to accommodate the solution space of higher
dimensions and a larger range in each dimension, at the cost
of more computation load which is proportional to PT.

The identifiability condition is given in [23], and is satisfied
here. The near field [8] is defined as range r , 2D2

a/l, where
Da is the dimension of the array. In this case Da ¼ 3.20l is the
diameter of the array, hence r , 20.43l is the near field. The
Fresnel region [8] is defined as 0.62

������
D3

a/l
√

, r , 2D2
a/l,

which is 3.54l , r , 20.43l in this case. The range of the
sources rm ¼ 2.5l falls in the inner part of the near field,
beyond the Fresnel region.

The calibration result is illustrated in Fig. 9. The mean
squared error (MSE) sums of PSO and PSO-DDL are
compared with each other and with the CRB. The technique
of [10] is not compared as it is not a parametric method that
explicitly estimates the sensor locations. For SNR ≤ 20 dB,
PSO yields accurate results that attain the CRB. However, it
shows a threshold at SNR ¼ 20 dB, above that SNR the
MSE sum increases and eventually levels off at a high value
that is comparable to that of SNR ¼ 24 dB. In contrast, the
MSE sum of PSO-DDL result attains the CRB in the entire
SNR range simulated. Its level-off in 212 to 220 dB is a
result of the assumption that the sensor location error is
limited to [20.65a, 0.65a]. It is well known that CRB is an
asymptotic bound that is invalid at low SNR: when the

Table 2 PSO and DDL control parameters for near-field

pilot-calibration

PSO parameters DDL parameters

w1 w2 P C T SNRa rl

2.7 1.4 100 0.01 16000 215 dB 0.4
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SNR falls to 21 the CRB goes to 1, so the MSE sum is
bound to be lower than the CRB at low SNR. Another
observation is that the MSE sums of neither PSO nor PSO-
DDL demonstrate a threshold at low SNR, typically about
0 dB, where usually the MSE of DOA estimation and self-
calibration sharply rises above the CRB.

The second case is the calibration of a 20-sensor LA using
three near-field sources. Contrary to far-field self-calibration
where LA is unidentifiable for geometrical reasons, in near-
field pilot-calibration LA is identifiable under mild
conditions [23], which are satisfied here. In the simulation,
except for the array geometry and the SNR range, the other
settings of the LA calibration are the same as those of the
CA calibration in this subsection. The nominal LA is of 20
sensor, with half-wavelength inter-sensor spacing. It lies on
the x-axis of the Cartesian coordinates and its centroid
coincides with the origin. The sensor locations are displaced
to the actual locations by the same perturbation as to the CA
in this subsection. All the other simulation settings, such as
calibration source placement, signal and noise environment,
are also the same as the CA simulation in this subsection.

The calibration result is illustrated in Fig. 10. The MSE
sums of PSO and PSO-DDL are compared with each other
and with the CRB. The SNR simulated varies from 220 to
40 dB with 4 dB step size. For SNR ≤ 16 dB, PSO yields
accurate results that attain the CRB. However, it shows a
threshold at SNR ¼ 16 dB, above that SNR the MSE sum
increases and eventually levels off at a high value that is
comparable to that of SNR ¼ 24 dB. In contrast, the MSE
sum of PSO-DDL result attains the CRB in the entire SNR
range simulated. Its level-off in 28 to 220 dB is a result of
the assumption that the sensor location error is limited to
[20.65a, 0.65a]. It is well known that CRB is an
asymptotic bound that is invalid at low SNR: when the
SNR falls to 21 the CRB goes to 1, so the MSE sum is
bound to be lower than the CRB at low SNR. Another
observation is that the MSE sums of neither PSO nor PSO-
DDL demonstrate a threshold at low SNR, typically about

Fig. 9 Comparison of PSO and PSO-DDL’s MSE’s and the CRB
for pilot-calibration

Nominal array is a 20-sensor circular array with a ¼ l/2 inter-sensor spacing,
perturbed by uniform random displacements with boundary b ¼ 0.65a. The
three sources reside at bearings 21208, 08 and 1208, all with range
5a relative to the centre of the nominal array. The source locations are
known a priori to the estimator
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0 dB, where usually the MSE of DOA estimation and self-
calibration sharply rises above the CRB.

Compared with the CA calibration in this subsection, PSO
for LA calibration shows a threshold 4 dB lower than that for
CA, and the start of level-off at low SNR for both PSO and
PSO-DDL is 4 dB higher for LA calibration than CA
calibration. These indicate that the calibration of LA is
slightly more difficult than CA in this configuration.

4.3 Differential evolution (DE) results

In support of the remark that DDL is a universal technique
that can be coupled with other algorithms to improve
performance, a different stochastic global optimisation
algorithm, DE [21] has also been employed to optimise the
UML objective function for both far-field self-calibration
and near-field pilot-calibration. The details of DE with DDL
for far-field self-calibration can be found in [24]. The result
of DE with DDL for CA near-field pilot-calibration as that
in Section 4.2 is summarised as follows, whereas the
simulation details can be found in [22].

Fig. 11 shows the simulation results of the same DE with and
without the aid of DDL. The array-source settings are exactly
the same as the CA near-field pilot-calibration in Section 4.2,
or in other words F is the same. The SNR shown is 26 dB.
Fig. 11a shows that a significant proportion of the 200 MC
trials performed by DE alone are trapped in local minima,
ending up with optimised F values grouped higher than the
global minimum bundle, and correspondingly Fig. 11b
shows a significant proportion of spiky false estimates of
sensor location. In contrast, Fig. 11c shows that DE–DDL
optimises F all to the global minimum, the slope between the
1st and the 400th DE iterations reflecting the effect of DDL,
and correspondingly Fig. 11d shows that all the sensor
location estimates are close to the true values. Note that this
is achieved in one-tenth of the number of iterations of DE
alone.

Fig. 10 Comparison of PSO and PSO-DDL’s MSE’s and the CRB
for pilot-calibration

Nominal array is a 20-sensor linear array with a ¼ l/2 inter-sensor spacing. It
lies on the x-axis of the Cartesian coordinates and its centroid coincides with
the origin. The sensor locations are displaced to the actual locations by the
same perturbation as to the circular array in this subsection. The three
sources reside at bearings 21208, 08 and 1208 relative to the y-axis, all
with range 5a relative to the origin. The source locations are known a
priori to the estimator
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5 Conclusions

The far-field self-calibration and near-field pilot-calibration are
carried out using UML estimator whose objective function is
optimised by PSO. A new technique, DDL is proposed to
enhance the performance of PSO at high SNR by dynamically
lowering it. Numerical simulations demonstrate that the UML
estimator optimised by PSO with DDL is optimally accurate,
robust to large shape errors, and free of the initialisation problem.

Furthermore, the development process of the DDL technique
introduces the ‘prominence’ concept of the global optimum.
This is different from the precision of it, which improves as
the SNR increases. The counter-intuitive behaviour of the
UML objective function that its global optimum stands more
prominent at lower SNR is harnessed by the DDL technique
to enhance the performance of the stochastic global
optimisation algorithms. Mathematical analysis indicates that
the DDL technique is applicable to a wide range of array
processing problems where the UML estimator is employed.
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7 Appendix

An analysis of the first-order partial derivative sheds some
light on the shape of the UML objective function in (6).
Jacobi’s formula [25] (Part Three, Section 8.3) states that

(det X )′ = (det X ) · tr(X−1X ′) (12)

where X is an invertible matrix.
Denote

X = PH R̂PH + tr(P⊥
H R̂)P⊥

H

N − M
(13)

and use (B.3) and (B.15) in [26], it follows that

tr(X−1X ′)=2Re tr (HHR̂H)−1−1

n̂
(HHH )−1

[ ]
HHR̂P⊥

H H ′
{ }( )

(14)
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where

n̂= tr(P⊥
H R̂)

N −M
(15)

Inserting (13) and (14) into (12) we obtain the first partial
derivative of F as

F ′ =2det[PH R̂PH + n̂P⊥
H ]

Re tr (HHR̂H)−1−1

n̂
(HHH)−1

[ ]
HHR̂P⊥

H H ′
{ }( )

(16)

where (.)′ is the first partial derivative with respect to any
entry of a.

Replace R̂ with R̂ + nlI in (15) and (16), note that
tr(P⊥

H ) = N − M and HHP⊥
H = 0, then the first derivative

after diagonal loading, F ′
l , is given by

F ′
l = 2 det[PH (R̂ + nlI)PH + (n̂+ nl)P

⊥
H ]Re(tr{[(HH

(R̂ + nlI)H)−1 − 1

n̂+ nl

(HHH)−1

]
HHR̂P⊥

H H ′
})

(17)

Two asymptotic (K � 1) properties of DL can be derived
from (16) and (17):

1. An extremum of F remains at a0 after DL.

Proof: At the true parameters a ¼ a0

R = H0SHH
0 + nI

where H0 stands for H(a0) and S the signal
covariance matrix E(ssH). The factor HH

0 RP⊥
H0

in (16) and
(17) satisfies

HH
0 RP⊥

H0
= HH

0 (H0SHH
0 + nI)P⊥

H0
= 0

Therefore F ′
i |a0

= F ′|a0
= 0, an extremum remains at a0

after DL.

2. |F ′
l | . |F ′| when nl is large. A
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Proof: When nl is large, PH RPH + n̂P⊥
H + nlI ≃ nlI ,

therefore

det[PH RPH + n̂P⊥
H + nlI ] ≃ nN

l

and

[HH(R + nlI)H]−1 = (n−1
l − nn

−2
l )(HHH)−1

− n−2
l (HHH)−1HHH0SHH

0 H (HHH)−1

+ O(n−3
l )

therefore

(HH(R + nlI)H )−1 − 1

n̂+ nl

(HHH )−1

≃ n−2
l (HHH)−1HHH0SHH

0 H(HHH)−1

As a result

F ′
l = O(nN−2

l )

Because F′ is independent of nl, |F ′
l | . |F ′| when nl is

large. A

Assuming F is sufficiently smooth in the vicinity of the
global minimum, properties (1) and (2) show that DL
makes F more pointed when nl is large, which suggests that
the global minimum is made more prominent. A complete
proof of the prominence of global minimum requires
analytical information of the local minima of F, which
appears to be a difficult problem. It is remarked that during
the derivation no assumption was made on the structure of
the array manifold or type of parameters, thus the DL effect
is independent of them; and DL takes effect on the
objective function, thus its effect is independent of the
specific global optimiser.
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