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Surveillance activities with ground-based assets in the context of space situational awareness are particularly

challenging. The observation process is indeed hindered by short observation arcs, limited observability, missed

detections, measurement noise, and contamination by clutter. This paper exploits a recent estimation framework for

stochastic populations for space situational awareness surveillance scenarios. This framework shares the flexibility of

the finite set statistics framework in the modeling of a dynamic population of objects and the representation of all the

sources of uncertainty in a single coherent probabilistic framework and the intuitive approach of traditional track-

based techniques to describe individual objects and maintain track continuity. We present a recent multi-object

filtering solution derived from this framework, the filter for distinguishable and independent stochastic populations,

and propose a bespoke implementation of the multitarget tracking algorithm for a space situational awareness

surveillance activity. The distinguishable and independent stochastic populations filter is tested on a surveillance

scenario involving two ground-based Doppler radars in a challenging environment with significant measurement

noise, limited observability, missed detections, false alarms, and no a priori knowledge about the number and the

initial states of the objects in the scene. The tracking algorithm shows good performance in initiating tracks from

object-generated observations and in maintaining track custody throughout the scenario, even when the objects are

outside of the sensors’ fields of view, despite the challenging conditions of the surveillance scenario.

Nomenclature

αy = probability of existence of previously detected
target with observation path y

c�H� = probability of existence of hypothesis H
H = hypothesis, i.e., subset of compatible tracks in Y
(H, n) = multitarget configuration, describing a possible

composition of population X
Htjt−1;Ht = set of all hypotheses, propagated by the filter for

distinguishable and independent stochastic pop-
ulations (DISP)

l�z; x� = likelihood of association between target with state
x and observation with state z

Ptjt−1, Pt = law of whole population of targets, propagated by
the distinguishable and independent stochastic
populations filter

Pa = law of population of appearing targets
pd�x� = probability of detection of target with state x

pfa�z� = probability that observation with state z is false
alarm

py = probability distribution of previously detected
target with obs. path y

pϕ = probability distribution of each yet-to-be-detected
target

w�H; n� = joint probability of existence of targets in
configuration (H, n)

X = population of targets
X = target state space
�X = target state space augmented with empty state ψ
x = target state (e.g., position and velocity coordinates)
Ytjt−1, Yt = set of all observation paths, propagated by

distinguishable and independent stochastic pop-
ulations filter

y = observation path or track characterized by said
observation path

Z = set of observations
Z = observation space
�Z = set of observations augmented with empty

observation ϕ
z = observation (e.g., radar attributable)
μϕn = multitarget configuration measure, describing

states of n yet-to-be-detected targets
μH;n = multitarget configuration measure, describing

states of targets in configuration (H, n)
ρϕ = cardinality distribution describing number of yet-

to-be-detected targets
ϕ = empty observation
ϕ = empty observation path
ψ = empty state (target)

I. Introduction

M AINTAINING a catalog of objects of interest in orbit around
the Earth is one of the major challenges within the context

of space situational awareness (SSA). Typically, SSA surveillance
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activities focus on the observation of a number of objects of interest in
a surveillance scene, i.e., the near-Earth space containing the orbits
on which the objects evolve, in order to estimate their individual
characteristics of interest or states (e.g., their position and velocity
coordinates in some reference frame). Since the number of orbiting
objects is unknown and time varying, a surveillance activity in the
context of SSA can be cast as a multi-object estimation problem of
which the salient features are familiar to the tracking community. The
operator possesses partial information on the dynamical behavior of
the objects of interest, and the observations (or measurements)
produced by sensors are the primary source of information on which
the catalog of objects is maintained and updated. In the general case,
the observation process is hindered by a limited sensor field of view
(FOV), measurement noise, missed detections when objects in the
sensor FOV do not produce observations, and, conversely, false
alarms when collected observations do not originate from orbiting
objects. In addition, the origin object of each collected observation is
usually unknown.
Some specific features of the SSA surveillance activities

characterize them as particularly challenging multi-object estimation
problems. The sensor FOVs cover a very limited fraction of the
surveillance scene at any given time, and meaningful information on
identified objects may have to be propagated over long periods of
time without the availability of up-to-date observations. The typical
sensors employed in the context of SSA do not provide information
on all the components of an object state; for example, telescopes do
not provide information on the range and range rate of the detected
objects. Among other issues, this fact makes the initial orbit
determination problem conspicuously more challenging. The
complexity of orbital mechanics, highly nonlinear in nature and
perturbed by conservative and nonconservative forces that depend on
parameters that may not be considered in the object state (e.g., the
object shape, attitude, or area-to-mass ratio), makes the modeling of
appropriate dynamical models for the orbiting objects particularly
challenging. On the bright side, the specifics of the orbital mechanics
allow for the construction of various dynamical models offering a
balance between simplicity and accuracy depending on the number of
physical phenomena involved in its design (e.g., solar pressure, and
the effect of the moon). It thus offers some leeway in the modeling of
the multi-object estimation problem in order to reach a satisfying
tradeoff between the available computational resources and the
required accuracy in the construction of the catalog.
Quantifying the uncertainty in object estimates maintained by a

catalog provides an important advantage to various operations, some
inherent to the tracking activity itself, such as the prediction of an
orbital trajectory, and some peripheral, such as the assessment of the
probability of collision between two objects. For this reason, casting
the SSA estimation problem in a Bayesian paradigm has become a
topic of growing interest but remains relatively unexplored so far.
Besides some nontraditional approaches in the context of tracking
[1,2], it has been addressed chiefly through either track-based [3,4]
or set-based approaches [5–11]. Popular track-based solutions
include the multiple hypothesis tracking (MHT) and joint
probabilistic density association (JPDA) filters and follow an
intuitive construction in which sequences of observations that may
represent the data originating from a single specific object are
maintained as tracks. They do notmaintain a probabilistic description
of the dynamical evolution of the population of objects and rely on
heuristics and expert knowledge in order to determine, for example,
at which point a stream of observations is assumed to be sufficient
evidence for the creation of new track, or at which point a track is
considered lost. Set-based solutions [12,13], on the other hand,
approach the multi-object estimation problem in a holistic manner
and incorporate all the sources of uncertainty (size of the population
of objects, individual states, observation process, etc.) in a unified
probabilistic framework. The construction of specific multi-object
tracking algorithms follows a principled derivation exploiting the
finite set statistics (FISST) framework [13] and relies on specific
modeling choices for the sources of uncertainty rather than heuristics.
Popular set-based solutions such as the probability hypothesis
density [14] or cardinalized probability hypothesis density [15] filters

represent the population of objects with a single random object
known as a random finite set [13], the size (the number of objects) and
elements (the individual states) of which are both random. They
maintain a collective description of the whole population of objects
and avoid an explicit (and costly) data association step between
objects and collected observations but do not maintain track continuity
since they do not propagate specific information on any object (i.e.,
individual tracks). Recent developments [16] within the FISST
framework, however, aim at augmenting the set representation with a
unique labeling of targets in order tomaintain individual information on
objects; applications in the context of SSA can be found in [9,17,18].
This paper exploits the recent estimation framework for stochastic

populations [19] for SSA applications. Fully probabilistic in nature, it
incorporates all the sources of uncertainty in a unified coherent
probabilistic representation. Its main originality lies in the nature of
the information representing each object, either described as an
unidentified member of a larger population (e.g., any piece of debris
from a cloud, before its observation) or as an individual track as soon
as specific information is available (e.g. the piece of debris from
the cloud that produced a given observation). This estimation
framework thus shares the flexibility of the FISST framework for
the modeling of populations of objects, for example, to translate the
knowledge of the operator regarding the number of new objects
entering in the scene, and shares the intuitive approach of traditional
track-based techniques to describe individual objects and maintain
track continuity. In this paper, we explore the suitability of the
distinguishable and independent stochastic populations (DISP) filter
[19,20] for a multi-object estimation problem in a SSA context.
Exploiting the flexibility and adaptability of the DISP structure, we
propose a bespoke implementation in which single-object time
prediction and single-object/single-measurement data update compo-
nents are adapted to the specific challenges of SSA problems.
The paper is organized as follows. The detailed construction of the

generic DISP filter is covered in Sec. II, followed by the design and
implementation of amultitargetDISP tracking algorithm for a problem
in Sec. III. The algorithm is illustrated on a simulated scenario in
Sec. IV, and a brief discussion on further developments to the DISP
filter for SSA applications follows in Sec. V. Section VI concludes.

II. Multi-Object Estimation with DISP Filter

This section describes the DISP filter [19,20], designed to handle
multitarget detection and tracking problems in challenging
environments including targets evolving in proximity from each
other in the presence of missed detections, false alarms, etc. For the
sake of clarity and generality, the argument in this section is largely
developed within the context of a generic multi-object estimation
problem, while the practical implementation for a SSA surveillance
activity follows in Sec. III.

A. General Principle

The objects of interest form a population X , and they follow
trajectories unknown to the operator throughout the scenario (i.e.,
unknown orbits). An object of the population X is not necessarily
within the surveillance scene throughout the whole scenario (it may
appear in the surveillance scene following a launch, leave the
surveillance scene for deep space, etc.), and thus the number of
objects in the scene, unknown to the operator, is also time varying.
Each object currently in the surveillance scene is described by a state
x in some (single-)target state space X ⊆ Rd describing physical
characteristics of interest to the operator. The target state space
typically comprises at least the object’s position and velocity
coordinates in some reference frame, but theDISP filter imposes little
restriction on its nature. Conversely, an object outside of the
surveillance scene is described by the empty state ψ , added to the
target state spaceX to form the augmented state space �X � fψg ∪ X.
It is assumed that the only source of information about the specific

objects from this population are the observations collected through
some sensor from the beginning of the scenario onward, although the
operator may possess some general information on the population of
interest through expertise and past experience (regarding the
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dynamical behavior of the objects, the density of objects in the
surveillance scene, etc.). For the remainder of the paper, the time flow
of the scenario is indexed by some variable t marking the instants
duringwhich observations are collected by the operator. Note that the
time lapse between two consecutive time steps does not need to be
constant throughout the scenario, and neither does the sensor profile
characterizing the observation process at a given time step
(measurement noise, probability of detection, etc.).
As any filter derived from the estimation framework for stochastic

populations, the DISP filter offers a principled solution to a multi-
object joint detection and tracking problem within the Bayesian
paradigm, relying on a few well-defined assumptions. The principal
assumptions are given as follows:
1) Assumption A1 is that the objects of the population X are

independent.
2) Assumption A2 is that the observations are produced

independently by the sensor.
3) Assumption A3 is that an object produces at most one

observation per scan (if not, it is not detected).
4) Assumption A4 is that an observation originates from at most

one object (if not, it is a false alarm).
5) Assumption A5 is that objects are immediately detected upon

entering the surveillance scene.
Assumptions A2–A4 are specifically related to the single-sensor/

multitarget problem, in which the objects are observed at any time
step t by atmost one sensor and are relatively common in this context.
Note in particular that objects outside of the sensor FOV are, of
course, almost never detected (i.e., with probability zero).
Assumption A5 implies that the DISP filter does not describe

objects that have entered the surveillance scene since the beginning of
the scenario and have not been detected at least once, and neither does
it propagate information about these yet-to-be-detected objects.
Since we assume that little prior information is available on these
objects in the context of this paper, this assumption appears
reasonable. Note that it does not preclude the initialization of the filter
with information on objects that were present before the beginning of
the scenario, for example, through a preexisting catalog (discussed in
more details in Sec. II.E.1). A more general solution can be derived
without requiring Assumption A5, but doing so makes the resulting
filter significantlymore complex to design and implement [19], and it
is left out of the scope of this paper.
The DISP filter proposes a probabilistic representation of the

population X on two different levels:
1) On the individual level, it estimates the state of each potential

object, assuming that it exists.
2) On the population level, it estimates the composition of the

population of objects; that is, it assesses the joint existence of the
potential objects.
Section II.B focuses on the individual level and introduces the

notion of track. Section II.C then focuses on the population level.

B. Target Representation

Apotential object of the population identified by the filter is called
a target, and the information maintained by the filter on some target
state is represented with a probability distribution p on �X. In
particular, the scalar p�ψ� denotes the probability that the target is
currently outside of the surveillance scene and is called the target
probability of absence. Conversely, the scalarZ

X
p�x� dx � 1 − p�ψ� (1)

denotes the probability of presence of the target, i.e., the probability
that the target is currently within the surveillance scene.

1. Detected Targets

An important consequence of Assumptions A3 and A4 is that an
observation, unless it is a false alarm, provides specific information
on a single object of the populationX , and no other object. Thus, any
target that has been detected at least once can be characterized by its

observation path [21], that is, the stream of observations it has
produced across time. Specific information can then be maintained
by the filter on such a target, which is thus called a distinguishable
target [19].
For any time step t ≥ 0 relevant to the scenario, the current set of

observations collected by the operator is denoted by Zt. We add the
empty observation ϕ, to account for missed detections, to form the
augmented observation set �Zt � Zt ∪ fϕg. Given some arbitrary
time t ≥ 0, an observation path [21] is a sequence of t observations

y �
�
ϕ; : : : ;ϕ|���{z���}
t
•
−1times

; zt
•

; zt
•
�1; : : : ; zt

�
(2)

where zt
•

∈ Zt
•

and zt 0 ∈ �Zt 0 , t• < t 0 ≤ t. It denotes a stream of
observations that (potentially) originates from an object of the
population X that appeared at time t

•
and produced the observations

zt
•

; : : : ; zt ever since. FollowingAssumptionA5, targets are detected
upon entering the scene, and that is why the first observation zt

•

is
necessarily nonempty. There is no such restriction, however, on the
subsequent observations.
The set of all possible observation paths at some given time t is

denoted by Yt. Figure 1 illustrates the composition of the set of
observation paths Y4, for a given sequence of collected observation
sets Z1; : : : ; Z4.
Given in an observations path y, the DISP filter maintains a

probabilistic description of the corresponding target through a track,
indexed by y and represented by a probability distribution py on �X.
From now on, without ambiguity, the notation y may be used
interchangeably to denote a distinguishable target, the corresponding
observation path, or the corresponding track.
Then, the probability that the target y is in some region B ⊆ �X,

provided that the target exists, is given by the scalarZ
B
py�x� dx (3)

2. Appearing Targets

Assumption A5 implies that the population of yet-to-be-detected
objects is reduced to the objects that have just entered the surveillance
scene. We can make use of the empty observation path at time t − 1,
denoted ϕt−1 and defined as

ϕt−1 �
�
ϕ; : : : ;ϕ|���{z���}
t−1 times

�
(4)

to identify the population of appearing (and yet-to-be-detected)
targets at time t. Note that there is no ambiguity with the observation
paths y ∈ Yt−1 that are used to identify tracks, for the latter are of the
form of Eq. (2) and thus contain at least one nonempty observation.
Since the appearing objects have not been detected yet, no specific

information is available on any of them through collected
observations. In consequence, the DISP filter only maintains
information representing collectively the whole population of
appearing targets, which are thus called indistinguishable targets
[19]. We assume that the operator does possess some knowledge on

Fig. 1 The observation paths at time t � 4, given a sequence of collected
measurements. The five possible observation paths are listed on the right.
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the number of objects having entered the scene between time steps

t − 1 and t, described by some cardinality distribution ρϕt−1 on N.
They also possess some knowledge on the whereabouts of the

entering objects (some orbit ranges, for example, are more populated

than others), described by a common probability distributionpϕt−1 on
�X, representing each of the appearing targets since they are

indistinguishable. Note that these targets are by definition in the

scene, and thus pϕt−1�ψ� � 0.
Themultitarget configurationmeasure μϕt−1

n , describing the case in

which there are exactly n indistinguishable targets, is formally given

by [19]

μϕt−1
n � nδ�pϕt−1 � (5)

where δ�p� is the Dirac measure at point p. The population of

appearing targets is then described by the law

Pa �
X
n≥0

ρϕt−1�n�δ�μϕt−1
n � (6)

Example 1: Suppose that the population of appearing targets at

time t is described with some given cardinality distribution ρϕt−1 and

probability distribution pϕt−1 :
1) The probability that there is a single appearing target and it is in

some region B ⊆ X is given by the scalar

ρϕt−1�1�
�Z

B
pϕt−1�x� dx

�
(7)

2)The probability that either there is a single appearing target and it
is some regionB ⊆ X or there are two appearing targets, one inB and
the other one in some region B 0 ⊆ X, is given by the scalar

ρϕt−1�1�
�Z

B
pϕt−1�x� dx

�

� ρϕt−1�2�
��Z

B
pϕt−1�x� dx

��Z
B 0
pϕt−1�x� dx

��
(8)

Note that, since the targets are indistinguishable from each other,

the notion of target labeling (even arbitrary) is irrelevant in this

context. An important consequence is that the evaluation of the event

described by Eq. (8) does not involve permutations between the

regions B and B 0 and the corresponding members of the population.

As will be seen later, it spares the computation of unnecessary

permutations in the filtering process, notably during the data

association step (see Sec. II.E for more details). Note also that the law

Pa describes the event in which the population is empty through the

scalar ρϕt−1�0�. For this reason, the quantity 1 − ρϕt−1�0� is also called
the probability of existence of the population.

C. Population Representation

On the population level, theDISP filter assesses the composition of

the population X by providing the joint probability of existence of

every combination of tracks, including none, with every possible

number of appearing targets, including none as well. We have seen in

the previous section that the law Pϕt−1 of the population of appearing

targets describes the joint probability of existence of any number of

appearing targets through the cardinality distribution ρϕt−1 ; let us then

focus on the joint probability of existence of the tracks.
It is important to note that, while every possible observation

path y ∈ Yt, the construction of which follows Eq. (2), is a valid

characterization of a previously detected object, not every subset

Y ⊆ Yt forms a valid characterization of the population of previously

detected objects. Indeed, any two targets of which the observation

paths share a nonempty observation may not exist simultaneously

without violating Assumption A4 and are thus incompatible. The

subsets of Yt composed of pairwise compatible tracks are called

hypotheses and form a set Ht maintained by the DISP filter.

In particular, the empty set ∅ ∈ Ht is the empty hypothesis
representing the absence of previously detected targets.
Example 2: Suppose that, at time step t � 4, the measurement sets

collected so far are as illustrated in Fig. 1.
The pairs of incompatible observation paths are 1) (y, y 0 0), (y, y�4�),

and (y 0 0, y�4�), sharing measurement z4; 2) (y 0, y 0 0), sharing

measurement z2; and 3) (y 0 0 0, y�4�), sharing measurement z2 0 .
Therefore, the hypotheses in Ht are 1) the empty set ∅; 2) the

singletons {y}, {y 0}, {y 0 0}, {y 0 0 0}, and {y�4�}; 3) the two-element
sets {y, y 0}, {y, y 0 0 0}, {y 0, y 0 0 0}, {y 0, y�4�}, and{y 0 0, y 0 0 0}; and 4) the
three-element set {y, y 0, y 0 0 0 }.
The joint probabilities of existence of the subset of tracks Y ⊆ Yt

thus reduce to the probabilities of existence of the hypotheses
H ∈ Ht. The probability of existence ct�H� of some hypothesis

H ∈ Ht denotes the likelihood that the tracks y ∈ H represent the
previously detected objects of the population of interest X , and we
have X

H∈Ht

ct�H� � 1 (9)

In particular, the scalar ct�∅� denotes the probability that no

objects of the population have been detected so far; in other words,
that all the observations collected so far are false alarms.
The joint probability of existence of the whole population at time t

is thus given by the weights

wt�H;n� � ct�H�ρϕt
t �n�; H ∈ Ht; n ∈ N (10)

and from Eq. (9), we haveX
H∈Ht

X
n≥0

wt�H; n� � 1 (11)

D. Filter Output

From Secs. II.B and II.C, it follows that the DISP filter maintains a
full probabilistic representation of the population of objects X ,
maintaining specific information on potential objects through
individual distributions and assessing the joint existence of every

possible composition of potential objects. More formally, the
population X is described at time t with the law [19]

Pt �
X
H∈Ht

X
n≥0

wt�H;n�δ�μH;n
t � (12)

where the multitarget configuration measure μH;n
t is defined as

μH;n
t �

X
y∈H

δ�py
t � � nδ�pϕt

t � (13)

While the multitarget configuration composed of the tracks given
by some hypothesis H and some number n of appearing targets is
completely described by the measure μH;n, it can also be
characterized by the tuple (H, n) without ambiguity. In the rest of the

paper, both characterizations will be used interchangeably.
Note that a track y ∈ Yt may belong to several hypotheses

H ∈ Ht; if we marginalize the probability of existence of y over all
the possible mutually compatible tracks, we get the scalar

αyt �
X
H∈Ht

H∋y

ct�H� (14)

which denotes the credibility or probability of existence of the target

y. It is a scalar between 0 and 1; the closer it is to 1, themore likely it is
that the observation path y represents the evidence of an object of the
population X . Note the difference with the probability of presence

given by Eq. (1), which denotes the probability that the target y is still
in the surveillance scene, provided that it exists.
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Example 3: Suppose that the current time step is t � 5, but the
observation set Z5 is not available yet, and the observation sets

collected so far are as illustrated by Fig. 1:
1) The probability that there are neither appearing nor detected

targets is given by the scalar

w5j4�∅; 0� (15)

2) The probability that either a) there are no appearing targets and
there is a single detected target that produced the observation path y
and lies within some region B ⊆ X or b) there is a single appearing
target, lying in B, with no detected targets is given by the scalar

w5j4�fyg; 0�
Z
B
py
5j4�x� dx� w5j4�∅; 1�

Z
B
pϕ5

5j4�x� dx (16)

3) The probability that either there are no appearing targets and
there are two detected targets, one produced the observation path y
and the other one produced the observation path y 0, which have both
left the surveillance scene, or there are two appearing targets, both
lying within some region B ⊆ X, and there is a single detected target
that produced the observation path y and that lies within some region
B 0 ⊆ X is given by the scalar

w5j4�fy; y 0g; 0��py
5j4�ψ�py 0

5j4�ψ��

� w5j4�fyg; 2�
��Z

B
pϕ5

5j4�x� dx
�
2
�Z

B 0
py
5j4�x� dx

��
(17)

4) The probability that there are three appearing targets, one lying
within some region B ⊆ X and two within some region B 0 ⊆ X, and
there are two detected targets, one that produced the observation path
y and either lies within B or has left the surveillance scene and the
other that produced the observation path y 0 and lies withinB 0 is given
by the scalar

w5j4�fy; y 0g; 3�
�Z

B
pϕ5

5j4�x� dx
��Z

B 0
pϕ5

5j4�x� dx
�
2

×
�
py
5j4�ψ� �

Z
B
py
5j4�x� dx

��Z
B 0
py 0
5j4�x� dx

�
(18)

We see in the previous examples that the law of the population Pt

provides a rich description of the population X and can be exploited

to assess events of various complexity regarding the composition of

the population and the states of the identified objects. In this paper,we

will focus on the display of the most probable configuration of the

population (see Sec. II.F), but other exploitation routes will be briefly

discussed in Sec. V.

E. Filtering Equations

The filtering equations maintain and propagate a probabilistic

representation of the population of interest X within a Bayesian

paradigm. They cover two roles:
1) On the population level, they propagate the composition of the

population through the set of tracks Yt, the set of hypothesesHt, and
the associated weights wt.
2) On the individual level, they propagate the single-target

probability distributions py
t .

Following Secs. II.A–II.C, the data flow of the DISP filter can be

depicted as in Fig. 2.

1. Initialization (Time t0)

The origin of time t � 0 corresponds to the date since which

observations have been collected and stored for the purpose of

maintaining a catalog of orbiting objects. The operator may thus

posses some knowledge describing the objects of the population of

interest X that were detected before the initial time t0 ≥ 0 of the

surveillance scenario; this is typically the case if the initial input of

the filter is fed with a catalog of previously identified objects. If the

catalog does provide, say, a collection of three compatible tracks with

observations paths y, y 0, y 0 0, then the initial set of hypotheses can be
set as a singletonHt0−1 � ffy; y 0; y 0 0gg; that is, the tracks y, y 0, and
y 0 0 almost surely exist. If no catalog is available, then the initial set of

hypotheses can be reduced to the empty set; that is, the initial

population of previously identified targets is almost surely empty.

2. Prediction Step (Time t)

The prediction step of the DISP filter is straightforward. Since the

observation set Zt is not available yet, there is no additional evidence

regarding the existence of targets, and thus the information on the

composition of the populationX (i.e., the observation paths Yt−1, the

hypotheses Ht−1, and the associated weights wt−1) remains

unchanged.
On the individual level, however, the probability distribution py

t−1
of each track y ∈ Yt−1 is transformed to its predicted form py

tjt−1 as(
py
tjt−1�x� �

R
X ps;t�x 0�m̂t;t−1�x; x 0�py

t−1�x 0� dx 0; x ∈ X;

py
tjt−1�ψ� �

R
X�1 − ps;t�x 0��py

t−1�x 0� dx 0 � py
t−1�ψ�

(19)

where m̂t;t−1 denotes the transition kernel representing the evolution

of the state of the objects within the scene since time t − 1 (e.g., the
motion model along an orbit) and ps;t denotes their probability of

survival in the scene.** Both functions are model parameters that

reflect the knowledge of the operator regarding the dynamical

behavior of the objects.
Note that the single-target predictionmechanism on the state space

X, as described inEq. (19), follows the usualBayesian prediction step
in single-object tracking problems. For example, if the probability of

survival ps;t is uniform and set to 1, the transition kernel m̂t;t−1 is

linear, and the prior distribution on X induced by py
t−1 is Gaussian,

then the prediction equation on the state space X reduces to the

prediction step of the Kalman filter [22]. We can also see from

Eq. (19) that the predicted probability of absence py
tjt−1�ψ� is no

smaller than its prior value py
t−1�ψ�, since no new evidence of the

target presence is available yet through new observations.

3. Update Step (Time t)

The core of the update step consists in the data association step, in

which potential sources of observations are matched with the newly

collected observation set Zt, and the likelihood of each association is

assessed. The potential sources of observations are 1) the previously

detected objects, represented by the tracks; 2) the appearing objects,

represented by a population of indistinguishable targets; and 3) the

false alarm generators. For the purpose of data association, a false

alarm generator is modeled for each collected observation z ∈ Zt

through a false alarm function pfa;t: the generator produced the

measurement z with probability pfa;t�z� (in which case z is a false

alarm), or it produced no observation with probability 1 − pfa;t�z� (in
which case z originates from an object of the population X ). The

modeling of the false alarm function is, of course, highly dependent

on the type of sensor considered in the scenario.

Fig. 2 Data flow of the DISP filter (time step t). The superscript d
denotes the population of previously detected, hence distinguishable,

targets. The superscript a denotes the population of appearing andyet-to-
be-detected targets, still indistinguishable from one another.

**See Delande, E. D., Houssineau, J., and Clark, D. E., “A Filter for
Distinguishable and Independent Populations,” arXiv:1501.04671, 2015.
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Assume a possible multitarget configuration �H; n�, in which

H ∈ Ht−1 describes the tracks representing the previously detected

targets and n ∈ N is the number of appearing targets. An admissible

data association d matches the three sources of observations

described previously to the collected observations z ∈ Zt and the

empty observation ϕ (see Fig. 3). The set of all admissible data

associations is the set (see footnote **)

AdmZt
�H; n� �

n
�Hd; Zd; Za; ν�jHd ⊆ H;Zd ⊆ Zt;

Za ⊆ Zt \ Zd; jZaj � n; ν ∈ S�Hd; Zd�
o

(20)

whereHd denotes the tracks that are detected at the present time step,

Zd denotes the observations associated to these tracks, Za denotes the

observations associated to the n appearing targets, and ν denotes the
bijective function associating detected tracks to observations in Zd.
Each association scheme a��H;n;d�, in which d∈AdmZt

�H;n�
is an admissible data association for the predicted multitarget

configuration (H, n), is then assessed by the scalar (see footnote **)

vat � vad;t × vamd;t × vafa;t (21)

where

vad;t �
"Y
z∈Za

Z
X
lt�z; x�pd;t�x�pϕt−1

tjt−1�x� dx
#

×

(Y
y∈Hd

Z
X
lt�ν�y�; x�pd;t�x�py

tjt−1�x� dx
)
;

vamd;t �
Y

y∈H\Hd

�
py
tjt−1�ψ� �

Z
X
�1 − pd;t�x��py

tjt−1�x� dx
�
;

vafa;t �
( Y

z∈Zd∪Za

�1 − pfa;t�z��
)" Y

z∈Zt\�Zd∪Za�
pfa;t�z�

#
(22)

where vad;t, v
a
md;t, and vafa;t denote the weights of the data association

related to the targets that are detected this time step, thosewho are not,

and the clutter generators, respectively. Also, pd;t denotes the

probability of detection, and lt denotes the measurement likelihood

function, the modeling of which is highly dependent on the type of

sensor considered in the scenario.
Each association schemea � �H; n; d� leads to the construction of

a unique updated hypothesis Ĥ ∈ Ht given by

Ĥ �
�
∪

y∈hd
fy: ν�y�g

�
∪
�

∪
y∈H\Hd

fy: ϕg
�
∪
�
∪

z∈Za

fϕt−1: zg
�

(23)

where : is the concatenation operator, i.e., �e1; : : : ; en�: e �
�e1; : : : ; en; e�. Using Bayes’s rule, the probability of existence

ct�Ĥ� is found to be (see footnote **)

ct�Ĥ� � wtjt−1�H; n�vatP
H 0∈Ht−1

P
n 0≥0

wtjt−1�H 0; n 0� P
d 0∈AdmZt �H 0;n 0 �

va
0

t

(24)

The updated observation paths, as shown in Eq. (23), can be of

three different forms. An updated observation path of the form y: z,
where y ∈ Yt−1 and z ∈ Zt, corresponds to a predicted track y that

was detected and produced observation z. FollowingBayes’s rule, the
probability distribution of the track is updated as follows (see

footnote **):

8>><
>>:
py: z
t �x� � pd;t�x�lt�z; x�py

tjt−1�x�R
X pd;t�x 0�lt�z; x 0�py

tjt−1�x 0� dx 0 ; x ∈ X;

py: z
t �ψ� � 0

(25)

As for the prediction step in Eq. (19), the single-measurement/

single-target update mechanism on the state space X given by

Eq. (19) follows the usual Bayesian update step in single-object

tracking problems. If the probability of detection pd;t is uniform and

set to 1, the measurement likelihood function lt is linear, and the

predicted distribution on X induced by py
tjt−1 is Gaussian, then the

update equation on the state space X reduces to the update step of

the Kalman filter [22].
Note that the probability of presence of the track y: z in the scene

rises to 1; that is, if there is an object in the populationX that produced

the observation path y: z, then this object is in the almost surely

scene. Indeed, only objects that are currently in the surveillance scene

can be detected by the sensor; therefore, an object that has just been

detected is in the surveillance scene.
An updated observation path of the form y: ϕ, where y ∈ Yt−1,

corresponds to a predicted track y that was not detected this time step.

Following Bayes’s rule, the probability distribution of the track is

updated as follows (see footnote **):

8>>>>><
>>>>>:
py: ϕ
t �x� � �1 − pd;t�x��py

tjt−1�x�
py
tjt−1�ψ� �

R
X�1 − pd;t�x 0��py

tjt−1�x 0� dx 0 ; x ∈ X;

py: ϕ
t �ψ� � py

tjt−1�ψ�
py
tjt−1�ψ� �

R
X�1 − pd;t�x��py

tjt−1�x� dx
(26)

Note that the denominator in Eq. (26) is no greater than 1; i.e.,

py: ϕ
t �ψ� is no smaller than py

tjt−1�ψ�. Indeed, since the target was not
detected this time step, no new evidence on its presence in the scene is

available, and the probability of presence of the target is

nonincreasing.
Finally, a new observation path of the form ϕt−1: z, where z ∈ Zt,

denotes an appearing target that was detected and produced

observation z. The update process is similar to the previously detected

targets in Eq. (25) and yields (see footnote **)

8>>><
>>>:
pϕt−1: z
t �x� � pd;t�x�lt�z; x�pϕt−1

tjt−1�x�R
X pd;t�x 0�lt�z; x�pϕt−1

tjt−1�x 0� dx 0 ; x ∈ X;

pϕt−1: z
t �ψ� � 0

(27)

Note that, for the same reason as for detected targets in Eq. (25), the

probability of presence of appearing targets is always 1.

F. Maximum a Posteriori Estimate of Population (Time t)

We shall focus on the production of the maximum a posteriori

(MAP) estimate of the posterior population, i.e., the most probable

multitarget configuration that can be extracted from the propagated

law Pt of the population X . By construction, it is given by the

hypothesis H�
t with the highest probability of existence, i.e.,

Fig. 3 Data association, for a hypothesisH ∈ Ht−1 and a given number
n of appearing targets. Note the absence of permutation involving the

appearing targets, since they are indistinguishable.
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H�
t � arg max

H∈Ht

ct�H� (28)

It is not always desirable to display all the tracks y ∈ H�
t ,

especially for a cautious operator who wishes to focus on credible
targets ofwhich the existence can beguaranteedwith a certain level of

confidence. Since the probability of existence of individual tracks

(14) can be extracted from the filter’s output as well, candidate tracks
may be prevented from being displayed unless their probability of

existence exceeds some confirmation threshold τc, e.g., τc � 0.95 if
the operator wishes to focus on tracks of which the existence is

guaranteed by the filter with 95%of confidence. To prevent flickering

in the display, a lower deconfirmation threshold τd can be added to
design a simple hysteretic model.
Once the tracks Y�

t ⊆ H�
t to be displayed have been selected, one

must produce a MAP estimate of the state of each selected track
y ∈ Y�

t . The DISP filter does not impose any restriction on the nature

of the single-target probability distribution py
t , and in practical

scenarios, the single-target MAP extraction procedure depends

heavily on whether the single-target distributions are maintained
through sequential Monte Carlo (SMC) or Kalman filtering (KF)

methods. A procedure adapted to a typical SSA scenario is proposed

in Sec. III.D.

G. Filtering Approximations

From the structure of the DISP filter, it can be seen that neither

tracks nor hypotheses are ever discarded (unless their probability of
existence drops to zero), and thus the filter maintains in its most

general form all the possible multitarget configurations given the

collected observations since the beginning of the scenario. An
obvious consequence is that the number of hypotheses jHtj and
tracks jYtj grows dramatically across time, increasing the
computational and memory load of the filtering process. Fortunately,

the full probabilistic nature of the filtering framework allows the

operator to design intuitive and principled approximations in order to
discard selected pieces of information.
Since the confidence in hypotheses and tracks is directly available

through their probability of existence [see Eqs. (9) and (14)], either

a) discarding the hypotheses and/or tracks of which the confidence

drops below a given threshold, or b) discarding the hypotheses and/or
tracks with lowest confidence until a given threshold on their number

is met, are sensible and straightforward approximations.
Measurement gating is a very popularmethod in tracking algorithms

involving data association, which aims at discarding unlikely

associations between a specific target and a specific observation. It is
an effective approximation, for it lowers considerably the number of

generated tracks with limited consequences on the quality of the

estimation, and its implementation in the context of the DISP filter is
straightforward. The associations schemes (H, n, d) generated in the

data update step, such that the weight of the association between an
observation z and a parent track y in Eq. (22) fails to meet a given

threshold, are simply discarded in the construction of the updated
hypotheses.
While the DISP filter can handle the simultaneous appearance

of any number of targets in the data update mechanism, allowing
so significantly increases the number of generated hypotheses.

Limiting the number of simultaneous appearances is a reasonable

approximation in most practical situations because it will simply
stage the creations of tracks along several successive time steps

when an unusually large number of objects appear simultaneously
but would not affect the quality of the tracks in the long term

in a significant way. Its implementation for the DISP filter is

straightforward: the multitarget configurations (H, n) in which n
exceeds a given threshold are simply discarded in the construction

of the updated hypotheses. This approximation can be lifted
during the initial step, in which the occurrence of simultaneous

appearances is more likely than in the subsequent time steps;

indeed, all the targets within the initial FOV are bound to appear
simultaneously (provided that they are detected) as soon as the

sensor is switched on.

III. Design and Implementation of SSA Scenario

This section describes the design and implementation of a simulated
SSA scenario, processed by the DISP filter described in Sec. II.
Section III.A focuseson thegeneration of theground truth, andSec. III.
B focuses on the production of pseudoobservations from a Doppler
radar. Section III.C then focuses on the implementation of the DISP
filter. Finally, Sec. III.D describes the procedure to extract the most
probable multitarget configuration from the DISP filter’s output.

A. Surveillance Scene and Objects

The surveillance scene is set as the region of space spanning
70,000 km in every direction from the Earth center (space fixed), in
order to include all objects of interest evolving on the usual orbits in
the near-Earth space. An object is described by a six-component
vector state x in some single-target state spaceX ⊆ R6, describing its
coordinates in the Earth-centered inertial (ECI) frame.
The start epoch is 53159.5 days (modified Julian date). The

interval between two time steps is constant and set to 50 s, and the
scenario lasts 1000 time steps so that the propagation duration is
approximately 14 h. The ground truth trajectories are computed
from the initial orbital elements using a Runge–Kutta seven-eights
numerical integration with Earth gravitational expansion up to order
and degree 12, third-body perturbations of the sun and moon, direct
solar radiation pressure, and Earth shadow passages. For the Earth
shadow passages, a multicone model has been employed. A mixture
of flat plate models and cannonball shapes has been used. Details on
the propagation models can be found in [23].

B. Sensors and Pseudoobservations

We consider two ground-based Doppler radars, both placed at a
latitude of 20° north, one at a longitude of 135°west and the other one
at a longitude of−135° west, and both pointed at the zenith. The FOV
are identical and define a radarlike sensing region, and the probability
of detection pd;t is assumed uniform across the sensor FOV.
Each observation produced by a sensor is a four-component

vector z in some observation space Z ⊆ R4, corresponding to the
components range ρ, range rate _ρ, azimuth θ, and elevation φ in the
topocentric local horizon frame centered on the sensor. Observations
originating from objects are noisy; themeasurement noise ismodeled
as an uncorrelated zero-meanGaussian noise on the four components
of the observation vector.
False alarms occur independently in each cell of a resolution grid

of the observation space (see Table 1 for the details of the
parameterization). The probability of false alarm pfa;t is assumed
identical in each cell.
The two sensors are not synchronized and produce observations

alternatively at each time step. Thus, the implemented scenario can be
cast within the single-sensor version of the DISP presented in Sec. II
since Assumption A3, constraining the observation process to

Table 1 Parameterization of the Doppler radar

Detection profile

Field of view, range ρ 50 m ≤ ρ ≤ 45 × 106 m
Field of view, azimuth θ −8° ≤ θ ≤ 8°
Field of view, elevation φ −45° ≤ φ ≤ 45°

Probability of detection pd;t 0.9

Resolution profile

Cell resolution, range ρ 1000 m
Cell resolution, azimuth θ 1°
Cell resolution, elevation φ 1°
Cell resolution, range rate _ρ 100 ms−1

Probability of false alarm pfa;t 1.54 × 10−10 (2 f.a. on avg.)

Noise profile

Standard deviation, range ρ 1000 m
Standard deviation, azimuth θ 1°
Standard deviation, elevation φ 1°
Standard deviation, range rate _ρ 100 ms−1
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produce at most one observation per object, is not violated. Note that
the DISP filtering framework can accommodate for any number of
synchronized sensors, but this is out of the scope of this paper.

C. SMC-DISP Filter

Note that the construction of the DISP filter in Sec. II does not
impose restrictions on the nature of the single-object probability
distributions. The form of these distributions has little consequence on
the structure of the filter, as it only affects the evaluation of the integrals
on the single-object state space X in Eqs. (19), (22), (25–27).
The two widely used implementation techniques for handling

single-object probability distributions are KF-based [24] and SMC-
based [25] approaches. The orbit dynamics being highly nonlinear,
the latter techniques seem more adapted to capturing the targets’
motion behavior and representing the uncertainties in the targets’
state alongside their orbit, typically assuming bananalike shapes. We
have opted for a particle filter implementation inspired by the recent
disparity space approach [26,27].

1. Prediction Step and Orbit Propagation

As explained in Sec. II.E.2, the prediction step of the DISP filer is
straightforward, as it does not involve any changes in the composition
of the set of observation paths Yt−1, the set of hypothesesHt−1, nor
their corresponding weightswt−1. The prediction step focuses on the
propagation of the posterior distributions py

t−1 of the tracks y ∈ Yt−1
following Eq. (19).
Assume that some track y ∈ Yt−1 has a posterior probability

distribution py
t−1 on the augmented state space �X approximated by a

collection of weighted particles f�w�j�
t−1; x

�j�
t−1�gj∈Jt−1 on the state space

X, i.e., 8>><
>>:
py
t−1�x� ≃

P
j∈Jt−1

w�j�
t−1δx�j�

t−1
�x�; x ∈ X;

py
t−1�ψ� ≃ 1 −

P
j∈Jt−1

w�j�
t−1

(29)

Each particle x�j�t−1 represents a possible state for the track y,
provided that it exists and that it is still in the surveillance scene. To

propagate the probability distribution py
t−1, every particle x�j�t−1 is

propagated alongside its orbit to a new value x�j�t through a simplified
propagation model, using the simple two-body problem via the
Shepperd matrix [28,29] implementation. We have

~x�j�t � Sj
x�j�
t−1
x�j�t−1 � nj

x�j�
t−1
; j ∈ Jt−1 (30)

where Sj
x�j�
t−1

is the Shepperd transition matrix evaluated in x�j�t−1 and

nj
x�j�t−1

is the process noise accounting for the mismatches between the

simplified model exploited by the filter and the higher-fidelity model
exploited for the generation of the ground truth trajectories (see
Sec. III.A). The process noise follows a Gaussian distribution with
zero mean and noise characteristics that are state independent, i.e.

nj
x�j�
t−1

∼N �⋅; 0; Qt�; j ∈ Jt−1 (31)

where

Qt � Δt−1;t diag��10 10 10 1 1 1�� (32)

whereΔt−1;t is the duration, in seconds, between time step t − 1 and t.
The objects of the population are assumed to evolve on closed

orbits; thus, no spontaneous disappearances of objects within the
surveillance scene are expected. The probability of survival ps;t is
thus set to 1 in the surveillance scene; however, predicted particles
~x�j�t falling outside of the state space X reach the empty state ψ
(typically, when the track is getting close to the edges of the
surveillance scene), and their weight is naturally added to the prior
probability of absence py

t−1�ψ�. That is, the predicted probability
distribution py

tjt−1 on the augmented state space �X is given by

8>>><
>>>:
py
tjt−1�x� ≃

P
j∈ ~Jt−1

w�j�
t−1δ ~x�j�t

�x�; x ∈ X;

py
tjt−1�ψ� ≃ 1 −

P
j∈ ~Jt−1

w�j�
t−1

(33)

where ~Jt−1 � fj ∈ Jt−1j ~x�j�t ∈ Xg.

2. Update Step and Orbit Determination

The construction of the updated observation paths Yt and

hypotheses Ht, explained in detail in Sec. II.E.3, is independent of

the specifics of the scenario and the implementation choices for

the single-object probability distributions. On the other hand, the

implementation of the single-object update mechanisms for 1) the

tracks that are not detected (26), 2) those that are detected (25), and

3) the newborn targets (27) is obviously SMC specific and shall

be detailed in the following paragraphs. For the remainder of the

section, y ∈ Yt−1 denotes a track with a predicted probability

distributionpy
tjt−1 approximated by a collection of weighted particles

f�w�j�
t−1; ~x

�j�
t �gj∈ ~Jt−1

on the state space X, as shown in Eq. (33).

a. Undetected Track. From the update Eq. (26), the posterior
distribution py: ϕ

t can be approximated as follows:

8>>>><
>>>>:
py: ϕ
t �x� ≃ P

j∈ ~Jt−1

�1−pd;t� ~x�j�t ��w�j�
t−1

py
t−1�ψ��

P
i∈ ~Jt−1

�1−pd;t� ~x�i�t ��w�i�
t−1
δ
~x�j�t
�x�; x ∈ X;

py: ϕ
t �ψ� ≃ py

t−1�ψ�
py
t−1�ψ��

P
i∈ ~Jt−1

�1−pd;t� ~x�i�t ��w�i�
t−1

(34)

To avoid particle degeneracy [30], it may be necessary to resample

the updated particle set f� ~w�j�
t−1; ~x

�j�
t �gj∈ ~Jt−1

given by Eq. (34) to

produce the final particle set f�w�j�
t ; x�j�t �gj∈Jt approximating the

posterior distribution py: ϕ
t .

b. Detected Track. From the update, Eq. (25), the posterior
distribution py: z

t can be approximated as follows:

8>><
>>:
py: z
t �x� ≃ P

j∈ ~Jt−1

pd;t� ~x�j�t �lt�z; ~x�j�t �w�j�
t−1P

i∈ ~Jt−1

pd;t� ~x�i�t �lt�z; ~x�i�t �w�i�
t−1
δ
~x�j�t
�x�; x ∈ X;

py: z
t �ψ� � 0

(35)

In SSA scenarios, it is frequent that tracks remain unobserved for

long periods of time before being detected again, typically, when the

target has rotated along Earth and reenters the sensor FOV. In this

case, the set of particles approximating the parent track (33) is often

spread along an orbit following a bananalike shape, and the SMC

update (35) fails at capturing the posterior distribution py: z
t with a

reasonable number of particles. Inspired by recent works on multi-

object tracking applications with cameras [26,27], we propose an

alternative update process in the extended observation space (defined

in the following) rather than the target state space X [31].
Since a Doppler radar provides information on range ρ, range rate

_ρ, azimuth θ, and elevation φ (see Sec. III.B), an observation vector

z � �ρ; θ;φ; _ρ� can be seen as four components of a point in the six-

dimension spherical frame centered on the sensor, i.e., the topocentric

local horizon frame of the sensor or extended observation space. One

can then note the following:
1) The projection of the probability distribution py

tjt−1 in the
extended observation space can be realistically approximated as a
multivariate Gaussian distribution, even though the probability
distribution py

tjt−1 in the native ECI reference frame may not.
2) Because of the specifics of the sensor model, the observation

process in the extended observation space is linear with added
Gaussian noise.
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In consequence, the data update of the probability distribution

py
tjt−1 with observation z ∈ Zt can be approximated through a simple

Kalman filter update [22] in the extended observation space. The

proposed procedure can be summarized as follows:

1) Transform theweighted particle set f�pd;t� ~x�j�t �w�j�
t−1; ~x

�j�
t �gj∈ ~Jt−1

,

approximating the predicted probability distribution py
tjt−1 rescaled

with the sensor probability of detection, to the extended
observation space.
2) Approximate the resulting weighted particle set into a

multivariate Gaussian distribution on the extended observa-
tion space.
3) Update the resulting Gaussian distribution with likelihood

lt�z; ⋅�, using a simple Kalman update [22] step.
4) Sample the resulting Gaussian distribution into a particle set,

with uniform weights, on the extended observation space.
5) Transform the resulting particle set back to the target state

space X.

The resulting particle set f�w�j�
t ; x�j�t �gj∈Jt is thus an approximation

of the posterior distribution py: z
t of the daughter track y: z. The

procedure is illustrated in a two-dimensional space (for the sake of

clarity) on Fig. 4.

c. Initial Orbit Determination. A comparison of Eqs. (25) and (27)

shows that the updated probability distribution pϕt−1: z
t of a newborn

track can be constructed with a similar approach as shown previously

for a daughter track y: z resulting from a track detection. The key

difference is that the initialization of a newborn track depends on the

prior knowledge of the operator regarding the state of appearing

objects given by the probability distribution pϕt−1
tjt−1.

Since a Doppler radar provides no information on the angular rates
_θ and _φ of the detected objects (see Sec. III.B), it is of critical

importance to initialize the probability distribution of the newborn

tracks with an appropriate amount of uncertainty on the unknown

angular rates in order to constrain the range of orbits on which the
newborn target is evolving, until observations produced in
subsequent times will (hopefully) allow for a refinement of the
orbit determination.

We assume that the prior information on appearing objectspϕt−1
tjt−1 is

noninformative regarding their position; that is, every point in the
portion of the surveillance scene (position only) delimited by the
sensor FOV may be the origin state of a newborn target with equal
probability. Considerations on the orbital energy constraint state,
however, that for given position coordinates (x, y, z) in the ECI frame
not every velocity coordinates ( _x, _y, _z) form an admissible state, that
is, a state belonging to a physical orbit around Earth. More
specifically, given the position and range rate coordinates of an
appearing object provided by the Doppler radar through an
observation z � �ρ; θ;φ; _ρ�, an admissible region for the unobserved

angular rates (_θ, _φ) can be produced to determine constraints on the
physical values of the initial orbit [32,33]. Assuming that the
observed object is on a closed orbit around the Earth, the energy
constraint

1

2
j _rj2 − μ

jrj ≤ 0 (36)

where μ is the Earth gravitational parameter and r is the object’s
geocentric position vector, needs to hold. The position and velocity r
and _r can then be expressed via the position vector of the topocenter
rs, the observed range ρ, and the observed range rate _ρ,

r � rs � ρρr

_r � _rs � _ρρr � ρ_θρθ � ρ _φρφ (37)

where ρr, ρθ, and ρφ are the unit vectors in the topocentric local

horizon spherical reference frame associatedwith themeasurement
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a) Target state space (x, y)

c) Observation space (r) b) Extended observation space (r,   )θ
Fig. 4 Principle of Kalman data update in extended observation space (illustration in two dimensions). The blue distribution in the reference space A
corresponds to some predicted probability distribution py

tjt−1, and the red one corresponds to the updated probability distributionp
y: z
t , where z ∈ Zt is a

range-only measurement depicted, with uncertainty, in the observation space C.
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(ρ, θ, φ, _ρ). Substituting Eq. (37) into Eq. (36) yields the new

form

α1 _θ
2 � α2 _φ

2 � α3 _θ� α4 _φ� a5 ≤ 0 (38)

where the parameters αi are as follows:

α1 � ρ2cos2φ; α4 �
ρ _rs ⋅ ρφ

2
;

α2 � ρ2; α5 � _ρ2 � 2_ρ _rs ⋅ ρr � j_rsj2 −
2μ																																												

ρ2 � 2ρrs ⋅ ρr � jrsj2
p ;

α3 �
ρ _rs ⋅ ρθ

2
(39)

From Eq. (38), the boundaries of the admissible region for the

unknown parameters (_θ, _φ) are found to be [34]

_θ � α3
α1

�
																																
α23
α21

� α24
α1α2

−
α5
α1

s
cosϕ

_φ � α4
α2

�
																																
α23
α1α2

� α24
α22

−
α5
α2

s
sinϕ (40)

with ϕ ∈ �0; 2π�.
The initial probability distribution pϕt−1: z

t of a newborn track

ϕt−1: z can then be determined following a procedure similar to that

explained previously for detected tracks and illustrated in Fig. 4:
1) Determine a multivariate Gaussian distribution in the extended

observation space, using observation z and the sensor observation
noise to fill the observed components, and fill the unobserved
components so that the admissible region (40) is adequately

covered; for example, select means _̂θ � �α3∕α1�, _̂φ � �α4∕α2�,
and standard deviations σ _θ �

																																																																	
�α23∕α21� � �α24∕α1α2� − �α5∕α1�

p
,

σ _φ �
																																																																	
�α23∕α1α2� � �α24∕α22� − �α5∕α2�

p
.

2) Sample the resulting Gaussian distribution into a particle set,
with uniform weights, on the extended observation space.
3) Transform the resulting particle set to the target state space X.

The resulting particle set f�w�j�
t ; x�j�t �gj∈Jt is thus an approximation

of the posterior distribution pϕt−1: z
t of the newborn track ϕt−1: z.

D. Track Display Procedure

The procedure exposed in Sec. II.F allows for the selection of the

candidate tracks Y�
t ⊆ Yt for display, all members of the most

probable multitarget configuration. We shall now propose a

procedure to extract the MAP state x�t of the posterior distribution p
y
t

of some candidate track y ∈ Y�
t , i.e., the most probable state of the

object of the populationX represented by y, provided that it exists and
is currently in the scene.

Let f�w�j�
t ; x�j�t �gj∈Jt be the set ofweighted particles approximating

the posterior distribution py
t on the augmented state space �X. The

MAP x�t is naturally given by the particlewith the highest weight, i.e.,

x�t � x�j
��

t ; j� � argmax
j

fw�j�
t gj∈Jt (41)

The data update mechanisms for undetected tracks and detected
tracks presented in Sec. III.C.2 are such that the particleweights in the

posterior distribution f�w�j�
t ; x�j�t �gj∈Jt have close values. In

consequence, the highest particle weight is often shared by several
particles, and producing theMAP using Eq. (41) becomes unreliable
in practice.
Following reasoning similar to that shown in Sec. III.C.2, the

spherical reference frame corresponding to the ECI frame (i.e.,
sharing the same origin and axes) can be seen as a candidate frame in
which the posterior distribution py

t can be approximated as a
multivariate Gaussian distribution, and a substitute to theMAP given
by Eq. (41) can thus be produced through the following procedure:
1) Transform the coordinates of the weighted particle set

f�w�j�
t ; x�j�t �gj∈Jt , approximating the posterior distributionpy

t , into the

spherical reference frame.
2) Approximate the resulting weighted particle set into a

multivariate Gaussian distribution on the spherical reference frame.
3) Produce the mean (equal to the MAP) of the resulting Gaussian

distribution.
4) Transform the coordinates of the resulting point into the

ECI frame.
The procedure is illustrated in a two-dimensional space (for the

sake of clarity) on Fig. 5. Note that this method does not produce the
MAP, in the general case (the red circle does not match the blue
circle in the illustrated example), but it proves to be more consistent
than the method extracting the exact MAP for the reasons explained
previously. Note that the extraction of the most probable multitarget
configuration has no effect on the filtering process, since the DISP
filter propagates the full probabilistic description of the population
through the law Pt.

IV. Simulation Results

In this section, we illustrate the DISP filter on a simulated SSA
scenario exploiting the design and implementation techniques
presented in Sec. III.

A. Parameterization of SSA Scenario

1. Ground Truth

We consider a SSA scenario as depicted in Fig. 6, with five objects
evolving on different orbits. All the objects are present in the
surveillance scene at the beginning of the scenario, and their orbits are
contained within the surveillance scene. The initial orbital elements
and area-to-mass ratios of the five objects are listed in Table 2.
This scenario presents several challenges. Object 1 is on an

inclined geostationary orbit and remains in one sensor FOV

a) Cartesian reference frame (x, y) b) Polar reference frame (r,   )θ
Fig. 5 Display of the most probable state for some track y ∈ Yt (illustration in two dimensions). The blue circle is the MAP given by the particle

approximation of the posterior distributionpy
t (blue points). The blue cross is themean state given by the particle approximation. TheMAP (andmean) of

the Gaussian approximation of the posterior distribution in the polar reference frame (red circle and cross, on the right-hand side) can be transformed
back to the Cartesian reference frame (red circle and cross, on the left-hand side) to produce an approximation of the MAP state of track y.

68 DELANDE ETAL.

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
E

D
IN

B
U

R
G

H
 o

n 
Fe

br
ua

ry
 2

2,
 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

20
67

 



throughout the whole duration of the scenario. Object 2 is also on a

retrograde inclined geostationary orbit. Objects 1 and 2 cross each

other’s paths when they are covered by one of the sensors. Since a

Doppler radar does not provide angular rates, the observations

produced by these two objects are expected to be close in value.

Objects 3 and 4 are on low Earth orbits and do not stay in the sensor

FOV for long periods of time. Object 5 is on a high-eccentricity

geostationary transfer orbit. It is initially in one of the sensor FOV,

leaves it after a few times steps, and reenters it onceduring the scenario.

2. Doppler Radar

For the sake of simplicity, the two sensors are given the same

profile, defined as in Table 1.

3. SMC-DISP Filter

The details of the SMC implementation of theDISP filter are given

in Table 3.

4. Output Extraction

The candidate tracks for display are selected using a simple

hysteretic model based on the probability of existence, as explained

in Sec. II.D. The confirmation threshold τc is set to 0.999, and the

deconfirmation threshold τd is set to 0.8.

B. Results and Discussion

1. Methodology

Oneof the key abilities of aBayesianmulti-object filter is to deliver

an estimation with the appropriate level of uncertainty. In usual

single-object tracking problems, the Cramér-Rao lower bound [35]

provides a measure of the minimum uncertainty reachable by an

unbiased estimator for given sensor capabilities. This concept,

however, does not extend easily to the multi-object estimation

problem with unknown data association, missed detections, false

alarms, etc.

Table 2 Parameterization of the scenario (object 1 is on an inclined
geostationary orbit (GEO), object 2 is on a retrograde inclined GEO,

objects 3 and 4 are on low Earth orbits (LEO), and object 5 is on a high-
eccentricity geostationary transfer orbit (GTO)

Object number 1 2 3 4 5

Orbit type GEO GEO LEO LEO GTO

Right ascension of the ascending
node Ω, deg

61 50 20 30 60

Inclination i, deg 10 170 2 3 11.3
Argument of perigee ω, deg 349 30 311 250 351
Semi-major axis a, km 42164 42164 16495 17490 26352
Eccentricity e 0.012 0.01 0.01 0.3 0.6
True anomaly ν, deg 82 20 80 50 80
Area-to-mass ratio, m2∕km 0.02 0.6 0.02 0.02 0.02

Fig. 6 Illustration of the scenario. Initial positions (left figures) of the five objects aremarked by stars, and the last positions (right figures) aremarked by
crosses. The gray region denotes the sensor FOV.
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To provide a reference for the evaluation of the DISP filter, we
designed the unrealistic yet informative Oracle filter, modeled as a
DISP filter fed with the correct data association at each update step,
that is, with the origin of each collected observation. The Oracle filter
thus propagates only one hypothesis, corresponding to the correct
multitarget configuration. Note that it does not provide the ground
truth of the scenario, for its estimation relies on the same modeling
choices as the DISP filter and in particular on the same level of
uncertainty regarding the dynamical behavior of the objects of
interest, the same measurement noise in the observation process, the
missed detections, etc.
To facilitate the analysis of the results, the output of the filter is

displayed separately for each of the five objects involved in the
scenario. By construction, each track maintained by the Oracle filter
corresponds to an identified object. There is no such straightforward
correspondence in the case of the DISP filter, since the data
association is unknown and part of the estimation problem. For the
sake of analysis, each track produced by the DISP filter is associated
to the closest object (in the Euclidean position subspace) at its time of
birth (corresponding to the natural association that would be given by
a human operator).
For each object, the analysis of theDISP filter is illustrated through

the number of tracks associated to this object (in Fig. 7), the quality of
the tracking through the distance between the object and the closest

associated track (in Fig. 8), and the number of swappings between the

associated tracks (in Fig. 9).

Both filters are compared on the same input data, i.e., the same

pseudoobservations collected from the simulated sensors as

explained in Sec. III.B. The results shown in this section are

averaged over 22Monte Carlo (MC) runs of the scenario described in

Sec. IV.A, each run being based on the same ground truth but

generating different pseudoobservations.

2. Cardinality Error

Figure 7 illustrates the cardinality error for each object, penalizing

the absence of a track or the presence of redundant tracks associated

to a given object.

By construction, the Oracle filter produces a track upon the first

detection of each object and maintains a single track until the end of

Fig. 7 Cardinality error averaged over 22 MC runs. Blue zones
correspond to time periods inwhich the object lies within the sensorFOV.

Dark lines refer to the Oracle filter, and bright lines refer to the DISP
filter (GEO, geostationary orbit; LEO, low Earth orbits; GTO,
geostationary transfer orbit).

Table 3 Parameterization of the SMC-DISP filter

Filtering (population level)

Set of hypotheses at initialization ∅

Number of appearing targets (t � 0) Depends on Z0

Number of appearing targets (t > 0) ρϕt−1
tjt−1�0� � 1 − 10−6

ρϕt−1
tjt−1�1� � 10−6

Filtering (individual level)

Process noise for target motion model Δt−1;t diag��10 10 10 1 1 1��
Number of particles per track 200

Approximation (information loss)

Max number of hypotheses 30
Min. prob. of existence for hypotheses 10−30

Min. prob. of existence for tracks 10−7

Measurement gating (confidence level) 95%

Fig. 9 Track swaps (averaged over 22MCruns). Blue zones correspond
to time periods inwhich the object lies within a sensor FOV.A track swap

occurs whenever there is a change in association between an object and
the closest trackmaintainedby theDISP filter (GEO,geostationary orbit;
LEO, low Earth orbits; GTO, geostationary transfer orbit).

Fig. 8 Trackquality averagedover 22MCruns.Blue zones corresponds

to time periods in which the object lies within a sensor FOV. The
Euclidean distance between an object and the MAP estimate of the
corresponding track is depicted in green, and the Mahalanobis distance
between an object and the spatial distribution of the corresponding track
is depicted in red. Dark lines refer to the Oracle filter, and bright lines
refer to the DISP filter (GEO, geostationary orbit; LEO, low Earth
orbits; GTO, geostationary transfer orbit).

70 DELANDE ETAL.

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
E

D
IN

B
U

R
G

H
 o

n 
Fe

br
ua

ry
 2

2,
 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

20
67

 



the scenario. Thus, its cardinality error is one before the first
detection of each object and drops to zero upon first detection.
The DISP filter, on the other hand, must discriminate between
false alarms and object-generated observations in order to assess the
appearance of new objects in the sensor FOV; in consequence, the
initial cardinality error of 1 does not drop instantaneously to zero
following the the first detection of each object. The figure shows
that in roughly 20% of the runs the DISP filter failed at detecting
object 3 when it entered in the sensor FOV for the first time, though
it detected it the second time. It also shows that in roughly 30% of
the runs the DISP filter failed at detecting object 4, resulting in a
nonzero cardinality error throughout the scenario. Note that the
sensor coverage of object 4 was particularly poor, for the object
never stayed for an extended and continuous period of time
within reach of the sensors. In these conditions, the initial orbit
determination procedure was not always successful at producing a
stable track. We also see on this figure that the DISP filter did not
always identify object 5 upon reentry in the sensor FOVaround time
step 560: in roughly 70% of the runs, the initial track was not
updated with the new observations, and another track was created
instead, resulting in a cardinality error. This situation will be further
discussed in the next paragraph.

3. Track Quality

Figure 8 illustrates the quality of the tracks maintained for each
object.
The Euclidean distance between an object and the MAP estimate

of the corresponding track provides an intuitive picture of the
quality of the tracks. Overall, the tracks produced by the DISP filter
and the Oracle filter show similar quality, the latter filter providing
a baseline for the targeted performance on this particular scenario.
It must be noted that quality of tracks degrades quickly once the
object has left the sensor FOV, regardless of the filter employed.
This suggests that either the initial observation windows are too
short for the initialization of a stable track or the prediction model
implemented through the Shepperd’s matrix is not accurate enough
to propagate the track along a stable orbit, or both. We see in
particular that object 5 stays outside of the sensor FOV for over 500
time steps following its first detection. The discrepancies between
the propagated track and the object are significant, and upon object
5’s reentry in the sensor FOV, the DISP ponders the possibility that
the newly collected observations are originating from a sixth object,
unobserved so far. In roughly 70% of the runs, the existence of a
sixth object is assessed as more likely, and an additional track is
created (and increases the cardinality error, as discussed in the
previous paragraph).
The Mahalanobis distance between an object state and the spatial

distributions of the corresponding track illustrates the uncertainty
carried by the filters regarding the estimation [36]. Avalue exceeding
the n% threshold of a six-dimensinoal chi-square distribution
indicates that the object lies outside of the region containing n% of
the mass of the spatial distribution of the track. The relatively low
values of the Mahalanobis distances observed throughout the
scenario for all the objects show that both filters are consistent and
show no sign of overconfidence. In other words, the quality of the
tracks degrades quickly when the objects evolve through blind
regions with no sensor coverage, but the filters know so. This
illustrates the ability of the DISP to provide an appropriate level of
uncertainty in its estimation of the multitarget configuration on this
particular scenario, in which the observability is relatively poor
(see the sensor parameters in Table 1).

4. Track Swaps

Figure 9 illustrates the number of track swaps during the scenario,
for each object.
When the DISP maintains several tracks for a given object, a track

swapoccurswhenever the association between the object and the closest
of these tracks, measured with the Euclidean distance on the position
coordinates, changes.Asdiscussed in the twopreviousparagraphs, track
swaps typically occurs whenever the DISP (wrongly) assumes that a

sixth object is present in the scene, due to the growing discrepancies
between object 5 and the initial track maintained by the DISP filter. We
see on this figure that the track swaps are limited to the period following
the creation of the additional track. The fact that no track swaps occur in
the subsequent times suggests that the two tracks are not competing; the
initial track has been definitively put aside in favor of the more recent
one, which was created closer to the new observations through a new
initial orbit determination procedure.
The fact that the cardinality error does not drop to zero in the

subsequent times (see object 5 in Fig. 7) shows that the redundant
track remains displayed by theDISP filter, highlighting a challenging
situation common to SSA scenarios in the presence of poor sensor
coverage. Once the two tracks produced from object 5 have left the
sensor FOV, no information is available for the filter to correct its
estimation and reassess their probability of existence until they
reenter a sensor FOVand eventually discard the redundant track.

5. Computational Complexity

The DISP maintains the joint probabilities of existence of all the
possible combinations of compatible tracks that could potentially
represent the true multitarget configuration in the surveillance scene,
or hypotheses. The bulk of the computational complexity originates
from the number of hypotheses maintained and the generation of the
admissible data associations (20). The data association is highly
combinatorial in nature, though reduced in practice by measurement
gating of which the efficacy depends in particular on whether false
alarms fall close enough to the objects to induce ambiguous data
associations. The computational complexity of the DISP filter thus
rises dramatically with the number of objects and false alarms in a
manner that remains difficult to quantify in the general case, perhaps
similarly to the MHT filter. The simulations in this paper, run on a
laptop with an unoptimizedMATLAB® code and some embedded C
code, required several hours perMonteCarlo run.Anatural extension
of this work to larger-scale scenarios run in realistic computational
times is discussed in Sec. V, through a principled approximation of
the DISP filter of which the complexity is linear in the number of
objects and observations.

V. Further Work

An important feature of the DISP filter is the well-separated
mechanisms estimating the composition of the populationX and the
individual states of its identified members. In particular, the structure
of the filter is flexible and easily adaptable to different modeling
choices relating to the single-object time prediction step or the single-
object/single-measurement data update step. Essentially, single-
object mechanisms are modeling blocks that can be replaced without
altering the general structure of the filter with respect to the
composition of the tracks, the hypotheses, and the related
probabilities of existence.
The results presented in Sec. IV show that the quality of the track

estimates drop quickly once they leave the sensor FOV and the
filtering process relies solely on the predictionmodel (19) to estimate
the motion of the objects along their orbits. In this paper, we
implement a linearization of the orbital mechanics in the six-
dimensional Cartesian target state space X through the Shepperd
transition matrix with additional state-independent noise (33), but
alternative solutions exist. TheDISP filter imposes few constraints on
the nature of the individual target state space X, and the modeling of
the targets’ dynamical behavior should be explored in other spaces
that are more suited to SSA tracking problems. Exploiting a target
space describing the orbital elements of the objects rather than their
position and velocity coordinates in a Cartesian reference frame is a
promising lead, since the orbital mechanics would be more naturally
described andmodeled in such a space. This modeling changewould
have little impact on the implementation of the filter, save the
prediction equation (19) itself. In particular, the same data update
procedure could be applied, with an adapted mapping between the
target state space and the extended sensor space (steps 1 and
5 in Fig. 4).
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Provided that an initial orbit determination procedure is available
and Assumptions A2–A4 hold, sensors of different nature can be
incorporated into the filtering framework presented in this paper with
a bespoke sensor profile (observation space Z, shape of the FOV,
probability of detection pd;t, etc.). Again, the nature of the sensor has
little impact on the structure of the filter, save the evaluation of the
integrals in Eqs. (24–27). To that respect, the modeling of a telescope
providing information on angles and angular rates has been recently
explored in [31] for a subsequent incorporation to the DISP filter.
On a broader perspective, the fully probabilistic nature of the

DISP filter has yet to be exploited for SSA applications, and the law
of the population Pt propagated by the filter can be exploited
beyond the extraction the most probable multitarget configuration
exploited shown in Sec. II.D. Recent developments within the
estimation framework for stochastic populations [19], such as target
classification [37] or information-theoretic policies for closed-loop
sensor management [38], are fully relevant to the context of SSA and
directly applicable to the DISP filter. The regional statistics for multi-
object filters [39], estimating the number of objects with associated
uncertainty in anydesired region of the state space, could be exploited
in the context of a SSA scenario to provide, for example, a dynamical
assessment of the density of objects on particular orbits. Originally
developed within the FISST framework, the regional statistics could
be adapted to any filter derived from the estimation framework for
stochastic populations [19] as well, including the DISP filter.
Maintaining a catalog of orbiting objects will involve tracking a

large number of targets, and the complexity of theDISP filter increases
dramatically with the number of objects involved in the scenario. The
work presented in this paper paves the way for the implementation of
the filter for hypothesised and independent stochastic populations
(HISP) [40]†† for SSA scenarios, a principled approximation of the
DISP filter of which the complexity is linear in the number of objects
and observations and that is particularly adapted to tracking problems
such as SSA scenarios in which the data association is moderately
ambiguous. Since the single-object mechanisms are the same as in the
DISP filter, the specific developments proposed in Sec. III can be
directly incorporated to theHISP filter for SSA scenarios [41]. The two
filtering solutions shall be compared to analyze the cost in terms of
accuracy induced by the greater efficiency of the HISP filter in the
context of SSA surveillance activities.

VI. Conclusions

This paper presents the distinguishable and independent stochastic
populations (DISP) filter, a recent multi-object joint detection/
tracking algorithm derived from the estimation framework for
stochastic populations, in the context of wide-area surveillance for a
space situational awareness (SSA) application. It shows that a
Bayesian filtering framework can be exploited in order to maintain a
probabilistic description of a population of orbiting objects, assessing
the composition of the population and the individual states of its
identified members, with associated uncertainty.
The DISP filter is illustrated on a multi-object surveillance

scenario involving five objects of interest evolving on different orbits,
with no prior information available on their number nor their
individual states, observed by two sensors with limited observability
and field of view and hindered by missed detections, measurement
noise, and false alarms. In this scenario, the DISP filter proves to be
responsive in the creation of tracks following their first detection and
robust in maintaining track custody despite the challenging
conditions.
A few leads are provided for the improvement of the tracking

capabilities within the scope of the DISP filter, including an
exploitation of the orbital elements to capture the orbital mechanics
and the incorporation of a wider range of sensor models suitable to
SSAapplications. The adaptation of thiswork to large scale scenarios
is also discussed through the implementation of the hypothesised and
independent stochastic populations filter, a principled approximation

of the DISP filter of which the computational complexity is linear in
the number of objects and observations.
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