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(PHD) and cardinalised PHD (CPHD) filters assumes that the
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targets can appear anywhere in the surveillance volume this is

clearly inefficient, since the target birth intensity needs to cover
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This paper presents a new extension of the PHD and

CPHD filters, which distinguishes between the persistent and

the newborn targets. This extension enables us to adaptively
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presented and their performance studied numerically. The

proposed measurement-driven birth intensity improves the

estimation accuracy of both the number of targets and their

spatial distribution.
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I. INTRODUCTION

Mahler [1] recently proposed a systematic

generalisation of the single-target recursive Bayes

filter to the multi-target case. In this formulation, the

targets can appear and disappear anywhere (within

the state space of interest) and anytime (within the

surveillance period), while target motion can be

described by a nonlinear stochastic dynamic model.

The sequentially received measurements are uncertain

both due to the imperfections of the detection

process (target detections could be missing and false

detections can be present) and due to the stochastic

nature of the possibly nonlinear sensor model. The

multi-target Bayes filer sequentially estimates the

number of targets present and their individual states.

The Bayes filter propagates the posterior

probability density function (pdf) through a two-step

procedure: the prediction and update. In the

multi-target case, the multi-target posterior pdf is

formulated using the finite set statistics (FISST)

[1], a set of practical mathematical tools from point

process theory. The propagation of this multi-target

posterior, however, is computationally very intensive

due to the high dimensionality of the multi-target

state space. If the state space of a single target is X ,
the multi-target posterior pdf is defined on F(X ),
the space of finite subsets of X . To overcome the
high dimensionality of the multi-target Bayes filter,

Mahler introduced the probability hypothesis density

(PHD) filter [2], which propagates the first moment

of the multi-target posterior known as the intensity

function or the PHD, defined on the single-target

state space X . The resulting PHD filter subsequently
became a very popular multi-target estimation method

with applications in sonar [3], computer vision [4, 5],

SLAM [6], traffic monitoring [7], biology [8], etc.

Since the intensity function is a very crude

approximation of the multi-target pdf, Mahler

subsequently introduced the cardinalised PHD

(CPHD) filter [9], which propagates both the intensity

function and the cardinality distribution of the

multi-target pdf. The resulting estimate of the number

of targets is more stable than that of the PHD filter, as

confirmed by numerical studies in [10]. The CPHD

filter has been applied to ground moving target

indication (GMTI) tracking [11], tracking in the aerial

videos [12], etc.

The standard formulations of both the PHD and

CPHD filters assume that the target birth intensity is

known a priori. Typically the birth intensity has the

majority of its mass distributed over small specific

areas of X , which, for example in the air surveillance
context, can be interpreted as the regions around

airports [10, 13]. Note however that if a target appears

in a region that is not covered by the predefined birth

intensity, the PHD/CPHD filter will be completely

blind to its existence. Making the target birth intensity
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diffuse so that it covers the entire state space of
interest, typically results in a higher incidence of
short-lived false tracks and longer confirmation times.
The only way to overcome this drawback is to create
at each processing step of the filter a massive number
of potential (hypothesised) newborn targets covering
the entire state space, which is clearly inefficient.
The described limitation affects both methods of
PHD/CPHD filter implementation: the sequential
Monte Carlo (SMC) method [14, 15] and the finite
Gaussian mixtures (GM) [10, 13].
Starting from the standard equations of the

PHD and the CPHD filter, in this paper we derive
novel extensions which distinguish, in both the
prediction and the update step, between the persistent
and the newborn targets. This approach allows the
PHD/CPHD filter to adapt the target birth intensity at
each processing step using the received measurements.
The resulting measurement-driven birth intensity is
very important in practice because it removes the
need for the prior specification of birth intensities and
eliminates the restriction on target appearance volumes
within X . This paper presents an SMC implementation
of proposed extensions of PHD and CPHD filters and
demonstrates their improvement in performance by
numerical examples.
Two remarks are in order here. First, we point

out that the proposed measurement-driven target
birth intensity is complementary with the recent
attempts to improve the efficiency of the SMC-PHD
filter by preselecting particles for propagation (the
so-called auxiliary particle PHD filter) presented in
[15]. Second, the idea to use the measurements to
adaptively build the target birth intensity has been
proposed previously [16, 17]. Our paper, however,
develops this initial idea much further. See also [18]
for further discussion.

II. BACKGROUND

Suppose that at time k there are nk target states
xk,1, : : : ,xk,nk , each taking values in a state space X μ
Rnx , and mk measurements (detections) zk,1, : : : ,zk,mk ,
each taking values in the observation space Z μ Rnz .
A multi-target state and a multi-target observation are
then represented by the finite sets:

Xk = fxk,1, : : : ,xk,nkg 2 F(X ) (1)

Zk = fzk,1, : : : ,zk,mkg 2 F(Z) (2)

respectively. Here F(X ) and F(Z) are the finite
subsets of X and Z, respectively. At each time step
some targets may disappear (die), others may survive
and transition into a new state, and new targets may
appear. Due to the imperfections in the detector, some
of the surviving and newborn targets may not be
detected, whereas the observation set Zk may include
false detections (or clutter). The evolution of the
targets and the origin of measurements are unknown.
Uncertainty in both multi-target state and multi-target

measurement is naturally modelled by random finite
sets.

The objective of the recursive multi-target

Bayesian estimator [1] is to determine at each time

step k the posterior probability density of multi-target

state fkjk(Xk j Z1:k), where Z1:k = (Z1, : : : ,Zk) denotes
the accumulated observation sets up to time k. The

multi-target posterior is computed sequentially via the

prediction and the update steps; see [1, ch.14].

Since fkjk(Xk j Z1:k) is defined over F(X ), practical
implementation of the multi-target Bayes filter is

a difficult task and is usually limited to a small

number of targets [19—21]. In order to overcome this

limitation, Mahler proposed [2] to propagate only

the first-order statistical moment of fkjk(X j Z1:k),
referred to as the intensity function or the PHD,

Dkjk(x j Z1:k) =
R
±X(x)fkjk(X j Z1:k)±X. In this definition

±X(x) =
P

w2X ±w(x). The integral of the PHD over X ,Z
X
Dkjk(x j Z1:k)dx= ºkjk 2 R (3)

gives the (posterior) expected number of targets in

the state space. The resulting PHD filter replaces the

prediction and the update step of the multi-target

Bayes filter with the much simpler expressions for the

prediction and update of the PHD (given in the next

section).

Since the posterior PHD Dkjk(x j Z1:k) is a
very crude approximation of fkjk(X j Z1:k), Mahler
subsequently proposed [9] to propagate the cardinality

distribution ½(n) = Pr(jXj= n) given by

½(n j Z1:k) =
1

n!

Z
fkjk(fx1, : : : ,xng j Z1:k)dx1 : : :xn

(4)

jointly and alongside the PHD. The cardinality

distribution satisfies the following condition:P1
n=1n½(n j Z1:k) =

R
Dkjk(x j Z1:k)dx= ºkjk. This is the

basis of the CPHD filter.

III. EXTENSION OF THE PHD FILTER

The standard PHD filter equations are reviewed

first, using the abbreviation Dkjk(x j Z1:k)
abbr
= Dkjk(x).

The prediction equation of the PHD filter is given

by1 [2]

Dkjk¡1(x) = °kjk¡1(x)+ hpSDk¡1jk¡1,¼kjk¡1(x j ¢)i
(5)

where

°kjk¡1(x) is the PHD of target births between time
k and k+1,

pS(x
0)
abbr
= pS,kjk¡1(x

0) is the probability that a target

with state x0 at time k¡1 will survive until time k,
¼kjk¡1(x j x0) is the single-target transition density

from time k¡ 1 to k,

1We do not consider target spawning in this paper.
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hg,fi= R f(x)g(x)dx.
The first term on the RHS of (5) refers to the newborn

targets, while the second represents the persistent

targets. Upon receiving the measurement set Zk at

time k, the update step of the PHD filter is computed

according to

Dkjk(x) = [1¡pD(x)]Dkjk¡1(x)

+
X
z2Zk

pD(x)gk(z j x)Dkjk¡1(x)
·k(z) + hpDgk(z j ¢),Dkjk¡1i

(6)

where

pD(x)
abbr
= pD,k(x) is the probability that an

observation will be collected at time k from a target

with state x,

gk(z j x) is the single-target measurement likelihood
at time k,

·k(z) is the PHD of clutter at time k.

In the above formulation of the PHD filter, new

targets are “born” in the prediction step (5). The

intensity function of the newborn targets °kjk¡1(x) is
independent of measurements, and in the general case,

where the targets can appear anywhere in the state

space, it has to cover the entire X . This is significant
for both the SMC and the GM implementation of the

PHD filter because the newborn target particles or

Gaussian mixture components need to cover the entire

state space with reasonable mass for the PHD filter to

work properly. Clearly this is inefficient and wasteful.

Instead we propose to design a newborn target

intensity in the region of the state space x 2 X for

which the likelihood gk(z j x) will have high values.
We show that if the birth intensity is adapted in

accordance with the measurements, the PHD equations

must be applied in a different form [22].

Start from (5) and (6), where the state vector x

consists of the usual kinematic/feature component

(position, velocity, amplitude, etc) which we denote

by y and a mark or a label ¯, which distinguishes
a newborn target from the persistent target, i.e.,

x= (y,¯) where

¯ =

(
0 for a persistent target

1 for a newborn target
(7)

and y 2 Y . The birth PHD is then:

°kjk¡1(x) = °kjk¡1(y,¯) =

(
°kjk¡1(y), ¯ = 1

0, ¯ = 0
:

(8)

Note a slight abuse of notation in using the same

symbol °kjk¡1 for both functions of x and y. Similar
abuse will be used throughout this section, but the

meaning should be clear from the context.

A newborn target becomes a persisting target at

the next time, but a persisting target cannot become

a newborn target. Thus the mark ¯ can only change

from 1 to 0 but not vice-versa. The transition model is

then

¼kjk¡1(x j x0) = ¼kjk¡1(y,¯ j y0,¯0)
= ¼kjk¡1(y j y0)¼kjk¡1(¯ j ¯0) (9)

with

¼kjk¡1(¯ j ¯0) =
½
0, ¯ = 1

1, ¯ = 0
: (10)

The probability of survival does not depend on ¯ and

hence

pS(x) = pS(y,¯) = pS(y): (11)

The PHD filter prediction equation (5) for the

augmented state vector is given by

Dkjk¡1(y,¯) = °kjk¡1(y,¯) +
1X

¯0=0

Z
Dk¡1jk¡1(y

0,¯0)

£pS(y0,¯0)¼kjk¡1(y,¯ j y0,¯0)dy0: (12)

Upon substitution of expressions (8)—(11) into (12) we

obtain the new form of the PHD filter prediction:

Dkjk¡1(y,¯) =

(
°kjk¡1(y), ¯ = 1

hDk¡1jk¡1(¢,1)+Dk¡1jk¡1(¢,0),pS¼kjk¡1(y j ¢)i, ¯ = 0
: (13)

Now we carry out similar manipulations for the

update step. First, note that since the new targets

are created from measurements, it follows that new

targets are always detected (as they always generate

measurements), so we can write

pD(x) = pD(y,¯) =

(
1, ¯ = 1

pD(y), ¯ = 0
: (14)

The measurement does not depend on ¯, hence

gk(z j x) = gk(z j y,¯) = gk(z j y): (15)

The PHD update equation (6) for the augmented state

vector is given by

Dkjk(y,¯) = [1¡pD(y,¯)]Dkjk¡1(y,¯)

+
X
z2Zk

pD(y,¯)gk(z j y,¯)Dkjk¡1(y,¯)
·k(z) +

P1

¯=0
hpD(¢,¯)gk(z j ¢,¯),Dkjk¡1(¢,¯)i

:

(16)
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Using (14) and (15), it follows that the update step for
persisting targets (¯ = 0) is given by

Dkjk(y,0) = [1¡pD(y)]Dkjk¡1(y,0)+
X
z2Zk

pD(y)gk(z j y)Dkjk¡1(y,0)
·k(z)+ hgk(z j ¢),°kjk¡1i+ hpDgk(z j ¢),Dkjk¡1(¢,0)i

(17)

while the update step for newborn targets (¯ = 1) is
given by

Dkjk(y,1) =
X
z2Zk

gk(z j y)°kjk¡1(y)
·k(z)+ hgk(z j ¢),°kjk¡1i+ hpDgk(z j ¢),Dkjk¡1(¢,0)i

: (18)

In summary, starting from the standard form of PHD

filter equations, (5) and (6), this section has derived
a new form of PHD filter equations, suitable for the
measurement-driven implementation of target birth

intensity. The new equations are (13) for prediction
and (17)—(18) for the update step.
Observe that both the prediction step and the

update step are performed separately for newborn
and persistent targets. The intensity functions
corresponding to the two types of targets are added

together and predicted jointly in the prediction step,
(13), case ¯ = 0. For reporting purposes, we are
typically only interested in the updated intensity

function of persistent targets (17). Note however that
(18) represents an explicit formula for the intensity
function of the target-birth process.

An attempt to implement the measurement-driven
target birth intensity using the standard equations
would result in the biased cardinality estimate of the

PHD filter. This is a consequence of the difference
between (6) and (17): the latter has an additional term
in the denominator.

IV. EXTENSION OF THE CARDINALISED PHD FILTER

Let ½kjk(n j Z1:n)
abbr
= ½kjk(n) denote the cardinality

distribution at time k. Also, let ½¡ ,kjk¡1(n)
abbr
= ½¡ (n)

denote the cardinality distribution of new targets
at time k. The CPHD filter propagates both the

cardinality distribution ½kjk(n) and the PHD Dkjk(x).
We start again with the standard CPHD equations. In
order to simplify our presentation, assume that the

probability of survival is constant, pS(x) = pS . Then
the predicted cardinality distribution can be written as
a convolution [10]:

½kjk¡1(n) =
nX
j=0

½S,kjk¡1(j)½¡ (n¡ j) (19)

where

½S,kjk¡1(j) =
1X
`=j

`!

j!(`¡ j)!p
j
S(1¡pS)`¡j½k¡1jk¡1(`)

(20)

is the predicted cardinality of survived targets. The
predicted PHD is given by (5). Using the same
reasoning as in the previous section, the prediction

step of the CPHD filter, in terms of the newborn and
persistent targets, is given by (19) and (13).
The standard form of the CPHD filter update is

given by

½kjk(n) =
¨ 0
k [Dkjk¡1;Zk](n)½kjk¡1(n)

h¨ 0
k [Dkjk¡1;Zk],½kjk¡1i

(21)

Dkjk(x) = (1¡pD(x))
h¨ 1

k [Dkjk¡1;Zk],½kjk¡1i
h¨ 0

k [Dkjk¡1;Zk],½kjk¡1i
Dkjk¡1(x)

+
X
z2Zk

h¨ 1
k [Dkjk¡1;Zknfzg],½kjk¡1i
h¨ 0

k [Dkjk¡1;Zk],½kjk¡1i
h1,·ki
·k(z)

£pD(x)gk(z j x)Dkjk¡1(x) (22)

where
the inner product between two real-valued

sequences ½1(n) and ½2(n) is defined as h½1,½2i=P1
n=0 ½1(n)½2(n),
the sequence ¨u

k [D,Z](n) is defined for u 2 f0,1g
as follows:

¨u
k [D,Z](n) =

min(jZj,n)X
j=0

(jZj ¡ j)!½K,k(jZj ¡ j)

£Pnj+u
h1¡pD,Din¡(j+u)

h1,Din ej(¥k(D,Z))

(23)
with

¥k(D,Z) =

½ h1,·ki
·k(z)

hpDD,gk(z j ¢)i : z 2 Z
¾

(24)

ej(Z) =
X

WμZ,jWj=j

0@Y
³2W

³

1A (25)

Pn` =
n!

(n¡ `)! : (26)

Here ej(Z) is the elementary symmetric function
(ESF) of order j for a finite set Z [1, p. 369], while
½K,k(n) in (23) is the cardinality distribution of clutter
at time k.
In order to express the CPHD filter update

equations separately for the persistent and newborn
targets, we use the measurement model of (14) and
(15). The update equation for cardinality distribution
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(21) still has the same form, while (22) can be now

written as

Dkjk(y,¯) = (1¡pD(y,¯))
h¨ 1

k [Dkjk¡1;Zk],½kjk¡1i
h¨ 0

k [Dkjk¡1;Zk],½kjk¡1i
Dkjk¡1(y,¯)

+
X
z2Zk

h¨ 1
k [Dkjk¡1;Zknfzg],½kjk¡1i
h¨ 0

k [Dkjk¡1;Zk],½kjk¡1i
h1,·ki
·k(z)

pD(y,¯)gk(z j y,¯)Dkjk¡1(y,¯)

=

8>>>>>>>>>>><>>>>>>>>>>>:

X
z2Zk

h1,·ki
·k(z)

h¨ 1
k [Dkjk¡1;Zknfzg],½kjk¡1i
h¨ 0

k [Dkjk¡1;Zk],½kjk¡1i
gk(z j y)°kjk¡1(y), ¯ = 1

(1¡pD(y))
h¨ 1

k [Dkjk¡1;Zk],½kjk¡1i
h¨ 0

k [Dkjk¡1;Zk],½kjk¡1i
Dkjk¡1(y,0)

+
X
z2Zk

h1,·ki
·k(z)

h¨ 1
k [Dkjk¡1;Zknfzg],½kjk¡1i
h¨ 0

k [Dkjk¡1;Zk],½kjk¡1i
pD(y)gk(z j y)Dkjk¡1(y,0), ¯ = 0

(27)

with

¨u
k [Dkjk¡1,Z](n) =

min(jZj,n)X
j=0

(jZj ¡ j)!½K,k(jZj ¡ j)Pnj+u

£ h1¡pD(¢),Dkjk¡1(¢,0)i
n¡(j+u)

h1,Dkjk¡1(¢,1)+Dkjk¡1(¢,0)in

£ ej(¥k(Dkjk¡1,Z)) (28)
and

¥k(Dkjk¡1,Z) =½ h1,·ki
·k(z)

hDkjk¡1(¢,1)+pD(¢)Dkjk¡1(¢,0),g(z j ¢)i : z 2 Z
¾
:

(29)

The above two equations are obtained by evaluation of

the following expressions that appear in (23) and (24):

h1¡pD,Di=
1X
¯=0

h1¡pD(¢,¯),D(¢,¯)i

= h1¡pD(¢),D(¢,0)i (30)

h1,Di= h1,D(¢,0)+D(¢,1)i (31)

hpDD,g(z j ¢)i= hD(¢,1)+pD(¢)D(¢,0),g(z j ¢)i:
(32)

In a similar manner to (17) and (18), (27) gives the

updated intensities functions of the persisting targets

and target birth process separately.

V. IMPLEMENTATION

We describe only the SMC implementation of

the PHD and the CPHD filter with the target birth

density driven by measurements. The pseudocode

of proposed SMC-PHD and SMC-CPHD filters is

given in Algorithm 1 and 2, respectively. Initially,

at the discrete-time index k = 0, the assumption is

that ½0j0(n) = 1 if n= 0, and zero for n= 1,2, : : : ,nmax
(nmax represents the maximum anticipated number of

targets), and D0j0(y,0) =D0j0(y,1) = 0. The random
samples (particles) are used to approximate the

intensity function. At time k¡ 1 we have

Dk¡1jk¡1(y,0)¼
N
p

k¡1X
n=1

w(n)k¡1,p±y(n)
k¡1,p
(y) (33)

Dk¡1jk¡1(y,1)¼
Nb
k¡1X
n=1

w
(n)
k¡1,b±y(n)

k¡1,b
(y) (34)

where ±y0 (y) is the Dirac delta function [1, p. 693],

f(w(n)k¡1,p,y(n)k¡1,p)g
N
p

k¡1
n=1 and f(w(n)k¡1,b,y(n)k¡1,b)g

Nb
k¡1
n=1 are the

weighted particle sets for persistent and newborn

targets, respectively, and N
p
k¡1 and N

b
k¡1 are the number

of persistent target and newborn target particles,

respectively. Before we apply the prediction step of

the PHD or the CPHD filter, according to (13) case

¯ = 0, we need to sum-up the two intensity functions

Dk¡1jk¡1(y,0) and Dk¡1jk¡1(y,1). This summation is
carried out by taking the union of the two particle

sets, that is

f(w(n)k¡1,y(n)k¡1)gNk¡1n=1 = f(w(n)k¡1,p,y(n)k¡1,p)g
N
p

k¡1
n=1

[f(w(n)k¡1,b,y(n)k¡1,b)g
Nb
k¡1
n=1 (35)

is the random sample representation of Dk¡1jk¡1(y,0)+
Dk¡1jk¡1(y,1). The predicted intensity function
Dkjk¡1(y,0) is approximated by the particle set:

Dkjk¡1(y,0)¼
Nk¡1X
n=1

w
(n)
kjk¡1,p±y(n)

kjk¡1,p
(y) (36)
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where according to (13) for the ¯ = 0 case:

y(n)
kjk¡1,p » qk(¢ j y(n)k¡1,Zk) (37)

w
(n)
kjk¡1,p =

pS(y
(n)
k¡1)¼kjk¡1(y

(n)
kjk¡1,p j y(n)k¡1)w(n)k¡1

qk(y
(n)
kjk¡1,p j y(n)k¡1,Zk)

(38)

with qk(¢ j y(n)k¡1,Zk) being the importance density
[23]. For simplicity of presentation we sacrifice the

efficiency of the SMC implementation and adopt

qk(¢ j y(n)k¡1,Zk) = ¼kjk¡1(¢ j y(n)k¡1).
The ¯ = 1 case in (13) is not implemented in a

straightforward manner, because a massive number

of particles would be required to approximate

Dkjk¡1(y,1) = °kjk¡1(y), of which the vast majority
would be thrown away in the resampling step (to

be carried out in the PHD/CPHD update). Instead,

the idea is to use the current measurement set Zk to
place the newborn particles in the region of the state

space where the inner product hg(z j ¢),°kjk¡1i will
have non-zero values. Thus for each z 2 Zk, a set of
Mb newborn particles y

(n)
kjk¡1,b are generated in such a

manner that z can be considered as a random sample

from the pdf gk(¢ j y(n)kjk¡1,b). This newborn target
density, denoted by bk(¢ j z) in line 14 of Algorithm 1,

in practice can be approximated as follows. Suppose

the target state vector y consists of directly measured
vector component p and unmeasured vector
component v, that is y= [pT vT]T, where T denotes
the matrix transpose. Let the measurement equation

be z= h(p) +w, where h is an invertible function
and w»N (w;0,R) is zero-mean white Gaussian
measurement noise with covariance R. Then, particles
p(n), from the measured subspace of the target state

space, can be drawn from N (y;h¡1(z),h¤RHT¤ ), where
h¡1 is the inverse of h, and H¤ is the Jacobian of
h¡1. This, of course, is an approximation if h is a
nonlinear function [23]. The particles v(n) from the

unmeasured subspace need to be drawn from the

prior.

The total number of newborn target particles

generated in this way is Nbk =Mb ¢ jZkj. The weights
of the new target particles are uniform, i.e.,

w
(n)
kjk¡1,b =

ºb
kjk¡1
Nbk

(39)

where ºb
kjk¡1 is the prior expected number of

target births. The choice of this parameter of the

PHD/CPHD filter is discussed later. In summary, the

PHD filter birth intensity is modelled by an equally

weighted mixture of birth densities bk(¢ j z), for z 2 Zk,
multiplied by the expected number of births ºb

kjk¡1 (see
lines 10 to 17 of Algorithm 1).

Consider next the update step of the PHD filter.

Observe that upon the substitution of (36) into (17),

Dkjk(y,0) can be also written as the weighted sum of

particles

Dkjk(y,0)¼
Nk¡1X
n=1

w(n)
kjk,p±y(n)

kjk¡1,p
(y) (40)

where

w(n)
kjk,p = (1¡pD(y(n)kjk¡1,p))w(n)kjk¡1,p

+
X
z2Zk

pD(y
(n)
kjk¡1,p)gk(z j y(n)kjk¡1,p)w(n)kjk¡1,p

L(z)
(41)

and

L(z) = ·k(z) +
Nb
kX

n=1

w(n)
kjk¡1,b

+

Nk¡1X
n=1

pD(y
(n)
kjk¡1,p)gk(z j y(n)kjk¡1,p)w(n)kjk¡1,p:

(42)

Similarly it can be shown using (18) that Dkjk(y,1)
is approximated by the weighted particle set

f(w(n)
kjk,b,y

(n)
kjk¡1,b)g

Nb
k

n=1 where

w
(n)
kjk,b =

X
z2Zk

w(n)
kjk¡1,b
L(z) : (43)

The particle set approximating the intensity function

of persistent objects, Dkjk(y,0), is next resampled N
p
k

times in order to eliminate the samples with small

weights and multiply the samples with large weights.

The number of particles N
p
k is selected as

N
p
k =

"
Mp ¢

Nk¡1X
n=1

w(n)
kjk,p

#
(44)

where [¢] denotes the nearest integer, Mp is the
number of particles per persistent object (a parameter

of the filter) and º̂
p
k =

PNk¡1
n=1 w

(n)
kjk,p represents the

posterior estimate of the number of persistent targets.

After resampling the intensity function, Dkjk(y,0) is
approximated by

Dkjk(y,0)¼
N
p

kX
n=1

w(n)k,p±y(n)
k,p

(y) (45)

where w(n)k,p = º̂
p
k =N

p
k . The PHD filter reports at time

k only the intensity function of persistent targets

Dkjk(y,0).
The particle set approximating the intensity

function of newborn objects, Dkjk(y,1), can be also
resampled, although this is not essential (line 23 in

Algorithm 1). The value of ºb
kjk¡1 in (39) has to be

chosen in such a manner that the sum º̂bk =
PNb

k

n=1w
(n)
kjk,b

corresponds to the expected number of newborn

objects at time k.
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ALGORITHM 1 Processing steps of the SMC-PHD filter at time k

1: Input:

2: a) Particle representation of Dk¡1jk¡1(y,0): f(w(n)k¡1,p,y(n)k¡1,p)g
N
p

k¡1
n=1 eq. (33)

3: b) Particle representation of Dk¡1jk¡1(y,1): f(w(n)k¡1,b,y(n)k¡1,b)g
Nb
k¡1
n=1 eq. (34)

4: c) Measurement set at k: Zk = fzk,1, : : : ,zk,mkg; Note: mk = jZkj
5: f(w(n)k¡1,y(n)k¡1)gNk¡1n=1 = f(w(n)k¡1,p,y(n)k¡1,p)g

N
p

k¡1
n=1 [f(w(n)k¡1,b,y(n)k¡1,b)g

Nb
k¡1
n=1 Union of input particle sets, eq. (35)

6: for n= 1, : : : ,Nk¡1 do Random sample approximation of Dkjk¡1(y,0)

7: Draw y(n)
kjk¡1,p » ¼kjk¡1(¢ j y(n)k¡1) eq. (37)

8: Compute weight w(n)
kjk¡1,p = pS(y

(n)
k¡1)w

(n)
k¡1 eq. (38)

9: end for

10: Nbk =Mb ¢mk Parameter Mb: the number of particles per newborn target

11: for j = 1, : : : ,mk do Random sample approximation of Dkjk(y,1)

12: for `= 1, : : : ,Mb do

13: n= `+(j¡ 1)Mb
14: Draw y(n)

kjk¡1,b » bk(¢ j zk,j) bk depends on gk(z j y) and prior knowledge
15: Compute weight w(n)

kjk¡1,b = º
b
kjk¡1=N

b
k Parameter ºb

kjk¡1

16: end for

17: end for

18: Compute w(n)
kjk,p, n= 1, : : : ,Nk¡1 using eq. (41)

19: Compute w
(n)
kjk,b, n= 1, : : : ,N

b
k using eq. (43)

20: Compute º̂
p
k =

PNk¡1
n=1 w

(n)
kjk,p; º̂

b
k =

PNb
k

n=1w
(n)
kjk,b Estimated number of persistent and newborn objects

21: N
p
k = [Mpº̂

p
k ] eq. (44), Parameter Mp: the number of particles per persistent target

22: Resample N
p
k times from f(w(n)

kjk,p=º̂
p
k ,y

(n)
kjk¡1,p)gNk¡1n=1 to obtain f(w(n)k,p,y(n)k,p)g

N
p

k

n=1, with w
(n)
k,p = º̂

p
k =N

p
k .

23: Resample Nbk times from f(w(n)
kjk,b=º̂

b
k ,y

(n)
kjk¡1,b)g

Nb
k

n=1 to obtain f(w(n)k,b,y(n)k,b)g
Nb
k

n=1, with w
(n)
k,b = º̂

b
k =N

b
k .

24: Report: particle representation of Dkjk(y,0): f(w(n)k,p,y(n)k,p)g
N
p

k

n=1; cardinality estimate º̂
p
k .

In the implementation of the SMC-CPHD filter it

is necessary to propagate (predict and update) the

cardinality distribution (see Algorithm 2 for details).

The prediction step of the SMC-CPHD filter is

straightforward. The update step first requires to

compute three inner products in (29) and (28). Using

the particle representation of the intensity functions

Dkjk¡1(y,0) and Dkjk¡1(y,1) this can be done as
follows:

h1¡pD(¢),Dkjk¡1(¢,0)i

¼
Nk¡1X
n=1

(1¡pD(y(n)kjk¡1,p))w(n)kjk¡1,p (46)

h1,Dkjk¡1(¢,1)+Dkjk¡1(¢,0)i

¼
Nk¡1X
n=1

w(n)
kjk¡1,p+

Nb
kX

n=1

w(n)
kjk¡1,b (47)

hDkjk¡1(¢,1)+pD(¢)Dkjk¡1(¢,0),g(z j ¢)i

¼
Nk¡1X
n=1

pD(y
(n)

kjk¡1,p)gk(z j y(n)kjk¡1,p)w(n)kjk¡1,p+
Nb
kX

n=1

w(n)
kjk¡1,b:

(48)

Computation of ESFs ej(¥k(Dkjk¡1,Z)), required in
(28), is described in [10].
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ALGORITHM 2 Processing steps of the SMC-CPHD filter at time k

1: Input:

2: a) Cardinality distribution ½k¡1jk¡1(n)

3: b) particle representation of Dk¡1jk¡1(y,0): f(w(n)k¡1,p,y(n)k¡1,p)g
N
p

k¡1
n=1

4: c) Particle representation of Dk¡1jk¡1(y,1): f(w(n)k¡1,b,y(n)k¡1,b)g
Nb
k¡1
n=1

5: d) Measurement set at k: Zk = fzk,1, : : : ,zk,mkg;
6: Prediction of cardinality distribution, eq. (19);

7: Union of input particle sets, eq. (35)

8: Prediction of persistent target particles (lines 6—9 in Algorithm 1)

9: Creation of newborn target particles (lines 10—17 in Algorithm 1)

10: Computation of elements in ¥k(Dkjk¡1,Zk), eq. (29)

11: Computation of ESFs, ej(¥k(Dkjk¡1,Zk))

12: Computation of ¨u
k [Dkjk¡1,Zk](n), eq. (28), for u= 1,0

13: for every z 2 Zk do
14: Compute ¥k(Dkjk¡1,Zknfzg), ej(¥k(Dkjk¡1,Zknfzg)), ¨ 1

k [Dkjk¡1,Zknfzg](n)
15: end for

16: Update cardinality distribution, eq. (21)

17: Update weights w(n)
kjk,p, n= 1, : : : ,Nk¡1 using eq. (27), case ¯ = 0

18: Update weights w(n)
kjk,b, n= 1, : : : ,N

b
k using eq. (27), case ¯ = 1

19: Compute º̂
p
k =

PNk¡1
n=1 w

(n)
kjk,p; º̂

b
k =

PNb
k

n=1w
(n)
kjk,b Estimated number of persistent and newborn objects

20: N
p
k = [Mpº̂

p
k ]

21: Resample N
p
k times from f(w(n)

kjk,p=º̂
p
k ,y

(n)
kjk¡1,p)gNk¡1n=1 to obtain f(w(n)k,p,y(n)k,p)g

N
p

k

n=1, with w
(n)
k,p = º̂

p
k =N

p
k .

22: Resample Nbk times from f(w(n)
kjk,b=º̂

b
k ,y

(n)
kjk¡1,b)g

Nb
k

n=1 to obtain f(w(n)k,b,y(n)k,b)g
Nb
k

n=1, with w
(n)
k,b = º̂

b
k =N

b
k .

23: Report:

24: a) Estimated cardinality distribution ½kjk(n);

25: b) particle representation of Dkjk(y,0): f(w(n)k,p,y(n)k,p)g
N
p

k

n=1

In summary, Algorithms 1 and 2 provide explicit

Monte Carlo estimates of intensity functions for

persistent targets and target birth process separately.

In addition, Algorithm 2 computes an estimate of the

cardinality distribution.

VI. NUMERICAL RESULTS

A. Simulation Setup

The performance of the described PHD and

CPHD filters with target birth density driven by

measurements is demonstrated using a scenario

with up to ten targets. The top down view of target

trajectories is shown in Fig. 1. The starting point of

each trajectory is indicated by sign ±. The state vector
of an individual target consists of a position and

velocity in x and y coordinates, that is y= [x, _x,y, _y]T.

The transitional density is ¼kjk¡1(y j y0) =N (y;Fy0,Q),
where N (¢;m,P) denotes a Gaussian pdf with mean m
and covariance P, matrix

F= I2−
μ
1 T

0 1

¶
T is the sampling interval, − is the Kroneker product,
Im is the m£m identity matrix, and

Q= I2− q
μ
T3=3 T2=2

T2=2 T

¶
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Fig. 1. Target trajectories shown in x-y plane. Starting points

denoted by ±.

with q being process noise intensity. In simulations we

used T = 1s, q= 0:30. The probability of survival was

set to pS = 0:98.

The measurements of target range and bearing

are collected by a sensor placed at (xs,ys) =

(¡100 m,¡100 m). The measurement likelihood is
then gk(z j y) =N (z;h(y),R), where

h(y) =

0@
p
(x¡ xs)2 + (y¡ ys)2

arctan
x¡ xs
y¡ ys

1A (49)

and R= diag(¾2r ,¾
2
b). The range measurements

are very precise (¾r = 0:1 m) while the bearing

measurements are fairly inaccurate (i.e., ¾b = 2 deg).

Consequently the measurement uncertainty regions are

arcs with §3¾ angular span of 12 deg. Kalman type
filters, which assume the measurement uncertainty

regions to be ellipsoids, would be inappropriate

in this case, thus justifying the need for an SMC

implementation. The clutter is uniformly distributed

along the range (from 0 to 1300 m) and bearing

(§¼=4 rad with respect to the sensor pointing
direction). The number of clutter points per scan is

Poisson distributed with the mean value of ¸= 10.

The probability of detection is pD = 0:95. For every

measurement z 2 Zk, the newborn target particle
positions are

x(n)k = xs+(z[1]+¾rv
(n)
1 )sin(z[2]+¾bv

(n)
2 )

y(n)k = ys+(z[1]+¾rv
(n)
1 )cos(z[2]+¾bv

(n)
2 )

where n= 1, : : : ,Nbk , z[1] and z[2] are the measured

range and bearing and v(n)1 ,v
(n)
2 »N (¢;0,1). The

particle velocities are generated as _x(n)k , _y
(n)
k »

N (¢;0,¾2V), where ¾V = 5 m/s.
In both PHD and CPHD filters Mb =Mp = 3000

particles. The parameter ºb
kjk¡1 = 0:0001 is selected so

that the average number of newborn targets per scan

is º̂bk ¼ 0:25. The cardinality distribution of newborn
targets is assumed Poisson. Parameter nmax in the

CPHD filter is set to 30.

B. Error Performance Analysis

The performance of the PHD/CPHD filters is

measured by two methods. The first method compares

the true and the estimated cardinality value over time,

that is nk and º̂
p
k , respectively. The second method

measures the concentration of particles around the true

target positions. In comparisons, we consider three

contesting filters: 1) PHDF-M: the described PHD

filter with the measurement-driven birth intensity;

2) PHDF-U: the PHD filter which places Mb newborn

target particles uniformly across range (from 0 to

1300 m) and bearing (§¼=4 rad with respect to
the sensor pointing direction); the velocities are

generated as _x(n)k , _y
(n)
k »N (¢;0,¾2V), with ¾V = 5 m/s;

3) CPHDF-M: the described CPHD filter with the

measurement-driven birth intensity. In order to make

the comparison fair for all three filters, an equal value

of the average number of newborn targets per scan is

adopted (º̂bk ¼ 0:25).
1) Cardinality Estimation: Fig. 2 shows the

true and estimated posterior cardinality value (the

number of targets) over time obtained using the

three contesting filters. The estimated cardinality

curves were obtained by averaging over 100 Monte

Carlo runs. The lines are as follows: the true number

of targets is plotted by a thin black line, the mean

estimated number of targets by a thick black line and

the plus/minus one standard deviation of the estimated

number of targets by gray lines. Observe that the

two PHD filters (PHDF-M and PHDF-U) perform

similarly with respect to the cardinality estimation.

There are, however, two noticeable differences:

a) the PHDF-U underestimates cardinality in the

presence of 10 targets, and b) PHD-M responds

more quickly to the changes in target number.

Regarding the comparison of the PHDF-M versus the

CPHDF-M, the results are in a good agreement with

those reported in [10]: both filters produce unbiased

cardinality estimates in the steady-state, but the PHD

cardinality estimate is more responsive to the changes

in cardinality. The CPHDF-M cardinality estimate, on

the other hand, has a much smaller variance.

2) Spatial Distribution Estimation: Next we want

to measure the concentration of particles around the

true target locations in the state space. For this

purpose we need to introduce the posterior spatial
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Fig. 2. True versus estimated cardinality over time. (a) PHDF-M.

(b) PHDF-U. (c) CPHDF-M. Thin black line is true cardinality;

thick black line is average estimated cardinality; gray lines are §1
standard deviation of estimate.

distribution of persistent targets, skjk(y,¯ = 0 j Z1:k)
abbr
= skjk(y) defined as

skjk(y) =
Dkjk(y,0)R
Dkjk(y,0)dy

: (50)

The SMC estimate of the PHD of persisting targets,

Dkjk(y,0), as reported by a PHD/CPHD filter, was

given in (45). The SMC estimate of skjk(y) of (50) is
then:

ŝkjk(y) =
N
p

kX
n=1

w̃(n)k,p ¢ ±y(n)
k,p

(y) (51)

where

w̃(n)k,p =
w
(n)
k,pPN
p

k

n=1w
(n)
k,p

(52)

are normalised weights (as opposed to PHD weights

w(n)k,p introduced in (45)).

The spatial distribution of the “ground truth” is

defined as

sk(y) =
1

nk

nkX
i=1

±yk,i(y) (53)

where fyk,1, : : : ,yk,nkg is the true multi-target state at
time k.

The similarity between the ground truth sk(y) of

(53) and the PHD/CPHD filter estimate ŝkjk(y) of (51),
is measured using the Bhattacharyya distance [24]:

B(sk, ŝkjk) =¡ ln
Z p

sk(y)
q
ŝkjk(y)dy: (54)

Clearly B(s,u)¸ 0. In addition, identity and symmetry
properties are satisfied, i.e., B(s,s) = 0 and B(s,u) =

B(u,s), respectively. The triangle inequality is not

guaranteed.

In order to compute the integral in (54), it is first

necessary to select a common set of support points for

both sk and ŝkjk. Let the common set of support points
be the true multi-target state fyk,1, : : : ,yk,nkg. Then we
need to determine the values of ŝkjk(y) at points yk,i,
for i= 1, : : : ,nk. Using kernel density estimation [25],

we have

ŝkjk(yk,i) =Qk,i ¼
1

Wnx

N
p

kX
n=1

w̃(n)k,p ¢Á
Ã
yk,i¡ y(n)k,p
W

!
(55)

where W is the kernel width, nx = 4, and Á is the

kernel function which we adopt to be Gaussian (the

expression for optimal W is given in [25]).

Following the arguments presented in

[26, Appendix], the substitution of sk(y) of (53) and

ŝkjk(y)¼
nkX
i=1

Qk,i±yk,i (y)

into (54) leads to

B(sk, ŝkjk)¼¡ ln
Ã

nkX
i=1

s
Qk,i

nk

!
: (56)

This distance measure is used to evaluate the

error performance of particle PHD/CPHD spatial

distribution estimate.
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Fig. 3. Average Bhattacharyya distance between true and

estimated spatial density over time: PHDF-M (gray thick line);

PHDF-U (black thin line); CPHDF-M filter (black dashed line).

Fig. 3 displays the Bhattacharyya distance (56)

averaged over 100 Monte Carlo runs, for all three

contesting filters: PHDF-M, PHDF-U, and CPHDF-M.

Observe first that the proposed PHD/CPHD filters

with measurement-driven birth intensity (PHDF-M

and CPHDF-M) result in vastly more accurate

approximations of the true spatial density than the

PHDF-U. This indicates that both the PHDF-M and

the CPHDF-M cluster their particles around the true

state better. This result confirms the importance of

the measurement-driven approach to birth intensity in

PHD/CPHD filters.

With regards to the comparison between the

PHDF-M and CPHDF-M, note that in the steady-state

the Bhattacharyya distance for the CPHD filter is

slightly lower. This is a significant observation since

it shows that the CPHD filter, in the steady-state,

not only provides more stable cardinality estimates,

but also achieves a more accurate spatial density

estimation.

VII. CONCLUSIONS

The paper presented an extension of the PHD

and the CPHD filters, distinguishing between the

newborn and persistent targets. Using this approach

it was possible to design a PHD/CPHD filter with

measurement-driven target birth intensity, thus

relaxing the previously imposed limitation that target

appearance (birth) intensity is a priori known. The

resulting PHD/CPHD filter estimates separate the

intensity function of persistent targets and the intensity

function of the target birth process (only the former is

typically reported by the filter). SMC implementations

of the proposed PHD and CPHD filters were studied

by numerical simulations. It has been observed

that the measurement-driven target birth intensity

concept results in the higher estimation accuracy

of the true intensity function. With regards to the

comparison between the proposed PHD and CPHD

filters, their performance is found to be in agreement

with the previously reported results: the PHD filter

is more responsive to the changes in cardinality,

but its cardinality estimates have a higher variance;

the CPHD filter is also found to be slightly more

accurate in estimating the spatial distribution in the

steady-state.
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