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Abstract—We investigate the effects of phase errors on a
compressively sampled SAR aperture. We show that the standard
methods of auto-focus, which are used as a post-processing
step, are typically unsuitable for compressively sampled SAR.
Instead of applying auto-focus as a post-processor we propose
using a stable algorithm, which is based on algorithms from the
dictionary learning literature, that corrects phase errors during
the reconstruction and is found empirically to be effective at
recovering sparse SAR images.

I. INTRODUCTION

Synthetic aperture radar (SAR) systems, due to limited
computational resources and increasing resolution, generally
do not process the received data on-board but instead store
or transmit the data to the ground where the image formation
process is performed. Systems are therefore constrained by on
board storage capabilities and transmission links. An appealing
idea is to apply the results of compressed sensing (CS) to
reduce this constraint.

The theoretical results of CS are based on exact knowl-
edge of the linear acquisition system, however, in practical
situations, such a system cannot be known perfectly. This is
the case in SAR where the received phase histories contain
phase errors due to imperfect system modelling. Traditional
SAR systems overcome these errors by post-processing the
reconstructed image, a method which may not be compatible
with CS.

The paper is organized as follows: in Section II we provide
a model of the SAR aquisation system with phase errors. We
then describe in Section III how classical methods can fit into
the CS framework and their possible short comings. Inherent
ambiguities in the CS/phase error problem are analysed in
Section IV. A pratical recovery algorithm for CS with phase
errors is proposed in Section V. We then finish with some
experimental results in Section VI to demonstrate the effec-
tiveness of the proposed algorithm.

II. SAR PHASE ERROR MODEL

SAR systems which use dechirp-on-receive must estimate
the round trip propagation delay to the scene centre at each
position along the aperture. Errors in this estimate, which can
be due to a non-idealised propagation medium or inaccuracies
in the inertial navigation system, introduce unknown phase
errors into the acquired data [1]. If not corrected, phase
errors can degrade and produce distortions in the reconstructed
image.

Adding a delay error τe into the SAR system model,
produces a phase error φτe(t) = (ατ2

e −ω0τe)− 2ατe(t− τ0),
where, t is the fast-time, τ0 is the true propagation delay
to the scene centre, 2α is the chirp rate and ω0 is the
carrier frequency. If we neglect the effects of the linear phase
term, which is a valid approximation for narrow bandwidth
systems, the discrete SAR observation model with phase errors
becomes:

Y = diag
{

ejφ
}
h (X) , (1)

where, h : CM×N → CM ′×N ′
is a linear map that models the

SAR acquisition system, Y ∈ CM ′×N ′
are the phase histories,

φm = ατ2
em
− ω0τem

(2)

are the phase errors and X ∈ CM×N are the scene reflectivi-
ties.

If we further make a far-field and small aperture angle
approximation the standard dechirped SAR acquisition system,
e.g. see [1], can be modelled as a LHS and RHS matrix
multiplication as in

Y = diag
{

ejφ
}
AXB, (3)

where,

amn = exp

{
− j
(

2π(n− 1)(m− 1)
M

− (n− 1)π

− (m− 1)π +
Mπ

2

)} (4)

and

bmn = exp

{
− j
(

2π(n− 1)(m− 1)
N

− (n− 1)
(

2πωo
2αT

− π
)

− (m− 1)π +
Nπ

2
− 2ωoL

c

)}
(5)

are the elements of the cross-range matrix A ∈ CM×M and
the range matrix B ∈ CN×N respectively, where, L is the
scene radius and T is the chirp period.

Clearly, without further assumptions, the problem of recov-
ering φ and X from Y is ill-posed, since there are only MN
equations and N(M + 1) unknowns.
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III. CLASSICAL AUTO-FOCUS

Since, A is essentially a Fourier matrix, we can rewrite the
observation model in (3) as Y = AΦXB, where, Φ is a
circulant matrix which can be viewed as a filter. Since A and
B are invertible, we can recover ΦX from Y . Classical auto-
focus methods such as the phase gradient auto-focus (PGA)
algorithm [2] use the filtered image ΦX to estimate X by
placing additional constraints on Φ and X .

When Y is compressively sampled in cross-range, the
observation model is Y = A′ΦXB, where A′ ∈ CS×M is a
random S < M row subset of A. To recover ΦX from Y , CS
theory provides us with a bound on the minimum number of
samples required which is S ≥ CKΦKX log4(M) [3], where,
C is a constant, KΦ is the number of non-zero elements in
the rows of Φ and KX is the maximum number of non-
zero elements in the columns of X , therefore, it is clear
that we require KΦ times more compressive samples than
if we had no phase errors. For this reason, in most cases,
classical methods like the PGA algorithm are unsuitable for
compressively sampled SAR.

IV. UNIQUENESS

Using ideas from the dictionary learning literature [4] we
can define a set of sufficient conditions for the uniqueness of
φ and X given Y . These conditions are:

1) the spark condition: any 2KX columns of A′ are
linearly independent

2) the columns of X have exactly KX non-zero elements,
3) for each of the

(
M
KX

)
possible KX -sparse supports, there

are at least KX + 1 columns of X ,
4) any KX + 1 columns of X , which share the same

support, span a k-dimensional space,
5) any KX + 1 columns of X , which have different

supports, span a (KX + 1)-dimensional space,
We define uniqueness up to a scalar α and a circular permuta-
tion P of the true X , i.e. X̃ = αPX , which are the solutions
to :

minimise
X,d

‖X‖0

subject to diag {d}Y = AXB

d∗mdm = 1, m = 1, . . . ,M,

(6)

where, ‖.‖0 measures the number of non-zeros matrix ele-
ments.

As is the case in dictionary learning, the richness condi-
tion 3 is completely unrealistic for compressively sampled
SAR. However, this condition is only required for guar-
anteed uniqueness and from a probabilistic view point, is
very pessimistic. It should also be noted that (6) requires
combinatorial many operations to solve and is unsuitable for
practical problems that involve noise.

V. ROBUST CONVEX RELAXATION

With the goal of designing an algorithm that is able to be
solved in polynomial time and which is also robust to noise,

the non-convex function ‖X‖0 in (6) can be replaced with its
closest convex function ‖X‖1 and the equality constraint can
be replaced with an inequality constraint that accommodates
noise, i.e.

minimise
X,d

‖X‖1

subject to ‖diag {d}Y −AXB‖F ≤ σ
d∗mdm = 1, m = 1, . . . ,M,

(7)

where, ‖.‖1 is the sum of the absolute values of all matrix ele-
ments. Even though our objective function is now convex, (7)
is still non-convex because the equality constraint is not linear
and therefore does not define a convex feasible set.

A convenient formulation is to also move the inequality
constraint to the objective to form the following Lagrangian:

minimise
X,d

‖diag {d}Y −AXB‖2F + λ ‖X‖1

subject to d∗mdm = 1, m = 1, . . . ,M,
(8)

where, λ is a Lagrangian multiplier and there exists a one-to-
one map, γ : σ → λ if 0 ≤ σ ≤ ‖Y ‖F . The problem is still
non-convex, however importantly, in each set of variables X
and d –with the other fixed– we have a unique solution. This
observation allows us to use a block relaxation type method
which has been found to be effective in dictionary learning [5].

A. Majorisation Minimisation Method

Consider (8) when d is fixed, i.e.

minimise
X

f(X,d) + λ ‖X‖1 , (9)

where,
f(X,d) = ‖diag {d}Y −AXB‖2F . (10)

A method used for solving (9) is a technique known as “ma-
jorisation minimisation”. This technique replaces the objective
function with a surrogate function that majorises the original
objective and is much easier to solve. A function g is said to
majorises f if f(ω) ≤ g(ω, ξ) and f(ω) = g(ω, ω),∀ω and
ξ ∈ Υ, where, Υ is the parameter space.

The surrogate function of f(X,d) can be developed using
its Taylor series,

f(X) = f
(
X‡
)

+
→X−X‡

df
(
X‡
)

+
1
2!

→X−X‡

df2
(
X‡
)
, (11)

where,

→X′

df(X) =
{
d

dt
f(X + tX′)

}
t=0

(12)

and

→X′

df2(X) =
→X′

df (
→X′

df (X)). (13)

For our problem,
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→X−X‡

df
(
X‡
)

= tr
{

2 Re
{(
A
(
X −X‡

)
B
)H

(
AX‡B − diag {d}Y

)}} (14)

and

→X−X‡

df2
(
X‡
)

= 2
∥∥∥A(X −X‡)B∥∥∥2

F
. (15)

Since f has bounded curvature,
→X−X‡

df2
(
X‡
)
≤ Lf for∥∥∥X −X‡∥∥∥

F
= 1 and a finite constant Lf ,

f(X,d) ≤
∥∥∥diag {d}Y −AX‡B

∥∥∥2

F
+

tr
{

2 Re
{(
A
(
X −X‡

)
B
)H

(
AX‡B − diag {d}Y

)}}
+

Lf
2

∥∥∥X −X‡∥∥∥2

F

≤ ‖diag {d}Y −AXB‖2F −∥∥∥A(X −X‡)B∥∥∥2

F
+ L

∥∥∥X −X‡∥∥∥2

F
,

(16)
where, L = Lf/2. Therefore, we can define our surrogate
function as

g(X,X‡,d) = ‖diag {d}Y −AXB‖2F −∥∥∥A(X −X‡)B∥∥∥2

F
+

L
∥∥∥X −X‡∥∥∥2

F
.

(17)

Replacing the objective function with the surrogate func-
tion, (9) becomes

minimise
X,X‡

g
(
X,X‡,d

)
+ λ ‖X‖1 , (18)

which is now a minimisation based on X and X‡, where, if
X is fixed, the minimum of (18) occurs at X‡ = X and if
X‡ is fixed the minimum occurs at

{X}i,j = Sα(C) =

{
ci,j − α sign (ci,j) for α < |ci,j |
0 otherwise,

(19)
where, C = X‡ + 1

LA
H
(

diag {d}Y −AX‡B
)
BH and

α = λ
2L .

By minimising (18) based on either X‡ and X in an
alternating fashion, X‡ and X will converge to the solution
of (9) at a sub-linear rate so long as L ≥ ‖A‖22 ‖B‖

2
2 [6].

In practice a feasible L can determined using a back-tracking
line-searching.

B. Phase Minimisation

Consider (8) when X is fixed, which (ignoring constant
terms) is given by:

minimise
d

tr
{
−2 Re

{
diag

{
dH
}
AXBY H

}}
subject to d∗mdm = 1, m = 1, . . . ,M.

(20)

The unique solution of which is,

d = ej∠diag{AXBY H}. (21)

C. Block relaxation Auto-focus

If we alternate between solving (9) and (20) in an alternating
fashion this can be seen as a block relaxation of (8) the pseudo
code of which is as follows:

Algorithm 1 A(X,d)
Output: X,d

repeat
X‡ ←X
X ← C(X,d)
d‡ ← d
d← ej∠diag{AXBY H}

until X −X‡ < threshold ∧ d− d‡ < threshold

Where, C solves (9). The approaches used in [7] and [8]
are of this form. This type of method is known to be stable
assuming we have C, i.e. we exactly solve (9) at each iteration.
In practical systems where only an approximate solution at
each iteration would be obtained, no stability analysis exists.

Another way to create a block relaxation is to consider the
problem with three blocks of parameters, i.e.

minimise
X,X‡,d

g
(
X,X‡,d

)
subject to d∗mdm = 1, m = 1, . . . ,M.

(22)

As long as (22) is minimised by varying X followed by X‡

the solution for each sub-problem is easily commutable and
the complete algorithm is known to be stable and guaranteed
to converge to a accumulation point or a connected set of accu-
mulation points [5]. The pseudo code for this algorithm, when
phase minimisation occurs at each iteration, is as follows:

Algorithm 2 B(X,d)

Initialise: L ≥ ‖A‖22 ‖B‖
2
2

Output: X,d
repeat
X‡ ←X
C ←X‡ + 1

LA
H
(

diag {d}Y −AX‡B
)
BH

X ← Sλ/2L(C)
d‡ ← d
d← ej∠diag {AXBY H}

until X −X‡ < threshold ∧ d− d‡ < threshold

1st International Workshop on Compresed Sensing applied to Radar, 14-16 May 2012, Bonn, Germany (http://workshops.fhr.fraunhofer.de)



It is interesting to note that this algorithm can be seen as a
generalisation of Algorithm 1.

VI. EXPERIMENTAL RESULTS

In these experiments we investigate the performance of
Algorithm 1 on compressively sampled phase histories that
contain phase errors and compare its performance against a
standard auto-focus method, PGA.

A. Synthetic Point-targets

In the first experiment we consider the model in (3) with
a random 50% of the aperture positions. The scene consists
of a small number of point targets with Gaussian clutter.
Quadratic phase errors are added to simulate platform velocity
measurement errors. The parameters for the synthetic model
are in Table. I.

TABLE I
SAR SYSTEM PARAMETERS FOR SYNTHETIC EXPERIMENTS

parameter value
carrier frequency (ωo) 2π × 10× 109 rad/s
chirp bandwidth (2αT ) 2π × 600× 106 rad/s

scene radius (L) 50 m
number of targets 20

target to clutter ratio 50 dB
aperture sub-sampling ratio 0.5

Fig. 1(a) shows the reconstruction formed using the fast it-
erative shrinkage-thresholding algorithm (FISTA) followed by
two iterations of the PGA algorithm (after which no improve-
ment occurred). It has a target to background ratio (TBR) of
39.93 dB. Fig. 1(b) shows the reconstruction using Algorithm .
It has a target to background ratio (TBR) of 72.13 dB. Fig. 1(c)
shows the estimated phase errors for each method compared
with the true phase errors. Algorithm estimates the phase
errors more accurately than PGA, however, it still exhibits
a constant phase estimate error due to the problem’s inherit
ambiguities which were described in Section IV.

B. GOTCHA Data Set

In this experiment we use a random 50% of the pulse data
from 2 degrees the publicly available Gotcha data set [9] to
simulate a compressively sampled aperture. To realistically
model phase errors we added errors to the supplied aperture
position data so errors in the distance to the scene centre were
normally distributed with a variance of 1.7×10−6 meters. For
this system the more general –non Fourier– model (3) is used,
where we compute the forward model and its adjoint using the
fast (re/back)-projection algorithms from [8]. Fig. 2(a) shows
the reconstruction using FISTA. PGA was not used in this
experiment because even with only two degrees of the Gotcha
data set the phase errors are not approximately constant along
the range axis, which is required in order to use PGA. Fig. 2(b)
shows the reconstruction using Algorithm . The reduction in
side lobes in Fig. 2(b) demonstrates clearly that Algorithm is
doing an effective job of reconstructing the bright targets and
correcting the phase errors in a realistic compressively sampled
SAR problem.

VII. CONCLUSION

We have investigated the effects of phase errors on a
compressively sampled SAR system. We have demonstrated
that traditional SAR auto-focus methods that work as a post-
processing measure are in most cases unsuitable. We have also
proposed and demonstrated empirically, a stable algorithm that
corrects phase errors and recovers a compressively sampled
SAR image in a realistic scenario.
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Fig. 1. point targets in clutter (a) reconstruction using FISTA followed by PGA (b) reconstruction using Algorithm (c) true phase errors ‘×’, PGA estimated
phase errors ‘�’ and Algorithm estimated phase errors ‘◦’
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Fig. 2. reconstructions from 2◦ of the Gotcha data set with a compressively sampled aperture and phase errors. (a) reconstruction using FISTA (b)
reconstruction using Algorithm focused
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