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Abstract— Iterative SAR image formation can visually improve
image reconstructions from under-sampled phase histories by
approximately solving a regularised least squares problem. For
iterative inversion to be computationally feasible, fast algorithms
for the observation matrix and its adjoint must be available.
We demonstrate how fast, N2 log, N complexity, (re/back)-
projection algorithms can be used as accurate approximations
for the observation matrix and its adjoint, without the limiting
assumptions of other N?log, N methods, e.g. the polar format
algorithm. Experimental results demonstrate the effectiveness
of iterative methods using a publicly available SAR dataset.
Matlab/C code implementations of the fast (re/back)-projection
algorithms used in this paper have been made available.

I. INTRODUCTION

The data acquisition in a Synthetic Aperture Radar (SAR)
system, with some widely accepted assumptions: free space
propagation, scalar wavefields, static targets and single bounce
scattering of reflectors, can be modelled as a linear system.
The discretisation of this linear system is

y=20f +n, (1

Where f is the SAR image (represented as a vector), @ is
the system’s observation matrix, y is the acquired data (phase
history) and n is a noise term which models additive noise
sources in the system.

Traditional image formation involves approximating the
pseudo inverse ®f, using the observation matrix adjoint ¥,
This leads to the filtered adjoint reconstruction which applies
a linear filter to the adjoint to make it a close approximation
of ®f. The filtered adjoint reconstructs good quality images
when the phase history is densely sampled. However, if there
is missing data or the image is irregularly sampled the visual
quality of the reconstruction can deteriorate.

Rather than using a filtered adjoint reconstruction to approx-
imate ®1, iterative algorithms can compute ®' by solving the
minimum of the least squares (LS)

f = argmin |y — ®f|3, )
i

Iterative algorithms using a conjugate gradient give accurate
approximations of ®! with a small number of iterations, e.g.
LSMR [1]. The computational burden of these algorithms is
dominated by a single application of ® and ® per itera-
tion. Iterative based reconstruction is thus not unreasonable,
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provided fast implementations of ® and ®F are available.
For uniform and densely sampled phase history data, iterative
methods only provide minor visual image improvement. How-
ever, in a variety of situations it is desirable to produce images
from only partial phase history data. Missing data scenarios
that can potentially occur in practice include: interruptions
along the synthetic appeture, missing frequency bands in the
transmitted chirp and strategic under-sampling.

In the missing data scenario equation (2) is ill-posed,
therefore regularisation is required to define a unique solution.
Regularisation can be added as a penalty to the LS problem
as in

f = argmin|ly — ®f|3 + AL(f), 3)
f

Where A is a penalty scalar and L is a penalty function.
Typical examples of L are £, norms, L(f) = [|f|b. p < 1
has previously been considered for SAR in the context of
superresolution [2], [3] and more recently for processing
partial SAR data [4], [5]. Other penalty functions such as
total variation norms have also been considered for speckle
reduction [2]. The use of ¢, norms has recently received
considerable attention in the context of the emerging field of
compressed sensing (CS) [6], [7] which theoretically justifies
their use (especially in the case p = 1) when the SAR image
is compressible.

Accurate implementations of ® and ® are commonly re-
ferred to as the re-projection algorithm and the back-projection
algorithm respectively. Both implementations have a complex-
ity of O (N?), when considering N x N samples in the phase
history and the reconstructed image. In practice a reduced
complexity O (N 2log N ) implementation of ® and ® is
commonly used called the Polar Format Algorithm (PFA). The
PFA can be implemented very efficiently using nonuniform
FFT algorithms [8]. The PFA requires assumptions of con-
stant terrain elevation and flat wavefronts (far-field scenario)
which are not required in the (re/back)-projection algorithms.
Using techniques from the tomography literature it has been
shown that the (re/back)-projection algorithms can also be
implemented in O (N 2log N ) operations without the approx-
imations of the PFA [9], [10]. Also, more recently another
approach has been shown to provide similar speedup with
additional theoretical guarantees regarding the quality of the
reconstruction [11]. While still being slower than the PFA,
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these fast algorithms make it possible to use more accurate
® and ® in practice resulting in: enhanced image quality
and the ability to reconstruct images on non-flat terrain using
Digital Elevation Maps (DEM).

II. SYNTHETIC APERTURE RADAR
A. SAR imaging geometry

In mono-static spotlight-mode SAR, a modulated linear
chirp is transmitted and the received signal after it has been
dechirped (mixed with a delayed version of the input signal
and low-pass filtered) is given by equation (4) (ignoring the
Residual Video Phase term) [12].
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Where: wy is the carrier frequency, 2« is the chirp rate, T
is the chirp duration, L is the radius of the spotlighted region,
u is distance in the direction of the transmitted signal with
reference to the spotlighted scene centre, 790 = 2Ry /¢, Ry is
the distance to the spotlighted I scene centre and py(u) is the
sum of scene reflectivities f(X) at a distance Ry + u from
the antenna and is given by

po(u) = /S 51X — Rlla — (Ro + ) - F(X)aS, ()

N

Where: X = (x,y, 2(z, y))_}ls a point on the scene surface,
0 is the Dirac function and Xy is the antenna’s position for
each chirp.
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Fig. 1. Data acquisition geometry for spotlight-mode SAR given by
equation (4). The red line shows the intersection of the wavefront and the
scene surface at a distance Rg + u from the antenna. The integral along this
line is given by equation (5)
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The received signal for each chirp, given by equation (4),
is the spatial Fourier transform of the projected scene reflec-
tivities. The discretisation of this equation is the observation
matrix P.

In equation (5), the altitude of each point of the scene
z(x,y) is assumed to be known. This implies that a precise
elevation map of the target area is required to implement
® accurately. Such a precise elevation map is generally not
known and only a coarse scale elevation map may be available.
In its absence, it is common to assume flat terrain. However, if
the scene is not suitably flat, distortion effects and defocussing
can results in loss of image resolution [10].

B. SAR image model

In a typical SAR image, most pixels are the result of random
sub-pixel interference and a small number are the result of
constructive interference. It is therefore convenient to split the
image into two parts

f:fs+fbga (6)

With f, corresponding to the few very bright pixels, result-
ing from constructive interference, and f;, to the lower re-
flectivity “background” pixels contaminated by speckle noise,
resulting from random interference.

The background pixels contains multiplicative speckle noise
and can be modelled as nonstationary complex Gaussian white
noise with very high entropy and very low compressibility.
This property prevents fy, from being modelled as sparse in
any dictionary. Thus precluding the use of CS ideas to recover
the full SAR image from an incomplete phase history.

However, the very bright pixels are clearly sparse in the
image domain and their values are typically much larger than
the values in fp,. To recover just fs, fy, can be treated as
noise with a reasonable signal to noise ratio. This suggests
that it is possible to use CS to recover f,, even from a very
incomplete phase history.

III. ITERATIVE IMAGE FORMATION
A. Fast (Re/Back)-projection

The assumption of constant terrain elevation and flat wave-
fronts is not always valid. If not modeled, spherical wavefronts
and topographical variations of the scene’s surface can cause
blurring and relative distance between objects in the image to
be become inaccurate. These effects could also potentially re-
duce the sparsity of the very bright pixels and thus deteriorate
the preformance of CS based reconstructions. Using (re/back)-
projection, spherical wavefronts and topographical information
in the form of a DEM can be modeled with no additional
computational cost.

There has been a number of proposed algorithms for re-
ducing the computational complexity of (re/back)-projection
algorithms to O (N?log, N) in the last decade. These fast
algorithms reduce complexity by exploiting redundancy in &
and 7, e.g. [13] and [9]. In our framework we have used
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the latter algorithm which exploits the redundancy through a
divide and conquer approach.

Range and cross-range sampling periods are linearly pro-
portional to the scene size for constant range and cross-
range resolutions [14]. This property lends itself to a divide
and conquer strategy where the original scene is recursively
split into smaller sub-scenes in a quadtree structure. For
simplicity, we will describe the fast re-projection algorithm,
the implementation of the fast back-projection is similarly
straightforward.

Using the quadtree structure, standard re-projection is per-
formed on all of the small sub-images at their required
sampling rate, which is much less than that of the full scene.
The phase histories can then be recursively combined up
the quadtree, using low-pass upsampling, to produce a single
phase history for the whole scene. The approximation errors
due to the low-pass upsampling can be managed by choosing
appropriate filter lengths. If the original scene is split into sub-
scenes of just one sample, the computational complexity of the
algorithm becomes O (N 2logy, N )

Critically, the fast (re/back)-projection algorithms approach
the same complexity as other fast methods without being
compromised by the same geometric assumptions. The im-
plementation of the fast re-projection algorithm used in our
framework combines four phase-histories at each stage of the
recursion with the following steps:

1) 2D low-pass upsample the sub-scene phase histories by a

factor of two in range and cross-range using fast filtering
in the Fourier domain N

2) modify the upsampled phase_hjstories’ scene centres X’

to a combined scene center X, by multiplyi& the phase

histories by exp{ — 2 (wo+20(t — ) (| X — X2 —

—
[ Xe — Xo[2)

3) sum sets of four upsampled phase histories

In a practical implementations the recursion will not con-
tinue down to the single pixel stage. This is because the
computational requirements of upsampling the phase histories
when the sub-scenes are small becomes more computationally
expensive than the two times speed up achieved at each stage
of recursion.

In our implementation of the fast (re/back)-projection algo-
rithms the recursive (up/down)-sampling stages of the algo-
rithms were implemented in Matlab code. For the standard
(re/back)-projection a C code implementation was used. In
our fast algorithms we used log, N — 6 levels of recursion.
It was found that for higher levels of recursion, computation
times started to increase. If the recursive (up/down)-sampling
stage was also implemented in C code, reduced computation
times would be expected for higher levels of recursion. The
implementations of the standard and fast (re/back)-projection
algorithms are available [15].

To demonstrate the compuational advantages of fast back-
projection, Table I shows image formation times for N x [N
scenes and phase histories using: standard back-projection
(BP), fast back-projection (Fast BP) and a non-uniform FFT
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implementation of the PFA (written in C code).

Figure 2 shows a reconstructed image using the fast back-
projection algorithm from 4° of the Gotcha data set [16].
The Gotcha data set is a publicly available collection of
phase histories of a 100m x 100m scene containing both
coherent and non-coherent reflectors. Images reconstructed
using standard back-projection and fast back-projection are
virtually indistinguishable.

TABLE I
IMAGE FORMATION TIMES (SECONDS)

N BP Fast BP  PFA
256 2.50 1.06 0.11
512 20.01 5.08 0.60
1024 | 157.32 24.87 5.55
2048 | 125448  118.69 38.19

-50 —-40 -30 -20 -10 0 10 20 30 40 50

Fig. 2. Fast back-projection reconstruction using 4° of the Gotcha data set.

B. Compressed Sensing SAR

CS theory states that a compressible signal can be well
approximated from a significantly reduced number of samples
compared to that which is required by the Nyquist-Shannon
sampling theorem.

An under-sampled linear system ® is under-determined
and from a traditional sampling perspective its inverse is ill-
posed. However, if the vector to be recovered f is known
to be approximately sparse under certain conditions it can be
accurately approximated by solving the non-linear program (7)
[17].

f = arg min||f]|; subject to ||y — ®f]| < e, (7)

f
Where, ¢ is a small constant which allows for additive noise.
For the noiseless case, i.e. € = 0, it has been shown in
[18] that by using the partial Fourier matrix for ®, equation
(7) becomes equivalent to the sparse reconstruction problem
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with high probability. The partial Fourier matrix is a random
m row subset of the n x n discrete Fourier matrix. The &
matrix in randomly under-sampled SAR (the under-sampled
re-projection matrix), through the Fourier slice theorem, is
analogous to the partial Fourier matrix. The reconstruction of
the very bright pixels fs in a SAR image lends itself to the CS-
framework because the features we are trying to reconstruct
are sparse.

Using the CS framework, fs can be reconstructed by
equation (8).

fs = arg min ly — @13 + Al fll1, (8)
f

Where A is a constant which controls the level of sparsity
in the reconstructed image. Fast iterative algorithms exist for
equation (8), e.g. GPSR [19]. Like the standard LS algorithms,
the computational burden is dominated by a single application
of ® and ® at each iteration. Equation (8) has also been used
for fully-sampled data in the context of superresolution [2], [3]
due to its sharpening effect on the very bright pixels.

Since sparsity does not benefit the reconstruction of the
background, we have to consider using non-sparsity based
techniques. A simple way to make the inversion well-posed is
to use an {5 regularisation function. f;, can then reconstructed
by

Jog = arg min lyr = @F1I5 + All fll2, )
f

Where, y, = y — ®f, is the phase history with the very
bright pixels removed. For the optimal A this problem is
equivalent to the pseudo inverse. The pseudo inverse amounts
to assuming that the missing data are zeros, so the recon-
structed fp, still suffers from poor contrast and high speckle.
However, The background pixels in the combined image f
have improved image quality when compared to the standard
reconstruction methods. This is because in standard methods,
the energy from the very bright pixels is spread over the entire
image, dominating the low energy background pixels.

Figure 4 demonstrates the visual improvement provided by
the mixed ¢; and /5 regularised LS reconstruction when com-
pared to the filtered back-projection reconstruction. Figures
4(a), 4(c) and 4(e) show filtered back-projection reconstruc-
tions, with 75%, 50% and 25% of the full phase history data.
Figures 4(b), 4(d) and 4(f) show mixed ¢; and ¢ regularised
LS reconstructions of f using 10 iterations of GPSR for f, and
10 iterations of LSMR for fy4, with 75%, 50% and 25% of the
full phase history data. As expected, the visual improvement
in fs, achieved by using a mixed ¢; and ¢y regularised LS
reconstruction, is substantial. Reasonable reconstructions of f
are possible, even in a heavily under-sampled scenario. While,
the visual improvement in f;, is more modest. fp, degrades
significantly as the level of under-sampling increases.

C. Auto-focus

An error 7. in the scene centre round trip propagation
delay estimate introduces an unknown phase error for each
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projection. Phase errors can degrade and produce distortions
in the reconstructed image. [20]. The phase error for a given
T 1S given by

P (t) = exp{ — Jj(woTe + on‘f) — j2a(t — 7'0)}7 (10)

The phase error consists of a constant phase error —w,7, —
at? and a linear phase error —2a(t — 7,). The linear phase
term produces a radial shift of 7.¢/2 in the range compressed
phase history. If a SAR system’s timing uncertainty is much
less than the reciprocal of the chirp bandwidth 7. < 1/B, the
linear phase term can be ignored [20].

Considering just the constant unknown phase error, classical
auto-focus methods, such as the Phase Gradient Autofocus
(PGA) method [21], indirectly use sparsity to correct phase
errors. Using an iterative framework, sparsity can be directly
used to correct phase errors by adding them into the recon-
struction formulation, as in the following equation

(6, f,) = arg min [y — W(S)®F]3 + A1,

iy arn

Where, ¢ € [—m,7|™ is a vector containing the estimated
phase errors and W is a diagonal matrix containing the ele-
ments e/?. Equation 11 aims to concurrently solve the sparse
image formation problem and the auto-focus problem. In [22]
a very similar approach is demonstrated on fully-sampled
synthetic data and images that contain only very bright pixels.

Figure 3(a) and 3(b) shows reconstructions of the same
50% sub-sampled phase history with random phase errors.
Figure 3(a) was reconstructed using the mixed ¢; and /¢
regularised LS reconstruction without auto-focus. While, fig-
ure 3(b) was reconstructed using the mixed ¢; and ¢y regu-
larised LS reconstruction with auto-focus.

IV. CONCLUSION

In this paper we have demonstrated iterative SAR image for-
mation, utilising fast (re/back)-projection algorithms. Accurate
iterative reconstructions can be achieved in a small number
of iterations, making these type of reconstruction methods
not computationally unrealistic. Recent interest in parallel
implementations of fast (re/back)-projection algorithms will
further increase their feasibility [23]. Iterative reconstructions
from under-sampled data showed visual improvements when
compared to standard methods. The very bright pixels were
recoverable even from heavily under-sampled data. However,
background pixel reconstruction from under-sampled data was
limited. In some imaging scenarios, iterative SAR image
formation utilising fast (re/back)-projection algorithms could
be used to provide improved image reconstructions.
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Fig. 3.

()

Image formation using 4° of the Gotcha data set with phase errors.

(a) Mixed ¢;1 and /2 regularised LS without auto-focus. (b) Mixed ¢1 and {2
regularised LS reconstruction with auto-focus.
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Fig. 4. Image formation using 4° of the Gotcha data set with the phase history uniform randomly under-sampled in cross-range. (a) filtered back-projection
reconstruction (75% of full data). (b) mixed ¢; and o regularised LS reconstruction (75% of full data). (c) filtered back-projection reconstruction (50% of
full data). (d) mixed ¢; and ¢2 regularised LS reconstruction (50% of full data). (e) filtered back-projection reconstruction (25% of full data). (f) mixed ¢1
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