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ABSTRACT
Novelty detection is a crucial task in the development of au-
tonomous vision systems. It aims at detecting if samples do
not conform with the learnt models. In this paper, we con-
sider the problem of detecting novelty in object recognition
problems in which the set of object classes are grouped to
form a semantic hierarchy. We follow the idea that, within a
semantic hierarchy, novel samples can be defined as samples
whose categorization at a specific level contrasts with the
categorization at a more general level. This measure indi-
cates if a sample is novel and, in that case, if it is likely to
belong to a novel broad category or to a novel sub-category.
We present an evaluation of this approach on two hierar-
chical subsets of the Caltech256 objects dataset and on the
SUN scenes dataset, with di↵erent classification schemes.
We obtain an improvement over Weinshall et al. and show
that it is possible to bypass their normalisation heuristic.
We demonstrate that this approach achieves good novelty
detection rates as far as the conceptual taxonomy is con-
gruent with the visual hierarchy, but tends to fail if this
assumption is not satisfied.

Keywords
Novelty detection, Hierarchical classification, SVMs, One
Class SVMs.
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1. INTRODUCTION
Content-based image retrieval systems must not only be

able to compare pairs of images e�ciently, but also identify
cues from the query images, such as their semantic attributes
or categories [Douze et al., 2011, Wang et al., 2012]. There
has been a significant advance in image categorisation meth-
ods: they currently report impressive results on large and
realistic data sets [Vedaldi and Zisserman, 2012, Duchenne
et al., 2011, Chatfield et al., 2011, Everingham et al., 2010].
However, they rely on a pre-defined set of classes that are
learnt during training in order to identify attributes and
categories. In real life big data problems, one cannot expect
that labels are available for all possible classes during train-
ing. The ability to automatically detect and model novel
classes is crucial for scalability of these methods. Such abil-
ity is not present in current image retrieval systems. We
therefore aim to learn fine grained classifiers that are able
to detect a novel object category from a single sample.

Humans can generalize concepts from known objects, and
new experiences are compared with and di↵erentiated from
the seen instances in an existing categorisation framework
[Eysenck and Keane, 2005]. In other words, with a sin-
gle or a few examples, we are able to process a new sam-
ple and infer if it belongs to a novel category [Biederman,
1987], whereas machine learning algorithms usually need a
large set of training samples to learn a classification model.
Inspired by human perceptual and reasoning abilities, and
considering that training instances could not be given for
new classes of objects, we aim to solve the first aspect of the
model updating problem: the detection of novel categories.

Assuming that object categories form a semantic hierar-
chy where similar categories share the same parent node, we
aim at developing techniques that distinguish instances of
categories placed outside the current taxonomy, e.g. that cre-
ate a new internal node in the taxonomy tree, or correspond
to unseen objects. The particular focus is on detecting sub-
categories that belong to a known super-category but were
not specialised during training, i.e. classes that originate a
new leaf in the tree. In this paper, we investigate di↵erent
classifier architectures and their associated mechanisms for
novel class detection.

Our investigations build up from the method proposed in
[Weinshall et al., 2012] and use a hierarchy of classifiers. An
incongruence detection method measures disagreement be-



tween classifier outputs at di↵erent levels of the hierarchy.
Additionally, we propose two alternative methods. The first
is based on a flat classifier structure where every concept
or its subgroup is considered as a separate class, and nov-
elty is flagged when none of the classifiers detect a positive
stimulus. The second is a hybrid between the hierarchical
method and the flat method. It uses a general classifier that
reduce the number of candidate subclasses and, at the spe-
cific level, the novel subclass detectors are based on the flat
classification structure. We also evaluate structures that use
one-class classifiers.

We initially confine the investigation to a group of con-
cepts studied in [Weinshall et al., 2012], which contains im-
ages of di↵erent types of motorbikes, and demonstrate the
feasibility of the methods and the relative advantages of the
classifier architectures investigated here. While the hierar-
chical structure using an incongruence measure o↵ers better
computational e�ciency and a better understanding of nu-
ances of novelty, the flat structure exhibits a slightly better
detection performance. Most importantly, the results ob-
tained for an extension of the experiments to a larger tax-
onomy of objects show that the hierarchical approach breaks
down when the semantic object categorisation does not map
onto a corresponding visual similarity hierarchy. Even if
the hybrid approach we introduced leads to a significant im-
provement in the recognition rate of unknown subcategories,
the results suggest that the incongruence-based method ad-
vocated in [Weinshall et al., 2012] should be used mainly for
taxonomies of concepts closely coupled with the taxonomy
of visual appearance. Such taxonomies could be created e.g.
by visual appearance clustering.

The rest of the paper is organised as follows. The next
section provides a brief review of the related literature. Sec-
tion 3 defines the problem and describes the classification
schemes used in this paper. Section 4 further details the
experimental set up and the datasets that we used. Finally
Section 5 shows all the experiments we have conducted and
analyses the results obtained. The paper then concludes in
Section 6.

2. RELATED WORK
Recently, there has been an increased interest in nov-

elty detection, i.e., the ability to detect if new data is of
a type (class, model or domain) that has not been seen dur-
ing training. In [Markou and Singh, 2003a, Markou and
Singh, 2003b], comprehensive surveys are o↵ered on novelty
detection with the main distinction being made between sta-
tistically based approaches and neural network approaches.
The reviews also identify various application domains where
novelty detection is important. In Computer Vision, novelty
detection has recently been approached by [Lampert et al.,
2009] and [Weinshall et al., 2012], among others. [Lam-
pert et al., 2009] focuses on detecting unseen categories of
objects by using attributes. In order to make predictions
about classes with no training data, they learn a representa-
tion that goes beyond the class boundaries merging images
of the object classes that are characterized by the same at-
tribute. Our approach shares the idea that the knowledge
about unseen classes should come to related known classes
but we assume that this expertise comes from the global
representation of the images, and not from a disjoint set of
attributes.

On the other hand, [Weinshall et al., 2012] demonstrate

how in a hierarchically organised object class taxonomy, nov-
elty can be identified in terms of disagreement between two
classifiers making decisions at di↵erent levels of the hierar-
chy. In particular, a novel object is defined as an input whose
probability of belonging to a parent class (general concept) is
high but at the same time the probability of membership in
any known specific (child) class is low. Despite demonstrat-
ing how this framework can be applied to several domains,
ranging from detecting novel classes of visual and audio ob-
jects, through out-of-vocabulary word detection, to detect-
ing novel patterns of motion, the experiments presented are
at proof of concept level.

A broader notion of novelty is anomaly [Chandola et al.,
2009], which refers to the problem of finding patterns in
data that do not conform to expected behaviour. [Kittler
et al., 2014] proposed a taxonomy of anomalies, that include
outlier detection, novel class detection and domain change
detection. A direct solution to the problem of detecting
anomalies is to determine a region in the observation space
representing the normal behaviour and classify any object
that lies outside this area as an outlier or anomaly. Many
approaches propose to identify anomalies using generative
methods in a statistical framework [Almajai et al., 2012,
Deng et al., 2012, Rodner et al., 2011, Pauwels and Am-
bekar, 2011]. Although such solutions might be appealing
in low dimensional spaces, the problem is very challenging
in other (more common) situations.

The problem of novelty detection and modelling new classes
also relates to that of zero shot learning, which refers to the
ability to recognise classes that were not seen during train-
ing, see [Rohrbach et al., 2011] and references therein. Our
work can be viewed as an extension of the concept of zero
shot learning to a taxonomy of di↵erent categories. While
zero shot learning aims at modelling a new class, our ap-
proach has the ability to (i) first of all, identify if the novel
sample belongs to a novel (sub-)class and (ii) define the lo-
cation of this novel (sub-)class with respect to a known tax-
onomy, i.e., it indicates how to modify a class hierarchy to
accommodate for this new (sub-)class.

3. METHODOLOGY
Starting from the assumption that an object from an un-

known class belongs to a sibling class of known categories,
[Weinshall et al., 2012] define the incongruent or novel event
in relation to partial order on a set of classes. The partial
order can be represented by a directed graph and subset-
superset relations in the graph can be modelled as conjunc-
tive and disjunctive hierarchies. More precisely a conjunc-
tive hierarchy models part-of membership, e.g. head, legs
and tail combine to form a dog and can be considered as
more general concept than the dog. A disjunctive hierarchy
models class membership, where an object can be defined
at di↵erent levels of generality, e.g. Beagle and Collie are
specific concepts of dog. In this paper, we explore disjunc-
tive hierarchies for object classification, where semantically
related subcategories of images share the same parent node.

3.1 Problem definition
Following section 3.1 of [Weinshall et al., 2012], we define

a general concept G as a superset of more specific concepts
{Si}. However, the union of all the known specific concepts
does not form the complete set that comprises all concepts,
i.e., [i{Si} ⇢ G (rather than [i{Si} = G). We also as-



sume that during training, samples are given from the set of
known subcategories [i{Si} and also from a small set of a
background class that does not belong to G.

As illustrated in Fig. 1, the input space of the algorithm is
therefore defined by the union of the disjoint sets Si, while
the output space is represented by the three possible clas-
sification results Known, Unknown, Background. In details:

S1
U

G
S2

unknown

background

unseen

(a) Sets diagram.
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(b) Classification flowchart.

Figure 1: Class types shown in a sets diagram (a)
and a flowchart that summarises the incongruence
detection method for disjunctive hierarchies, pro-
posed in [Weinshall et al., 2012].

• Known: samples that belong to the set of subcategories
[i{Si} that are known from the training set.

• Unknown: samples that belong to G \[i{Si}, i.e., they
are from a known general category but do not belong
to any of the subcategories that were known during
training.

• Background: samples that are rejected by the general
level classifier, i.e., they do not belong to the general
concept G and are detected because the general classi-
fier used background samples at training (they belong
to U \ G).

Background samples are collected using images that clearly
do not belong to the known general class, such as back-
ground regions of images or textures. They certainly do not
cover the infinite set of possible object classes that do not
belong to the known general category G. Therefore, further
to testing with a test split of the Background set we also test
with another set of samples collected from other foreground
object classes that do not belong to G. This set is labelled
as the Unseen set, as it is not similar to any object cate-
gory seen at training. Therefore, even though the method
produces 3 types of labels (Known, Unknown subcategory
and Background), the test set samples have four types of
labels (the above plus Unseen). Following [Weinshall et al.,
2012], we consider that if Unseen samples are classified as
Background, the method has succeeded.

3.2 Classification schemes

3.2.1 Incongruence detection on disjunctive hierar-
chies with binary SVMs (B-SVMs)

Weinshall et al. proposed to identify novel classes or sub-
classes of images using the incongruence between classifiers
at di↵erent levels of a hierarchy. Let MG be the model learnt
on a general concept using samples from [i{Si} and M

S

i

the models learnt on specific concepts or subcategories. The
detection of a novel category is based on the disagreement
between the predictions of the di↵erent models. In other
words, a sample is identified as novel when is accepted by
M

G , but rejected by all MS

i . Conversely, a sample belong-
ing to one of the known categories is accepted both by M

G

and one of MS

i , as illustrated in Figure 1(b).
At the specific level, a decision score Vi(x) is obtained for

each sample x and for each learnt model MS

i . The binary-
SVMs method (B-SVMs) uses SVMs for classification at all
levels in a one-against-all scheme. Since SVMs are discrim-
inative, [Weinshall et al., 2012] propose to whiten the clas-
sification scores as follows:

Si(x) =
Vi(x)� V

w
i

V

c
i � V

w
i

, (1)

where V

c
i is the average confidence of train or validation

examples classified correctly using M

S

i and V

w
i is the same

for examples classified wrongly using M

S

i .
Weinshall et al. rely on the assumption that sibling classes

semantically grouped in the same super class also have sim-
ilar feature vectors. This theory is generally accepted and
exploited in hierarchical image classification methods, and
can also be exploited in the context of novelty detection for
classes that were not seen during training. Later in this
paper, we will demonstrate that this assumption is not suf-
ficient when a wider taxonomy of images is considered and
the visual hierarchy is not trivial.

3.2.2 One-class SVMs (OC-SVMs)
We propose to use the same architecture as Sec. 3.2.1

(Fig. 1(b)), but replacing binary SVMs by OC-SVMs. OC-
SVMs [Schölkopf et al., 2001] are usually exploited in the
context of outlier detection when only positive training sam-
ples are given. They aim to find the hypersphere that best
encloses the training data, di↵erently from common binary
SVMs that try to find the hyperplane that best separates
two training classes, i.e., they are designed for outlier detec-
tion. By setting the parameter ⌫, OC-SVMs can be properly
tuned to recognise a fraction of the training samples as out-
lier and allow for errors and uncertainty in the training set,
so there is no need to use (1) to normalise the scores. Simi-
lar to common binary SVMs, OC-SVMs can be used in their
dual formulation.

3.2.3 B/OC-SVMs
We also evaluated a hybrid combination of binary and one-

class SVMs in which a binary SVM was used as the general
classifier for G and OC-SVMs are used as specific subcate-
gory classifiers for Si. The motivation for this combination
is that both positive and negative training samples are given
at the general level (i.e. G and Background samples), but for
each of the specific level classifiers, only positive samples are
given for training (Si). Unknown samples are not given.

3.2.4 Flat model
In contrast to the previous approaches, the class hierarchy

is not explored by this method. Instead, it treats the novel
subclass as a category of objects that di↵ers from all the



known subclasses and the background class. In a problem
with N subcategories (regardless of the number of super-
categories), a set of N + 1 one-vs-all binary SVM classifiers
is trained: one for each known subcategory and one for the
background class. A new object is classified as novel if it is
rejected by all the N +1 classifiers. Having N subcategories
plus the background category makes the normalisation in
(1) unnecessary.

3.2.5 B-SVMs/Flat model
This configuration of classifiers combines B-SVMs and

Flat models. The model M

G is learnt on a general con-
cept in the same way as Sec. 3.2.1, using samples from
[i{Si}. The specific models MSi are learnt using instances
from Sî as positive samples and, for the negative class, all
the subcategories Si,i 6=î [ Sj and the background category,
i.e. samples from all the N subcategories that di↵er from the
current one, as explained in Fig. 2(b). This is in contrast
to the configuration of 3.2.1, where only samples from Si,i 6=î

were used as negative training instances, Fig. 2(a).
The aim of this scheme is to benefit from the advantages

of the hierarchical configuration, which reduces the number
of candidate subclasses to evaluate for each sample, and to
benefit from the classification performance of the Flat struc-
ture, which is able to learn a better decision boundary.

4. EXPERIMENTAL SET UP

4.1 Image Representation
In order to build a vectorial representation x of each im-

age, we used a method that has proven to be state-of-the-art
in the benchmark presented in [Chatfield et al., 2011]. Im-
ages are represented using Pyramid Histograms Of visual
Words (PHOW – based on [Lazebnik et al., 2006]), encoded
with Fisher Vectors [Perronnin and Dance, 2007, Perronnin
et al., 2010]. More specifically, SIFT descriptors are com-
puted on a dense grid at four di↵erent scales defined by
setting the width of the spatial bins of SIFT to 4, 6, 8 and
10 pixels. PCA is performed on the obtained local features
and the dimensionality is reduced to 80 components.

Fisher Vectors (FV) are built by concatenating Gaussian
gradient vectors x = [· · · ,FF

µ,i,FF
�,i, · · · ] w.r.t. mean µi and

standard deviation �i (the variables are assumed indepen-
dent), for each Gaussian i in a GMM that models all training
features f , where

FF
µ,i =

1
T

p
!i

TX

t=1

�t(i)

✓
f t � µi

�i

◆
(2)

and

FF
�,i =

1

T

p
2!i

TX

t=1

�t(i)


(f t � µi)

2

�

2
i

� 1

�
(3)

where �t(i) represents the soft assignment of the descriptor
of patch f t to the Gaussian i and F is the set of T descriptors
f i of an image region.

This is done in each region of the spatial pyramid, which
was set up combining regions in this configuration: 1 ⇥ 1,
2 ⇥ 2 and 3 ⇥ 1 and the FVs of each of these regions are
concatenated for each image. This results in a vectorial
representation x of D = M ⇥ 2G ⇥ R dimensions per im-
age, where M = 80 is the local feature dimensionality (after

PCA), G = 256 is number of Gaussians in the mixture and
R = 8 is the number of pyramid regions.

For the above, we used the implementation publicly avail-
able in the VLFeat toolbox [Vedaldi and Fulkerson, 2008].

4.2 Kernels
In all the experiments we used the Hellinger (or Bhat-

tacharyya) kernel, which is an additive kernel. [Vedaldi and
Zisserman, 2012] state how additive kernels usually yield
classification results similar to non-linear kernels while be-
ing at the same time e�cient to compute. Additive kernels
are in the form K(x,y) =

PD
i=1 k(xi, yi) where k is itself a

kernel (and x,y 2 RD). In particular the Hellinger kernel
can be computed for non-negative vectors as k(x, y) =

p
xy.

This can be easily extended to arbitrary vectors: k0(x, y) =
sign(xy)k(|x|, |y|). The interesting advantage of these ker-
nels is to allow to perform an explicit embedding of the data
and then learn a linear classifier in the new space. For ex-
ample for the Hellinger kernel we can define a feature map
as '(xi) =

p
xi and then

K(x,y) = h'(x),'(y)i =
DX

i=1

p
xi
p
yi =

DX

i=1

p
xiyi. (4)

4.3 Datasets

Caltech256 - Motorbikes.
The first evaluation setting is based on a small sub-hierarchy

of the Caltech256 dataset [Gri�n et al., 2007], which was
used in the novelty detection experiments of [Weinshall et al.,
2012]. The category Motorbikes is chosen as the general con-
cept and the hierarchy is represented by the three more spe-
cific subclasses: Cross, Road and Sport. Finally the Clutter
class images are used as negative examples for the general
level classifier and twenty two object classes (di↵erent from
Motorbikes) are sampled to serve as Unseen objects. Fig. 3
shows the structure of the taxonomy.

Objects 

Motorbikes 

Cross Sport Road 

Background 

Figure 3: Samples of the Caltech256 - Motorbikes
dataset in the taxonomy of [Weinshall et al., 2012].
For information about the copyright of the images shown

in the panels, please contact the authors of [Gri�n et al.,

2007].

Caltech256 - Transportation.
In addition, we evaluate a more extensive hierarchy of im-

ages using the transportation hierarchy in Caltech256, and
specifically Air and Ground transportation, Fig. 4(a). These
two super-categories are respectively divided in Blimps, Fighter
Jets, Helicopters, Airplanes and Fire Trucks, Motorbikes,
Car Sides, School Bus. As in the Motorbikes dataset, the
Clutter category is used as negative class at the general level
and a set of samples of twenty-two di↵erent classes are used
as Unseen samples.
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(a) B-SVMs classification scheme

Object 
 classes 

General  
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A1 A2 A3 B1 B2 B3 

Specific  
classifiers 

Bgk 

(b) B-SVMs/Flat classification scheme

Figure 2: The B-SVMs and B-SVMs/FLAT schemes. Object classes belonging to the same general category
are grouped in gray boxes. Connections from classifier to categories with continuous lines indicate that the
object category is used to provide positive training samples, connections with dotted lines indicate negative
training samples.

SUN397.
In order to further evaluate the proposed framework we

used a subset of the SUN397 Scene Categorization dataset
[Xiao et al., 2010]. This dataset has a hierarchical division of
the scenes in Indoor, Outdoor natural, Outdoor man-made,
Fig. 4(b). We sampled four more specific classes for each one
of the three super-categories. Specifically Indoor scenes are
divided in Cathedral, Classroom, Library and Stage; Outdoor
natural scenes are divided in Hill, Islet, Skislope and Snow-
field and finally Outdoor man-made are divided in Chalet,
Train railway, Runway and Windfarm. Di↵erently from Cal-
tech256, this dataset does not contain a category that can be
used as negative example for the general level classifier, e.g.
the Clutter category. For this reason, and because the cho-
sen taxonomy covers all the three super categories of which
the dataset is composed, we decided to focus only on the
detection on Novel subcategories disregarding the Unseen
classes.

airplanes blimps helicopters fighter-jet 

car-sides motorbikes fire-trucks school-bus 
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(a) Caltech 256 - Transportation.
For information about the copyright of these images,

please contact the authors of [Gri�n et al., 2007].
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(b) SUN.
For information about the copyright of these images,

please contact the authors of [Xiao et al., 2010].

Figure 4: Sample images of the taxonomies from
Caltech256-Transportation and SUN.

5. RESULTS
Using the two datasets explained in Sec. 4.3 the experi-

ments were repeated with a leave-one-class-out approach on
the subcategories to simulate the novel class. The training
data of the general level classifier consists of the combina-
tion of the known subcategories for positive samples and the
clutter class for negative samples. The specific level classi-
fiers were trained using, as positive samples, objects from
one of the subclasses used to train the general level SVM
and, as negative samples, objects from the other subclasses
depending on the approach used. For each subcategory, 39
images were chosen randomly for training and 20 for testing,
as done in [Weinshall et al., 2012]. The experiments were
repeated 25 times, sampling di↵erent train and test samples.

For classification, we used the open source LibSvm library
with parameters optimised using cross-validation. Table 1
shows the average detection scores obtained on the three
datasets for each classification scheme and compares our re-
sults with those of [Weinshall et al., 2012] on the motorbikes
dataset. For the evaluation of the B-SVMs/Flat model,
since the positive and negative classes were unbalanced, we
used a SVM implementation with weighted cost functions,
i.e. the cost parameters C were set to w+ ⇥C and w

�

⇥C,
with w+ 6= w

�

for positive and negative training samples.

Table 1: Correct detection rates for Known subcate-
gories, Novel subcategories and Unseen classes. The
first row (B-SVMs*) shows results from [Weinshall
et al., 2012] and the remaining rows show our re-
sults.
Data Method Known Subcat. Unseen

M
o
t
o
r
b
i
k
e
s B-SVMs* 0.57 0.71 0.74

B-SVMs 0.73 0.95 0.95

OC-SVMs 0.67 0.49 0.64

B/OC-SVMs 0.71 0.68 0.97

FLAT 0.84 0.86 0.95

Trns. B-SVMs 0.66 0.20 0.40

B-SVMs/FLAT 0.67 0.39 0.62

SUN B-SVMs 0.65 0.46 -

B-SVMs/FLAT 0.68 0.57 -

5.1 Experiments on Caltech256 - Motorbikes
We exploited this hierarchy to evaluate all the classifi-

cation schemes detailed in Sec. 3. As expected, our imple-
mentation of B-SVMs gave significantly better results than



[Weinshall et al., 2012] thanks to the better image represen-
tation we adopted1. This scheme yields good novelty detec-
tion rates, as shown in Fig. 5(a), but has the main drawback
of strongly relying on a threshold on the score values nor-
malized with Eq. (1). In [Weinshall et al., 2012], the authors
fixed this threshold to 0.5. Here we used 0. This threshold
directly controls the number of elements classified as Known
or Unknown: with a value of the threshold near 0 almost all
unknown objects are classified correctly but also a relatively
high percentage of known objects is classified as unknown,
while moving the threshold to 0.5 the e↵ect is the opposite.

DespiteOC-SVMs being theoretically well suited for out-
lier detection, our experiments demonstrate their limita-
tions in this context, where the data points lie in a high
dimensional space. Its detection rate was certainly better
than random for each category (known/unknown/unseen)
but the overall performance is significantly lower than other
approaches, as shown in Fig. 5(b).

Fig. 5(c) shows the average classification rates for the hy-
brid scheme B/OC-SVMs. The performance in this case
was worse than theB-SVMs configuration, but this method
has the advantage of not requiring score normalisation. Fi-
nally Fig. 5(d) shows the results obtained with the Flat
model. It can be observed that these results are similar
to the ones obtained with the B-SVMs scheme. There is
an improvement in the detection rate of the known subcat-
egories, which is relevant when it is preferable to have a
lower number of misclassified known objects. One disadvan-
tage is that this scheme can not be exploited in larger hier-
archies because novel objects can only be identified if they
are rejected by all classifiers. It is therefore unable to de-
tect subclasses belonging to di↵erent super-categories. The
B-SVMs/Flat model has not been evaluated in this set of
experiments because dealing with only one general category
reduces this scheme to the initial B-SVMs approach.

5.2 Experiments on Caltech256 - Transporta-
tion

We explored the possibility of extending this framework
to more complex hierarchies of images using the taxonomy
Caltech 256 - Transportation. Based on the results dis-
cussed in the previous section, we decided to restrict these
experiments to using the B-SVMs scheme, which was the
best performing hierarchical method in the previous exper-
iment. We extended the evaluation to the B-SVMs/Flat
model, to benefit from the Flat model at the specific level of
classification and because the Flat method alone is unable to
deal with multiple super-categories. Noting that the score
normalisation of (1) makes the framework sensitive to the
threshold, we decided not to use that normalisation in these
experiments. In the previous settings with only two known
subcategories, it was necessary to normalise the classifiers
score, otherwise the two specific level SVMs would become
the same classifier with swapped output signals, i.e., trained
on opposite labels. When more than two subcategories are
known, the normalisation of (1) becomes unnecessary (us-
ing the one-against-all setting) and does not produce any
performance improvement.

The best results are obtained with the B-SVMs/Flat
model. The confusion matrices in Fig. 6 show that most
of the known sub-categories were correctly classified. The

1This is evident from Tab. 1 and by comparing Fig. 5(a)
with Fig. 3 of [Weinshall et al., 2012].
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(b) Novel Subcategories: Helicopters - Car Sides

Figure 6: Confusion matrices (in %) obtained on
Caltech 256 with the B-SVMs/Flat scheme by re-
moving these subcategories from the training set
(a) Airplanes and School Bus, (b) Helicopters and
Car Sides. ‘A’ and ’G’ indicates Air and Ground
transportation super-category, respectively. ‘-U’ in-
dicates the unknown subcategory. Note that ‘Un-
seen’ is not a label in the training set and unseen
samples are expected to be classified as background.

roughly block-diagonal structure of the matrices show that
the majority of the samples were classified to the correct
super-category. Most of the unseen samples were correctly
detected as background. On the other hand, most of the
mistakes were either false background detections or false un-
known subcategory detections. The true positive rates for
unknown (novel) subcategory are substantially improved with
respect to the B-SVMs scheme, where the obtained rates
were disappointing, as most of those samples were either
misclassified as other sub-categories or as background. The
gain of nearly 20% is quantified in Table 1. This shows
that the incongruence-based method of [Weinshall et al.,
2012] breaks down when the taxonomy of the concepts is
not strictly related with the visual hierarchy (i.e. the struc-
ture in the feature space), while the approach we proposed
is stronger and yields better results.

5.3 Experiments on SUN 397
We finally evaluated our framework on a taxonomy built

over the SUN397 dataset for scene recognition. Similarly
to the previous experiments we restricted the evaluation to
the B-SVMs and B-SVMs/Flat schemes. Using the tax-
onomy described in Sec. 4.3 we iteratively sampled one of
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Figure 5: Results leaving out one subcategory of motorbikes from the training set (Cross, Road and Sport,
from left to right) for each classification scheme. The x-axis represents the ground truth subcategory type
and the y-axis is detection rate. Blue, yellow and red bars correspond respectively to Known, Unknown,
Background category type detection (see Sec. 3.1).

the four subcategories as Unknown and we used the other
three to train the classifiers. The average results are shown
in Table 1. As already mentioned in Sec. 4.3 in this case we
limited our aim to the detection of novel subcategories with-
out focusing on unseen classes. The detection rate on known
categories is similar to the one obtained for Caltech256 -
Motorbikes taxonomy, while the unknown detection rate is
significantly better than the previous one. Also in this case
the average values demonstrate that the proposed frame-
work, despite the satisfactory results, needs improvements
when the visual hierarchy is not trivial to avoid the misclas-
sification of the novel samples.

6. CONCLUSIONS
We explored methods to detect novel categories and sub-

categories in hierarchies of images using a novelty detection
framework which leverages the incongruence between clas-
sifiers at di↵erent levels of the hierarchy. We evaluated this
framework on three datasets for object and scene classifica-
tion, and using di↵erent classification schemes with Binary
and One-Class SVMs in di↵erent parts of the hierarchy. We
also evaluated a flat classification scheme, which only works

in datasets with a unique super-category. Finally we eval-
uated a hybrid approach between the hierarchical and the
flat. To our surprise, the results showed that binary SVMs
outperform OC-SVMs for novelty detection. The hierarchi-
cal method achieves satisfactory novelty detection rates for
small taxonomies and when the semantic hierarchy matches
the appearance hierarchy of image classes, but breaks down
when these assumptions are not satisfied. The hybrid ap-
proach benefits from the advantages of the flat method at
the specific level and from the reduced number of candi-
date subcategories given by the hierarchical structure. It
lead to our best results on Caltech256-Transportation and
SUN dataset datasets. For future work, we intend to exploit
these methods as staring point to built stronger models of
the novel classes using a semi-supervised learning approach.
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