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Abstract

Generative models trained in an unsupervised
manner encounter the problem of setting high
likelihood and low reconstruction loss to Out-of-
Distribution (OoD) samples. This increases the
Type II errors (false negatives, misses of anoma-
lies) and decreases the Anomaly Detection (AD)
performance. Also, deep generative models for
AD suffer from the rarity of anomalies. To address
these limitations, we propose the new OoD Mini-
mum Anomaly Score GAN (OMASGAN) model.
OMASGAN addresses the rarity of anomalies by
generating strong abnormal samples on the bound-
ary of the support of the data distribution, using
data only from the normal class. OMASGAN im-
proves the AD performance by retraining includ-
ing the abnormal minimum-anomaly-score OoD
samples generated by our negative sampling aug-
mentation methodology. OMASGAN uses any
f-divergence distribution metric in its variational
representation, and explicit likelihood and in* ~t-
ibility are not needed. The proposed modelu . .
discriminator for inference and the eval’ a of
OMASGAN on images using the leavc-o. 't
methodology shows that it achie ~ imprc

ment of at least 0.24 and 0.07 oints AUROC
on average on M ST and ' FA” .10, re* ~ec-
tively, over rece .c . of-the.  ‘enchmr ..

1. Introduction

Anomaly Detection (« ‘n hic’ -aimensional spaces is
challenging e of b ushered in by the use of
generativ~ 1 odels as Generative Adversarial Networks
GAN) ~erforma. «nains a challenge. Models learn
assign h,_  -obabil’ | to the seen data but are not trained
to. ignzero, ' lity to Out-of-Distribution (OoD) sam-
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ples. During inference, they assign non-zero prot .v.
anomalies and this leads to a high number of f~'~~ negative.
(Nalisnick et al., 2019; Kirichenko et al., 2" .v). .ddress
such limitations, we propose " = OoD M imu* Anom-~ly
Score GAN (OMASGAN), . :w bounc oased el
for training GANs for AD. OMAS N use. -~ .rom
the normal class and generatec Cor mples as> auomalies
that are close to the boundar  “the da. tribution having
a minimum anomaly sc~re arc nd the a. OMASGAN
performs retraining b+ ™ding ‘e bouncdry samples, neg-
ative training, and Ay wi.. <\ sampling (Sipple, 2020;
Sinhaetal., 20"  canben. .ted with any GAN, in-
cluding (Sor & Ex  on, 2020) and the f-divergence GAN
(f-GAN) (N o7 .etal.,” 716). Our contributions are:

e :propo. >GAN, a model for AD to perform
+=~*~ing by including the boundary samples created
gy v ve sampling augmentation methodology.

" address the rarity of anomalies, we create abnormal
_ies using data only from the normal class and find
* ¢ minimum-anomaly-score samples on the bound-
ary of the support of the data distribution using any
f-divergence without likelihood and/or invertibility.

e We train a discriminator to separate the data distri-
bution from its complement and evaluate the use of
inference for AD. The evaluation of OMASGAN us-
ing the leave-one-out (LOO) methodology shows that
it achieves state-of-the-art performance in the Area
Under the Receiver Operating Characteristics curve
(AUROC) metric, outperforming recent benchmarks.

2. The Proposed OMASGAN Model

‘We propose an algorithm to address the problem of genera-
tive models setting high likelihood and low reconstruction
loss to OoD samples which leads to Type II errors (false
negatives, misses of anomalies) and decreases the AD per-
formance. Figure 1 presents the flowchart of OMASGAN
which has the following structure: (a) Train a f-divergence
GAN using the data to obtain the implicit generator, G(z).
(b) Train the boundary model, B(z), to find the boundary of
G, where the boundary samples are the generated negative
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Figure 1. Flowchart of the OMASGAN model for AD which generates minimum-anomaly-score Oc”
data distribution and subsequently uses these generated boundary samples to train a discriminative mode ‘o detect .

points and active negative sampling is performed using any
f-divergence in its variational representation to compute the
statistical divergence between the B(z) and G(z) samples.
OMASGAN generates samples corresponding to a gener-
alized notion of the boundary of the support of the data
distribution, which is the set of points such that they ar

OoD and have a minimum anomaly score measured as
f-divergence metric or the Wasserstein distance. We name
these points the OoD Minimum Anomaly Score (OMAS)
samples and incorporate them in the proposed algorithm. (c)
Perform active negative training for AD using the YOMAS
samples and the implicit distributions from (a) an _ ,, and
train the generator G'(z) using a discriminatc  * ). Then,
we train the discriminator J(x) for AD using «c..  ~gative
training, the OMAS samples, B(z), and ~ “-\. Dur, ~fe-

ence, we compute the proposed an’ naly . .re and ¢ _ct

PN

anomalies using J(x) - *the trainn  OM iSGAD mudel.
2.1. The OMASGAN Alc  "m
Our algorithm compri' ; the fo. ~ ‘ng optimization tasks:

Task 1. Distribution i
tolearnthe d~~ - Usn

“ic. We t .. . af-divergence GAN
£~ px, and G(z) ~ py,

argmin~- axp .  AD(x))+E;log(1 —D(G(z))). (1)
Dutput . generat.  .scriminator pair, (G, D). Output
w Adinsub.  at Tas.s: The implicit generator, G(z).

Task Formav .« of the boundary of the data distribu-
tion. Tc erforin active negative sampling, we create and
train the undary model, B(z). Optimization problem:

arc .ng, —m(B(ZQGb)aG(Z))

+ud(B(z;6p),G(z))+V s(B(z;6p),z) @

amples e boundary of the

-nal samples.

where m(B, G) is the distriu. ric from Task 1, i.e. any
f-divergence > .. ‘ational rep_c¢sentation expressed in
terms of the njug- - function, f*(¢), as in (7) in (Nowozin

et~' 2016), v ctrisav iational function taking as input
— ‘e anc  wnine  scalar. The special cases of KL
and, asonarc,  —=exp(t—1)and f*(¢) = 0.25t> +1,
respr The Arst term in (2) is a strictly decreasing

J0n 01 bution metric. This divergence is between
. ~undary samples and the data where m(B(z),G(z)) is
the "+ don metric of choice, such as Jensen-Shannon of
the or .nal GAN, Kullback—Leibler (KL), and Pearson Chi-
Squared of the Least Squares GAN to address saturation,
or the Wasserstein distance to address mode collapse. Our
boundary model does not need probability and invertibility
obviating the rarity and sampling complexity problem by
using a decreasing function of a distribution metric and any
f-divergence to find the boundary of the data distribution.

Generation of the OMAS distribution and the OMAS sam-
ples: OMASGAN computes the minimum-anomaly-score
OoD samples utilizing the loss in (2). It performs automatic
negative data augmentation by eliminating the need for fea-
ture extraction and human intervention, and this strengthens
the applicability of our model. We denote the parameters
of the boundary model by 6 and its samples by B(z;6p).
We use a f-divergence GAN discriminator to compute the
distribution metric, m(B,G). The combination of the first
two terms leads the B samples to the boundary of p,(x). We
compute the boundary with /,-norm distance and dispersion
regularization and we denote the /,-norm distance between
the point B(z) and the set x by d(B(z),x). To capture all
the modes of the data distribution, address mode collapse
(Dionelis et al., 2020; Abbasnejad et al., 2020), and generate



OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary

» Normal
!

Implicit
Generator,
G(2):
f-GAN

dELREESaan
Normal Data

Implicit
Boundary
Generator, B(2):
Active Negative
Sampling

Active Negative
Training with
B(z): OMASGAN

Figure 2. Training of the proposed OMASGAN model using active negative sampling and training by creating strong abnormal sample

OMAS samples, we use a scattering measure for dispersion
and regularization in (2). This scattering measure, s(B(z),z),
and the [,-norm distance, d(B(z),G(z)), are given by

d(B(z),G(z)) = minj=1,.0||B(z) =G(zj)[[  3)

s(B(zi),2;) = 1 i _lzi—zjfla (4)
N-1 j=1, j#i HB(Z,‘) *B(ZJ)HZ

where the batch size is denoted by N and the inference size
by Q. OMASGAN achieves good modeling by finding the
boundary of a model of x rather than of x. In (2), the output
of Task 1, G(z), is used because it has established and set
up a distribution metric in the data space, X. OMASGAN
finds the minimum-anomaly score OoD samples, performs
active sampling of negative examples, and generates strong
and specifically adversarial anomalies that lie close to the
boundary of the data distribution and near high-probabili‘

data samples. The trainable model in Task 2 is the imp..c1.
boundary distribution B(z;6p), and G(z) is non-trainable.

Output of Task 2 used in next Tasks: The boundary, B(z). In
summary, in Task 1, we use a f-divergence GAN for data dis-

tribution generation. In Task 2, OMASGAN perfor ctive
negative sampling and we train an implicitbo 1 ry gener-
ator to form the boundary. In Task 3, OMAS .,.  ~rforms
active negative training with the minim=--anom.  ~ore

OoD boundary samples, and trains ¢ .isc..
classify normal and ab >rmal data

ator,J, 0
sshr »nin Figu.. 2.

Task 3. Active negauve  ™Ming..  -ation~ generated
and real normal from ger " abno.. . for AD. To
address the learning-Or s-sam,  ~roblem of G (Nalisnick

et al., 2019; Kiricher etal., 2 ve perform model
retraining for AD by  ding tt : .egative samples cre-
ated by ourn- e san., entation methodology in
Task 2. OV .ou ‘ntroduccs self-supervision using the
*oundar  mplesi.  Teok 2. We perform retraining by

cludi . “bnorma, z) points. To train G, we use

" log(C(x)) +BE,log(1 - C(G'(2)))

YE,log(1—C(B(2))) + § E,log(C(G(2)))
4)

where 7 z) ~ py lie in X and where C is a discriminator

_omputes distribution metrics and f-divergences, as
in (Zaheer et al., 2020; Asokan & Seelamantula, 2020).

ary ‘g max,

To calculate divergences between distributions, &« -
case between B(z) and (x,G(z)), we use a ~*~~riminatc.
and a weighted sum of f-divergences and pr vab..  .netrics
(Zaheer et al., 2020; Asokar ~ Seelama 1la. ” 420). The
nested optimization in (5) coi. _ .1ses four s and ou’ ats
the learned mappings C: X — R “ere t, ceis
denotedby X,and G’ : & — X v.ae s the 1acnt space.
The trainable models are t+ . wplicit . vator G'(z) and
the discriminator C(x), 7\d Ba 1Garen.  .rainable. The
first and fourth terms ~ ~ ~ mim ax opti..uzation force the
generated samples to the « Rumi-GAN (Asokan &
Seelamantula. ~ The thu.  .a forces the generated
samples awe from .r generated strong anomalies, which
are near the 'or .tboun iy of the data distribution and
2 higy ~babilit~ sata. The discriminative model,
C(x, trainec .ate B(z) from (x,G(z)), while the
impli .+ ~~nerative model, G’, learns the data keeping away
‘ _, the generated abnormal B(z) samples.

O anu

. SGAN computes the optimal points for negative sam-
plin, 7 .sk 2 and performs active negative training using
the br .adary in Task 3. The samples from B(z;6p) are the
closest points to the data from the normal class and optimal
retraining is performed. This leads to improvements with
respect to the state-of-the-art (Zaheer et al., 2020; Pourreza
et al., 2021; Sinha et al., 2021), as discussed in Sections 4-6.
OMASGAN performs automatic negative samples augmen-
tation and retraining for AD by eliminating the need for
feature extraction (aim of deep learning), human interven-
tion, and ad hoc methods because they do not scale, and this
strengthens our model’s applicability and generalization.

Inputs to the algorithm of Task 3: The inputs to the discrim-
inative model, C, are samples from the data space, X, and
the inputs to the generator, G’, are samples from the latent
space, 2. Task 3 Output: The implicit distribution G'(z).

Detection of strong abnormal boundary samples. To ad-
dress the learning-OoD-samples problem and to perform
negative training for AD, we train the discriminator J(x),
arg max; § Exlog(1—J(x))+(1-9)
E,log(1—J(G'(2))) +E,log(J (B(2))).
Inputs to final active negative learning: The inputs to the
discriminator, J, are x and samples from the data space. The

(6)
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inputs to G'(z) and B(z) are samples from the latent space.
In (6), J(x) is trainable while G’ and B are non-learnable.
Output: The discriminative model, J(x), which learns to
separate B(z) from the normal samples, from x and G'(z).

Inference mechanism for AD: The discriminator, J, is
used for inference for AD. For a queried test sample, x*, the
anomaly score is given by J(x*). We leverage J to detect
anomalous samples (Zaheer et al., 2020). The classification
decision is: x* is from the normal class if J(x*) < T, where
7T is a predefined threshold, and x* is abnormal otherwise.

By including the negative samples, J learns to discriminate
between the data distribution and its complement. OMAS-
GAN generates minimum-anomaly-score OoD samples and
subsequently trains a discriminator for AD using the gener-
ated boundary samples. Our model uses negative training
by generating abnormal OoD data on the boundary because
B(z) samples from the boundary of the data distribution.

3. Properties of OMASGAN
3.1. Global and Local Properties of Task 1

Let {x1,X2,...,X;} be the data from the normal class con-
taining m examples. Let px be the data distribution, X ~ py.
Letz ~ p, lie in 2 and G(z) ~ p, in X. Task 1 of OMAS-
GAN attains a global optimum, p, = px. Using the alter
nating Gradient Descent, convergence to a local optimur

guaranteed (Nowozin et al., 2016; Goodfellow et al., 2014).

3.2. Global Properties of OMASGAN Task 2

Proposition 1. Let L(6p,z,B,G) be the objectis 'oss in
(2) as a function of the parameters of our trai~al s neural
network, 6. Let the set over which these para < vary be
compact. Our loss is a continuous function of its . neters.
Then, (2) attains a global minimum that 1. >
exists a Bp* such that L(6,*,2,B,G" 1as th- .owest va e.

vem the function
Msag Jum and a
Extrem. value Theorem,

Using the optimizatir .

defined on a compact set
global maximum, i.e. W .ers.
the global properties ¢ 2) are .~ ‘lows. Task 2 attains a
global minimum if the :sisconty  das and its domain is
compact (sufficiont col. ). 4 unction composition of
continuous f " is co. «8. Our composite loss for
negative ' aaugi.  “tion is continuous as a function of
he par *sof B a. . The terms and f-divergences in
« -(4)are. nwous ., functions of the model parameters.
Als  the set o ".ich the trainable 6 vary is compact.

ontinuo’

Followh. our discussion in Section 2, we can set the Wasser-
stein dis\ 1ce as the distribution metric in Tasks 1-3. The
Wassers” n distance (a) has a strong weakness property, (b)

.uous with respect to its parameters because of (a),
auu (c) is weaker than f-divergences (Arjovsky et al., 2017).

3.3. Local Properties of OMASGAN Task 2

Proposition 2. Let @, be the locality where the algorithm
converges and terminates. Then, wherever our algorithm
terminates, that point leads the implicit distribution B(z; 0)
to be a distribution on the boundary of the data distribution.

We find 6 in (2) such that the distribution on X is evenly
distributed on the boundary surface, i.e. a manifold which
is defined as the set of parameters A* £ argmin {—m(c)
ud(c)|c}, and a necessary condition for this is V(—r [c) +
wd(c)) =0, which defines the tangent plane to the - ™Id.
If the loss is locally convex, then (2) attains a local minu..
at least. We find a boundary distribution and +hat the
distribution is evenly distributed on the su" jort br .adary of
the data distribution. Solvin ~ * =argi *{ c¢)lce "}
is a hard constrained optimization * voblen ~ ™intro” .ea
regularized loss in the optimizatic ‘ead o. _uang to
solve a much harder constrai- .d op.. ~ “tion. We regular-
ize and solve argmin —m(c)+ d(c)+» Jhe Gradient
Descent algorithm find~ 1local ‘inimum . this combined
loss. By choosing t* . mar. 1eters U and vV appropri-
ately, we find points in A - the Gradient Descent
which termir s . the gradicat is zero and the neigh-
borhood poi s do - creduce the loss (Zhu et al., 2020), the
" “ontot ° sctwote 1sin (2)and (3), enhanced with
e {term N lie ) the OMAS manifold and, as dis-
cusse In Section -, .uS 1S our second contribution. When
our # con rges at 6y, dispersion is maximized and
s collay  _as been obviated because of the scattering
N re in (2) and its combination with the other terms.

3.4. € ubal and Local Properties of Task 3

Let p,, be the implicit boundary distribution from Task 2 and
B. Task 3 of OMASGAN in (5) attains a global optimum
when p, = py and using samples from both the positive and
negative classes, G’ learns the distribution of the positive
class (Asokan & Seelamantula, 2020; Zaheer et al., 2020).
The global optimum at p,s = (1+7)px — ¥ pp in (5) subject
toy>a+0—1and a+ 6 € [0,1] subsumes the global
optimum at p, = px as a special case and using the alter-
nating Gradient Descent algorithm, convergence to a local
optimum is guaranteed (Asokan & Seelamantula, 2020).

Proposition 3. Let L;(0},z,x,J,B,G’) be the loss in (6) as
a function of the learnable parameters, 0;. The set over
which 6; vary is compact. Then, Ly is a continuous function
of its parameters and attains a global minimum at 6;*, that is,
there exists a @;* such that L;(0;*,z,x,J,B,G’) is lowest.

Global properties. Using the Extreme Value Theorem, (6)
is continuous, its domain is compact, and it attains a global
maximum (sufficient condition). The set over which 6; vary
is compact, the domain is compact, and our composite ob-
jective is continuous as a function of the model parameters.
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Table 1. Properties and architecture characteristics of the OMASGAN model and of the recent state-of-the-art benchmarks for AD.

OMASGAN MINLGAN FENCEGAN EGBAD ANOGAN TAILGAN BDSG OGNET DEEPSAD CONAD VAE ADAE  GANOMALY AED
GAN-BASED v v Vv v v v
AE-BASED v v v v v v v
ACTIVE
NEGATIVE SAM-
PLING & TRAINING Vv v
NEGATIVE
TRAINING v v v v
BOUNDARY LOSS Vv v Vv v
F-DIVERGENCE Vv
DISCRIMINATOR N Vv v Vv N v vV v
ANOMALY SCORE
RECONSTRUCTION Vv Vv Vv v N4 v v v
LIKELIHOOD LOSS Vv Vv v v /

Proposition 4. Regarding the local properties of (6), let 6~j
be the point where the algorithm terminates. Then, wherever
the algorithm converges, that éj leads J(x; 5j) to be a classi-
fier separating the data distribution from its complement.

The solution to (6) using Stochastic Gradient Descent is a
classifier that separates the data distribution from its comple-
ment because B(z) samples from the boundary of the data
distribution. B(z) is an implicit distribution on the boundary
producing OMAS points for negative training, for J, G’, and
C. As presented in Section 1, this is our third contributior

4. Related Work

Table 1 presents the characteristics of OMASGAN and the
benchmarks, the architecture (GAN or Autoencod- - (AE)),

the losses (active negative sampling and training,  .idary
loss), and the inference mechanism (discrimir anomaly
score). The models are sorted with respect .0 . ‘umber
of properties. In contrast to the bench~ <. OM. AN
performs active negative training, ir oduc. .elf-gen. .ed
labels and supervision ~ rforms bc dar and f-d vergence
loss training, and uti’ .« ‘'iscrim. .« anome  score. It

d thi. .1e because

*hed in ~, (b) GANs and

n t9 outperform AEs

. anomalies that have

10t be detected using a
_.car low probability data).

is a GAN rather than an
(a) a distribution metrir s es.
distribution metrics h ¢ been .
and distance metrics, &  ‘C) contex
shared feature~ -vith ti. o
reconstructi aly scu.

JMASA
‘des quta .

Taddress = arity of abnormal data and pro-
“entatior .y creating strong abnormal data on
the Yistributic wurdary, unlike (Sung et al., 2020; Sipple,
2020, Our neg. .e augmentation methodology performs
samplin, >f negative points, creates optimal points for nega-
tive train g closest to the data, and does not need to know
any da* .eatures, in contrast to (Sinha et al, 2021). We
. retraining using active negative sampling setting

the boundary points as strong anomalies. As discussed in

Section 1, this is our contributicn .
OoD samples by using (i) ]- -epocl,  ~ustructions (Za-
heer et al., 2020; Pourreza et a. 2021), (. .ated features
(Sinha et al, 2021), an” ‘) aC\ E (Biar .cal., 2019). Old
is Gold (OGNet) use. we ¢ es far from the boundary,
low-quality rec~ “ctions, «. sudo-anomalies gener-
atedinanad " scwe ot covering the OoD part of the space
(Zaheeretz 207 .). In tk ~ second training stage, OGNet
e recc sction I due to its pseudo-anomaly mod-
ule ch gen  points but uses a restrictive def-
initic of anomaly as single-epoch blurry reconstructions.
Tt =~ _ of the discriminator (f-divergences) to
‘nguish guuu from bad quality reconstructions. For good
au. or auality samples, a generator and an old state of the
samc generator are used, respectively. Anomalies far
from .ie boundary are also created by (Bian et al., 2019).

liffers..  .reating

The rarity of anomalies is not addressed in (Ruff et al., 2020;
Asokan & Seelamantula, 2020) which however highlight the
benefit of supervision. Minimum Likelihood GAN (MinL-
GAN) and FenceGAN generate samples on the boundary
of the data distribution to subsequently use the discrimina-
tor score for OoD detection (Wang et al., 2018; Ngo et al.,
2019). In contrast to the Boundary of Distribution Support
Generator (BDSG) and Tail of distribution GAN (TailGAN)
(Dionelis et al., 2020), OMASGAN uses any f-divergence,
no likelihood or invertibility, and a discriminator for AD.

5. Evaluation of OMASGAN

We evaluate our model using the AUROC. The LOO method-
ology is used which is setting K classes of a dataset with
(K +1) classes as the normal class and the leave-out class
as the abnormal class. It is more challenging than One Class
Classification (OCC) used by MinLGAN, OGNet, and (Kim
et al., 2020; Nguyen, 2019) which is setting a dataset class
as the normal class and the remaining as the abnormal class.

Models. We train fully-connected networks for synthetic
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data and Convolutional Neural Networks (CNN) with batch
normalization for image data. We utilize CNNs for B(z) to
create OMAS samples and we use the recently developed f-
divergence-based KL-Wasserstein GAN (KLWGAN) (Song
& Ermon, 2020) and the f-GAN (Nowozin et al., 2016).

AD using the f-divergence distribution metric: The dis-
criminator computes f-divergences and for the distributions
P and R, we write this metric as fD(P, R). The f-divergence
metric is used for training and we also use it during infer-
ence. To find the AUROC using the f-divergence metric, we
compute fD(x*, G’) for a queried test sample x* where G’
is the learned data distribution from training. We calculate
fD( 6, G' ) where 6; is a Dirac function centered at x*.

Benchmarks, Data. We compare OMASGAN to the GAN
models AnoGAN (Schlegl et al., 2017), EGBAD (Zenati
et al., 2018), and FenceGAN (Ngo et al., 2019), and to
the AE models GANomaly (Akcay et al., 2018), VAE, and
ADAE (Vu et al., 2019) on MNIST and CIFAR-10. We
compare with the likelihood-based AD models, BDSG and
TailGAN (Dionelis et al., 2020), and with the Autoencoder-
Discriminator (AED) which uses reconstruction and latent
losses, an encoder-decoder-encoder generator, and adversar-
ial training (Table 1), developed by us for benchmarking.
Also, we evaluate OMASGAN using out-of-dataset anoma-
lies, specifically Fashion-MNIST, KMNIST, and SVHN.

5.1. Evaluation of OMASGAN on Synthetic Data

We train our f-divergence-based OMASGAN on synthetic
data in Figure 3. Sensitivity analysis: For bimodal distribu-
tions, we use Q = 4096, N = 100, 4 = 8, and v = 0. The
batch size, N, and Q affect the convergence speed«  MAS-
GAN. For the successfully-converging B(z) 1 5(z), we
obtain descending loss values in (2). Figur - icts the
OMAS samples, the green B(z) points. Theblue . - are
from the data distribution. OMAS” Au~ ks for d-
modal distributions wi* disconnec d cc ponen‘s, i..con-
trast to AE, FenceGA . ‘unsup. = .d mode’ (Nguyen
etal.,2019; Ngoetal,,20. ‘uffet. M e evaluate
our OMASGAN using ' sto, s of auc..aly scores and
with retraining, we inc: sethe . OC and the Area Under
the Precision-Recall C < (AUPRv  om 0.91 to 0.99 and
the F1, Precision. Reca 1 Acr acy from 0.83 to 0.98.

YASGAN on MNIST Data

tup: We  ate the divergence-based OMASGAN on
M "STusin, L[N0 methodology and p, = Ny25(0,1).
We .. m OMA. AN using the KLWGAN until conver-
gence, . ) epocas, and utilize a CNN to generate the G(z)
distributi  and our B(z) to generate boundary samples. Ac-
cordine , our sensitivity analyses, we use CNN model ar-
.ces for G(z) and B(z), Q = 1024, N =256, u = 0.2,

ana v = 0.3. We train OMASGAN and obtain decreasing

5.2. Eva’  .ion ox

® Real data

5 X Boundary data

0 1 2 3 4 5

Figure 3. OMASGAN Task 2 for synthetic dat- ‘he blue
points are real samples and the green points ar B(z) s .iples.

losses for the successfully-genera  7(z), . .ding
loss values for the successfull* con, g B(z). we evalu-
ate OMASGAN and our di .. minato. “ip~ histograms
of the anomaly scores fr "norn. 'and abn. .al samples.

LOO Evaluation in.” o. TFou 4 shows that on average
and for all digits "MASGA.. ~forms the GAN bench-
marks EGBA ., A. AN, BDSQG, and TailGAN. Figure 5
shows that © VIA® AN o-itperforms the AE benchmarks
YT ad G aaly in 2 ROC. We evaluate OMASGAN
an.  1pare . = Jomaly using the same inference
cond; ons as those .. UMASGAN, training statistics rather
*har ~tier _g for the batch normalization layers.

-es 4 and 5 show that OMASGAN achieves on average
an 207 of 0.85 on MNIST data and outperforms the
AD b.  amarks by at least 0.24 points in AUROC, by a per-
centage of approximately 41%. It is robust and achieves the
lowest standard deviation (SD) of 0.036 averaged over all
digits, compared to EGBAD, AnoGAN, BDSG, TailGAN,
GANomaly, and VAE for AD. These benchmarks have SDs
0.153, 0.093, 0.24, 0.059, 0.074, and 0.199 respectively.

The evaluation of OMASGAN trained on MNIST and tested
on Fashion-MNIST and KMNIST, as in (Nalisnick et al.,
2019), yields an AUROC of 0.83 and 0.71, respectively.

5.3. AUROC Evaluation of OMASGAN on CIFAR-10

Setup: We evaluate our model and according to sensitivity
analyses, in (5) and (6), weuse x +6 =0.7, =1, y=0.7
in Section 3.4, and { = 0.5 (Asokan & Seelamantula, 2020).

LOO Evaluation in AUROC: Figure 6 shows that the per-
formance of the KLWGAN-based OMASGAN using LOO
is better than that of the GAN models AnoGAN, EGBAD,
FenceGAN, and BDSG on average and for all classes. In
Figure 7, on average and for almost all classes, the proposed
OMASGAN outperforms the AE benchmarks GANomaly,
VAE, ADAE, and AED. According to Figures 6 and 7,
OMASGAN outperforms the benchmarks in AUROC aver-
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Figure 4. Performance of KLWGAN-based OMASGAN for AD
on MNIST in AUROC using LOO compared to GAN benchmarks.
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Figure 5. Performance of KLWGAN-based OMASGAN in AU-
ROC on MNIST data using LOO compared to AE benchmarks.

aged over all classes. It is robust achieving the lowest SD,
0.056, compared to the AD benchmarks. It outperforms
the benchmarks on average over all classes by at least 0.07

AUROC points, by a percentage increase of atlez " 1%.
OMASGAN achieves on average an AURC - 0.71 on
CIFAR-10 using LOO evaluation and outpe,;0,  “onAD

(Nguyen et al., 2019). Using OCC, C~ "M yiela. ATT
ROC improvement of up to 0.06 po™ .ts, 1.« .pproxin .1y
9.6%, over previously - ortedrest  : 0” s and 0 15 points
improvement compa: a 10GAl t VAE, r pectively.

It achieves an AUROC o 7 OM chieves on
average AUROC valuer ,£0.. ing LUu evaluation and
outperforms Deep Ser  -supervi.  \D (DeepSAD) (Ruff

et al., 2020). Using O DeepSA ., 1elds a performance
improvement e~ whei. ‘da-ith a few labeled data. It
achieves an impro. .t of up to 0.12 points over
nrevious’ = eporte.  lts on CIFAR-10 using one known
"bnorny . s, achiev.  .n AUROC of 0.73. OMASGAN,
v g LOO ration un CIFAR-10, achieves an improve-
me. ~f appro.. oy 7.5% compared to the benchmarks.
Exper. ~nts pe .ormed using OCC evaluation show that
OGNet ¢ tperforms state-of-the-art benchmarks by up to
3.6% im ovement in AUROC, in (Zaheer et al., 2020).

JAN trained on CIFAR-10 and tested on SVHN, as
in (Kirichenko et al, 2020), achieves an AUROC of 0.76.

= OMASGAN  AnoGAN = EGBAD - FenceGAN - BDSG

IR

Plane Car  Bird Cat Deer Dog Frog Horse Ship Truck Avrrage

AUROC, CIFAR-10, LOO

Figure 6. Performance of KLWGAN-based OMASG. . .
ROC on CIFAR-10 using LOO compared to GAN * -~hmarks.

=OMASGAN = GANom "AE - ADAE A

AUROC, CIFAR-10, LOO

Plane ar B Lat Deer Dog Frog Horse Ship Truck Average

" 7. Peri .ace of K© VGAN-based OMASGAN in AU-
KU CIFA. i JO0, compared to AE benchmarks.
’ ADla.. .dy/Analysis of OMASGAN

b. ¢ of retraining by including negative boundary
sam, OMASGAN trained on MNIST: Figure 8 shows
that, .caverage and for all the digits, OMASGAN improves
the performance of the KLWGAN implemented in Task 1
for AD. Comparing the training loss in Task 1 to the loss
in Task 3 and to the final loss, OMASGAN improves the
performance of the base model. The base model KLWGAN
achieves an AUROC of 0.59 averaged over all digits, in-
creasing to 0.71 using Task 3, and then to 0.84 using our
final model, and this is the contribution of Tasks 2 and 3.

Effect of base model and chosen f-divergence. In Fig-
ure 9, we compare the OMASGAN model using the KL-
WGAN to the OMASGAN using the f-GAN in AUROC
(Song & Ermon, 2020; Nowozin et al., 2016). The abla-
tion study shows that OMASGAN boosts the performance
of f~-GAN by 0.26 in AUROC on average over all digits.
The base model f-GAN achieves on average an AUROC of
0.51, which increases to 0.77 because of OMASGAN Task
3. Figures 8 and 9 show the benefit of the OMASGAN prop-
erties of active negative sampling and training, negative
samples augmentation methodology, boundary loss training,
and discriminator anomaly score, as presented in Table 1.

Improvement of OMASGAN compared to KLWGAN
for AD on CIFAR-10. Figure 10 shows the ablation study
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Figure 8. Ablation study of KLWGAN-based OMASGAN in AU-
ROC on MNIST: Impact of the losses on the AD performance.
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Figure 9. Comparison of KLWGAN-based OMASGAN to the f-
GAN-based OMASGAN using the LOO evaluation on MNIST.

of OMASGAN in AUROC using LOO. It shows the impact
of the losses on the performance. Our chosen base model,
KLWGAN, yields an AUROC of 0.57 averaged over all
classes and this increases to 0.64 using OMASGA~ Task 3
and to 0.71 using the final OMASGAN. In ref-ve _c to Ta-
ble 1, Figure 10 shows that the 0.14 AUROC ‘ovement
is the contribution of our negative data augmenta.  "nd re-
training methodology. This is the ber ctivern T
and boundary loss training. The me (SD ¢ crall clas s is
0.05,0.05,and 0.06 f  ~skl,Tas » «OMA’ 3AN.

—

Effect of selected infere.
discussion in Section 5. .¢ a.
x*isfD( 8}, G Yand’ (8}, G,
is stopped at Task 3 ar  ™ask 1, res
study in Figure< 8-10. =arir. OMASGAN to Tasks 1
and 3, the pr ace g, v improves and the use of
the discr’ © iator v, ~resented in Section 2, is beneficial.

wecha .owing our
“ly scoie wur a test sample
e OMASGAN model
avely, in the ablation

<~ Sensitx Analy. .s to the Random Seed

Effe. ~finitiaa .don. Figure 11 shows the sensitivity of
the KLV “AN-vbased OMASGAN on CIFAR-10 to changes
to the se s 0, 1, and 2. It shows the mean AUROC over
all seed per LOO class, the AUROC for seed 2, and the

W.UROC = SD. The performance of OMASGAN in
AUROC yields a difference of 0.05 between seeds and the

+ KLWGAN, Task1 ¢ KLWGAN, Task3 - OMASGAN
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Figure 10. Ablation study of the KLWGAN-based OM. .>v
AUROC using LOO on CIFAR-10: Benefit of our '~~~ function.
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Figuri .1 Performance of OMASGAN on CIFAR-10 for seeds 0,
toar *“~ [he maximum value is the average AUROC

- seeds, wa.... the minimum value is the AUROC for seed 2
(L ‘te for blue box). Whiskers show the mean AUROC + SD.

average SD over all CIFAR-10 classes and seeds is 0.06.
This SD is lower than that of (Ruff et al., 2020), which is
0.1. On average, we set the seed to 2 and obtain more robust
AUROC values with lower SD compared to seeds 0 and 1.

6. Conclusion

We have proposed OMASGAN, a retraining methodology
for AD with negative sampling. Without likelihood, we gen-
erate OMAS samples and strong anomalies leveraging any f-
divergence, the KLWGAN divergence and the f-divergence
(Song & Ermon, 2020; Nowozin et al., 2016). We address
the rarity of anomalies problem and use data only from
the normal class. The evaluation outcomes on MNIST and
CIFAR-10, as well as on synthetic data, using the LOO
methodology show that OMASGAN achieves state-of-the-
art performance and outperforms the benchmarks. Using
AUROC, OMASGAN yields on average (a) an improve-
ment of at least 0.24 points on MNIST over the benchmarks,
achieving values of 0.85, (b) an improvement of at least
0.07 points on CIFAR-10 data, achieving values of 0.71,
and (c) high AUROC values for out-of-dataset anomalies.
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OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on
the Boundary

Supplementary Material

The discussions, explanations, experiments, and evaluations in this Supplementary Material are a continuation of the paper
“OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary”.

A. OMASGAN and Illustration of our Algorithm

INASE
RO

“@a"

,-

Figure 12. Illustratic and p, rial repre  .atation of the proposed OMASGAN algorithm for AD.

In this section, we presen.  'lustra.  ~fther posed OMASGAN algorithm using the notation and the implicit generative
models introduced in Ser . ~fthe | . his section is a continuation of Sections 2 and 3 on pages 1-5 of the paper.
Figure 12 depicts the v inide  the proposed OMASGAN algorithm. Following our discussion in Sections 1-3 of the
paper, OMASGAN fi1  generates " aum-anomaly-score QoD samples created by our negative sampling augmentation
methodology and then  “orms ar 1.¢ negative training for AD. OMASGAN performs model retraining and subsequently
trains a discr’ ‘or fo. 2 the generated samples on the boundary of the support of the data distribution.

In Figur "2, the . are denoted by x, the GAN-generated samples by G(z), the OMAS samples by B(z), and the
ctive-r  e-trainin,_  ,ed GAN samples after model retraining by G’ (z). The samples x, G(z), B(z), and G'(z) all lie in
. datasp. Y €RK und we denote the latent space by 2 € R/, where [ << k. Both Figure 1 in this section and Figure 3
of v oaperin - the minimum-anomaly-score OoD B(z) samples generated by the proposed OMASGAN model.

B.Imp mentation of OMASGAN

posed OMASGAN model is implemented in PyTorch, https://github.com/Anonymous-Author-2021/OMASGAN.
1 Lode Repository can be found in https://anonymous.4open.science/r/7ca4da73-0380-4a24-a640-4c60d29db9f4/.


https://github.com/Anonymous-Author-2021/OMASGAN
https://anonymous.4open.science/r/7ca4da73-0380-4a24-a640-4c60d29db9f4/
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C. Evaluation of OMASGAN Trained on MNIST Data

The tables and figures in this section refer to Section 5 of the paper.

Table 2. Evaluation of the KLWGAN-based OMASGAN for AD using the AUROC metric, using abnormal out-of-dataset anomalies,
where the normality is MNIST digits 0-9 and the anomalous cases are from the Fashion-MNIST and KMNIST datasets.

MNIST FASHION-MNIST KMNIST
AUROC 0.84 0.71
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Figure 14. Samples from the KMNIST dataset (Clanuwat et al, 2018).
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E. Evaluation of OMASGAN Trained on CIFAR-10 Data

Table 3. Evaluation of the KLWGAN-based OMASGAN for AD using the AUROC metric, using OoD abnormal out-of-dataset anomalies,
where the normal cases are from the CIFAR-10 dataset (classes 0-9) and the abnormal/anomalous cases are from the SVHN dataset.

CIFAR-10 SVHN
AUROC 0.76

Figure 17. Samples from * .« "N datr eret ', 2011).
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Figure 18. Samples from the CIFAR-10 dataset (Krizhevsky, 2009).
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F. Images from OMASGAN Tasks 1 and 3

Figure 1¢ mages from the normal class generated by the proposed KLWGAN-based OMASGAN model from Task 1 (upper) and Task 3
-~ .ained on CIFAR-10 image data using the LOO evaluation methodology.



