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Abstract
Generative models trained in an unsupervised
manner encounter the problem of setting high
likelihood and low reconstruction loss to Out-of-
Distribution (OoD) samples. This increases the
Type II errors (false negatives, misses of anoma-
lies) and decreases the Anomaly Detection (AD)
performance. Also, deep generative models for
AD suffer from the rarity of anomalies. To address
these limitations, we propose the new OoD Mini-
mum Anomaly Score GAN (OMASGAN) model.
OMASGAN addresses the rarity of anomalies by
generating strong abnormal samples on the bound-
ary of the support of the data distribution, using
data only from the normal class. OMASGAN im-
proves the AD performance by retraining includ-
ing the abnormal minimum-anomaly-score OoD
samples generated by our negative sampling aug-
mentation methodology. OMASGAN uses any
f-divergence distribution metric in its variational
representation, and explicit likelihood and invert-
ibility are not needed. The proposed model uses a
discriminator for inference and the evaluation of
OMASGAN on images using the leave-one-out
methodology shows that it achieves an improve-
ment of at least 0.24 and 0.07 points in AUROC
on average on MNIST and CIFAR-10, respec-
tively, over recent state-of-the-art benchmarks.

1. Introduction
Anomaly Detection (AD) in high-dimensional spaces is
challenging. In spite of progress ushered in by the use of
generative models such as Generative Adversarial Networks
(GAN), AD performance remains a challenge. Models learn
to assign high probability to the seen data but are not trained
to assign zero probability to Out-of-Distribution (OoD) sam-
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ples. During inference, they assign non-zero probability to
anomalies and this leads to a high number of false negatives
(Nalisnick et al., 2019; Kirichenko et al., 2020). To address
such limitations, we propose the OoD Minimum Anomaly
Score GAN (OMASGAN), a new boundary-based model
for training GANs for AD. OMASGAN uses data only from
the normal class and generates OoD samples as anomalies
that are close to the boundary of the data distribution having
a minimum anomaly score around the data. OMASGAN
performs retraining by including the boundary samples, neg-
ative training, and AD with negative sampling (Sipple, 2020;
Sinha et al., 2021). It can be integrated with any GAN, in-
cluding (Song & Ermon, 2020) and the f-divergence GAN
(f-GAN) (Nowozin et al., 2016). Our contributions are:

• We propose OMASGAN, a model for AD to perform
retraining by including the boundary samples created
by our negative sampling augmentation methodology.

• To address the rarity of anomalies, we create abnormal
samples using data only from the normal class and find
the minimum-anomaly-score samples on the bound-
ary of the support of the data distribution using any
f-divergence without likelihood and/or invertibility.

• We train a discriminator to separate the data distri-
bution from its complement and evaluate the use of
inference for AD. The evaluation of OMASGAN us-
ing the leave-one-out (LOO) methodology shows that
it achieves state-of-the-art performance in the Area
Under the Receiver Operating Characteristics curve
(AUROC) metric, outperforming recent benchmarks.

2. The Proposed OMASGAN Model
We propose an algorithm to address the problem of genera-
tive models setting high likelihood and low reconstruction
loss to OoD samples which leads to Type II errors (false
negatives, misses of anomalies) and decreases the AD per-
formance. Figure 1 presents the flowchart of OMASGAN
which has the following structure: (a) Train a f-divergence
GAN using the data to obtain the implicit generator, G(z).
(b) Train the boundary model, B(z), to find the boundary of
G, where the boundary samples are the generated negativeUnd
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Figure 1. Flowchart of the OMASGAN model for AD which generates minimum-anomaly-score OoD samples on the boundary of the
data distribution and subsequently uses these generated boundary samples to train a discriminative model to detect abnormal samples.

points and active negative sampling is performed using any
f-divergence in its variational representation to compute the
statistical divergence between the B(z) and G(z) samples.
OMASGAN generates samples corresponding to a gener-
alized notion of the boundary of the support of the data
distribution, which is the set of points such that they are
OoD and have a minimum anomaly score measured as the
f-divergence metric or the Wasserstein distance. We name
these points the OoD Minimum Anomaly Score (OMAS)
samples and incorporate them in the proposed algorithm. (c)
Perform active negative training for AD using the OMAS
samples and the implicit distributions from (a) and (b), and
train the generator G′(z) using a discriminator, C(x). Then,
we train the discriminator J(x) for AD using active negative
training, the OMAS samples, B(z), and G′(z). During infer-
ence, we compute the proposed anomaly score and detect
anomalies using J(x) and the trained OMASGAN model.

2.1. The OMASGAN Algorithm

Our algorithm comprises the following optimization tasks:

Task 1. Distribution metric. We train a f-divergence GAN
to learn the data, x. Using z∼ pz, x∼ px, and G(z)∼ pg,

arg minG maxD Ex log(D(x))+Ez log(1−D(G(z))). (1)

Outputs: The generator-discriminator pair, (G, D). Output
used in subsequent Tasks: The implicit generator, G(z).

Task 2. Formation of the boundary of the data distribu-
tion. To perform active negative sampling, we create and
train the boundary model, B(z). Optimization problem:

arg minθbθbθb −m(B(z;θbθbθb),G(z))
+µ d(B(z;θbθbθb),G(z))+ν s(B(z;θbθbθb),z)

(2)

where m(B,G) is the distribution metric from Task 1, i.e. any
f-divergence in its variational representation expressed in
terms of the conjugate function, f ∗(t), as in (7) in (Nowozin
et al., 2016), where t is a variational function taking as input
a sample and returning a scalar. The special cases of KL
and Pearson are f ∗(t) = exp(t−1) and f ∗(t) = 0.25t2 + t,
respectively. The first term in (2) is a strictly decreasing
function of a distribution metric. This divergence is between
the boundary samples and the data where m(B(z),G(z)) is
the distribution metric of choice, such as Jensen-Shannon of
the original GAN, Kullback–Leibler (KL), and Pearson Chi-
Squared of the Least Squares GAN to address saturation,
or the Wasserstein distance to address mode collapse. Our
boundary model does not need probability and invertibility
obviating the rarity and sampling complexity problem by
using a decreasing function of a distribution metric and any
f-divergence to find the boundary of the data distribution.

Generation of the OMAS distribution and the OMAS sam-
ples: OMASGAN computes the minimum-anomaly-score
OoD samples utilizing the loss in (2). It performs automatic
negative data augmentation by eliminating the need for fea-
ture extraction and human intervention, and this strengthens
the applicability of our model. We denote the parameters
of the boundary model by θbθbθb and its samples by B(z;θbθbθb).
We use a f-divergence GAN discriminator to compute the
distribution metric, m(B,G). The combination of the first
two terms leads the B samples to the boundary of pg(x). We
compute the boundary with lp-norm distance and dispersion
regularization and we denote the lp-norm distance between
the point B(z) and the set x by d(B(z),x). To capture all
the modes of the data distribution, address mode collapse
(Dionelis et al., 2020; Abbasnejad et al., 2020), and generateUnd

er
Rev

iew



OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary

Normal Data

Implicit 
Generator, 

G(z): 
f-GAN

Implicit 
Boundary 

Generator, B(z): 
Active Negative 

Sampling

Active Negative 
Training with 

B(z): OMASGAN

Abnormal

Discriminator

Normal

Figure 2. Training of the proposed OMASGAN model using active negative sampling and training by creating strong abnormal samples.

OMAS samples, we use a scattering measure for dispersion
and regularization in (2). This scattering measure, s(B(z),z),
and the lp-norm distance, d(B(z),G(z)), are given by

d(B(z),G(z)) = min j=1,...,Q ||B(z)−G(z j)||2 (3)

s(B(zi),zi) =
1

N−1

N

∑
j=1, j 6=i

||zi− z j||2
||B(zi)−B(z j)||2

(4)

where the batch size is denoted by N and the inference size
by Q. OMASGAN achieves good modeling by finding the
boundary of a model of x rather than of x. In (2), the output
of Task 1, G(z), is used because it has established and set
up a distribution metric in the data space, χ . OMASGAN
finds the minimum-anomaly score OoD samples, performs
active sampling of negative examples, and generates strong
and specifically adversarial anomalies that lie close to the
boundary of the data distribution and near high-probability
data samples. The trainable model in Task 2 is the implicit
boundary distribution B(z;θbθbθb), and G(z) is non-trainable.

Output of Task 2 used in next Tasks: The boundary, B(z). In
summary, in Task 1, we use a f-divergence GAN for data dis-
tribution generation. In Task 2, OMASGAN performs active
negative sampling and we train an implicit boundary gener-
ator to form the boundary. In Task 3, OMASGAN performs
active negative training with the minimum-anomaly-score
OoD boundary samples, and trains a discriminator, J(x), to
classify normal and abnormal data, as shown in Figure 2.

Task 3. Active negative training. Separation of generated
and real normal from generated abnormal data for AD. To
address the learning-OoD-samples problem of G (Nalisnick
et al., 2019; Kirichenko et al., 2020), we perform model
retraining for AD by including the negative samples cre-
ated by our negative samples augmentation methodology in
Task 2. OMASGAN introduces self-supervision using the
boundary samples from Task 2. We perform retraining by
including the abnormal B(z) points. To train G′, we use

argminG′maxC α Ex log(C(x))+β Ez log(1−C(G′(z)))
+ γ Ez log(1−C(B(z)))+δ Ez log(C(G(z)))

(5)

where G′(z) ∼ pg′ lie in χ and where C is a discriminator
which computes distribution metrics and f-divergences, as
in (Zaheer et al., 2020; Asokan & Seelamantula, 2020).

To calculate divergences between distributions, and in this
case between B(z) and (x,G(z)), we use a discriminator
and a weighted sum of f-divergences and probability metrics
(Zaheer et al., 2020; Asokan & Seelamantula, 2020). The
nested optimization in (5) comprises four terms and outputs
the learned mappings C : χ → R, where the data space is
denoted by χ , and G′ : Z → χ , where Z is the latent space.
The trainable models are the implicit generator G′(z) and
the discriminator C(x), and B and G are non-trainable. The
first and fourth terms of the minimax optimization force the
generated samples to the data, as in Rumi-GAN (Asokan &
Seelamantula, 2020). The third term forces the generated
samples away from our generated strong anomalies, which
are near the support boundary of the data distribution and
close to high-probability data. The discriminative model,
C(x), is trained to separate B(z) from (x,G(z)), while the
implicit generative model, G′, learns the data keeping away
from and avoiding the generated abnormal B(z) samples.

OMASGAN computes the optimal points for negative sam-
pling in Task 2 and performs active negative training using
the boundary in Task 3. The samples from B(z;θbθbθb) are the
closest points to the data from the normal class and optimal
retraining is performed. This leads to improvements with
respect to the state-of-the-art (Zaheer et al., 2020; Pourreza
et al., 2021; Sinha et al., 2021), as discussed in Sections 4-6.
OMASGAN performs automatic negative samples augmen-
tation and retraining for AD by eliminating the need for
feature extraction (aim of deep learning), human interven-
tion, and ad hoc methods because they do not scale, and this
strengthens our model’s applicability and generalization.

Inputs to the algorithm of Task 3: The inputs to the discrim-
inative model, C, are samples from the data space, χ , and
the inputs to the generator, G′, are samples from the latent
space, Z . Task 3 Output: The implicit distribution G′(z).

Detection of strong abnormal boundary samples. To ad-
dress the learning-OoD-samples problem and to perform
negative training for AD, we train the discriminator J(x),

arg maxJ ζ Ex log(1− J(x))+(1−ζ )

Ez log(1− J(G′(z)))+Ez log(J(B(z))).
(6)

Inputs to final active negative learning: The inputs to the
discriminator, J, are x and samples from the data space. TheUnd
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inputs to G′(z) and B(z) are samples from the latent space.
In (6), J(x) is trainable while G′ and B are non-learnable.
Output: The discriminative model, J(x), which learns to
separate B(z) from the normal samples, from x and G′(z).

Inference mechanism for AD: The discriminator, J, is
used for inference for AD. For a queried test sample, x∗, the
anomaly score is given by J(x∗). We leverage J to detect
anomalous samples (Zaheer et al., 2020). The classification
decision is: x∗ is from the normal class if J(x∗)< τ , where
τ is a predefined threshold, and x∗ is abnormal otherwise.

By including the negative samples, J learns to discriminate
between the data distribution and its complement. OMAS-
GAN generates minimum-anomaly-score OoD samples and
subsequently trains a discriminator for AD using the gener-
ated boundary samples. Our model uses negative training
by generating abnormal OoD data on the boundary because
B(z) samples from the boundary of the data distribution.

3. Properties of OMASGAN
3.1. Global and Local Properties of Task 1

Let {x1,x2, . . . ,xm} be the data from the normal class con-
taining m examples. Let px be the data distribution, x∼ px.
Let z∼ pz lie in Z and G(z)∼ pg in χ . Task 1 of OMAS-
GAN attains a global optimum, pg = px. Using the alter-
nating Gradient Descent, convergence to a local optimum is
guaranteed (Nowozin et al., 2016; Goodfellow et al., 2014).

3.2. Global Properties of OMASGAN Task 2

Proposition 1. Let L(θbθbθb,z,B,G) be the objective loss in
(2) as a function of the parameters of our trainable neural
network, θbθbθb. Let the set over which these parameters vary be
compact. Our loss is a continuous function of its parameters.
Then, (2) attains a global minimum at θbθbθb

∗, that is, there
exists a θbθbθb

∗ such that L(θbθbθb
∗,z,B,G) has the lowest value.

Using the optimization theorem that a continuous function
defined on a compact set attains a global minimum and a
global maximum, i.e. Weierstrass Extreme Value Theorem,
the global properties of (2) are as follows. Task 2 attains a
global minimum if the loss is continuous and its domain is
compact (sufficient condition). A function composition of
continuous functions is continuous. Our composite loss for
negative data augmentation is continuous as a function of
the parameters of B and G. The terms and f-divergences in
(2)-(4) are continuous as functions of the model parameters.
Also, the set over which the trainable θbθbθb vary is compact.

Following our discussion in Section 2, we can set the Wasser-
stein distance as the distribution metric in Tasks 1-3. The
Wasserstein distance (a) has a strong weakness property, (b)
is continuous with respect to its parameters because of (a),
and (c) is weaker than f-divergences (Arjovsky et al., 2017).

3.3. Local Properties of OMASGAN Task 2

Proposition 2. Let θ̃b̃θb̃θb be the locality where the algorithm
converges and terminates. Then, wherever our algorithm
terminates, that point leads the implicit distribution B(z;θ̃b̃θb̃θb)
to be a distribution on the boundary of the data distribution.

We find θbθbθb in (2) such that the distribution on χ is evenly
distributed on the boundary surface, i.e. a manifold which
is defined as the set of parameters A∗ , argmin{−m(c)+
µ d(c) |c}, and a necessary condition for this is ∇(−m(c)+
µ d(c)) = 0, which defines the tangent plane to the manifold.
If the loss is locally convex, then (2) attains a local minimum
at least. We find a boundary distribution and ensure that the
distribution is evenly distributed on the support boundary of
the data distribution. Solving A∗∗ = argmin{s(c) |c ∈ A∗}
is a hard constrained optimization problem. We introduce a
regularized loss in the optimization instead of attempting to
solve a much harder constrained optimization. We regular-
ize and solve argmin−m(c)+µd(c)+νs(c). The Gradient
Descent algorithm finds a local minimum of this combined
loss. By choosing the hyper-parameters µ and ν appropri-
ately, we find points in A∗∗. Using the Gradient Descent
which terminates when the gradient is zero and the neigh-
borhood points do not reduce the loss (Zhu et al., 2020), the
solution to the first two terms in (2) and (3), enhanced with
the third term in (4), lies on the OMAS manifold and, as dis-
cussed in Section 1, this is our second contribution. When
our algorithm converges at θ̃b̃θb̃θb, dispersion is maximized and
mode collapse has been obviated because of the scattering
measure in (2) and its combination with the other terms.

3.4. Global and Local Properties of Task 3

Let pb be the implicit boundary distribution from Task 2 and
B. Task 3 of OMASGAN in (5) attains a global optimum
when pg′ = px and using samples from both the positive and
negative classes, G′ learns the distribution of the positive
class (Asokan & Seelamantula, 2020; Zaheer et al., 2020).
The global optimum at pg′ = (1+ γ)px− γ pb in (5) subject
to γ ≥ α + δ − 1 and α + δ ∈ [0,1] subsumes the global
optimum at pg′ = px as a special case and using the alter-
nating Gradient Descent algorithm, convergence to a local
optimum is guaranteed (Asokan & Seelamantula, 2020).

Proposition 3. Let LJ(θ jθ jθ j,z,x,J,B,G′) be the loss in (6) as
a function of the learnable parameters, θ jθ jθ j. The set over
which θ jθ jθ j vary is compact. Then, LJ is a continuous function
of its parameters and attains a global minimum at θ jθ jθ j

∗, that is,
there exists a θ jθ jθ j

∗ such that LJ(θ jθ jθ j
∗,z,x,J,B,G′) is lowest.

Global properties. Using the Extreme Value Theorem, (6)
is continuous, its domain is compact, and it attains a global
maximum (sufficient condition). The set over which θ jθ jθ j vary
is compact, the domain is compact, and our composite ob-
jective is continuous as a function of the model parameters.Und
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Table 1. Properties and architecture characteristics of the OMASGAN model and of the recent state-of-the-art benchmarks for AD.

OMASGAN MINLGAN FENCEGAN EGBAD ANOGAN TAILGAN BDSG OGNET DEEPSAD CONAD VAE ADAE GANOMALY AED

GAN-BASED
√ √ √ √ √ √

AE-BASED
√ √ √ √ √ √ √

ACTIVE
NEGATIVE SAM-
PLING & TRAINING

√ √

NEGATIVE
TRAINING

√ √ √ √

BOUNDARY LOSS
√ √ √ √

F-DIVERGENCE
√

DISCRIMINATOR
ANOMALY SCORE

√ √ √ √ √ √ √ √

RECONSTRUCTION
√ √ √ √ √ √ √ √

LIKELIHOOD LOSS
√ √ √ √ √

Proposition 4. Regarding the local properties of (6), let θ̃ jθ̃ jθ̃ j
be the point where the algorithm terminates. Then, wherever
the algorithm converges, that θ̃ jθ̃ jθ̃ j leads J(x;θ̃ jθ̃ jθ̃ j) to be a classi-
fier separating the data distribution from its complement.

The solution to (6) using Stochastic Gradient Descent is a
classifier that separates the data distribution from its comple-
ment because B(z) samples from the boundary of the data
distribution. B(z) is an implicit distribution on the boundary
producing OMAS points for negative training, for J, G′, and
C. As presented in Section 1, this is our third contribution.

4. Related Work
Table 1 presents the characteristics of OMASGAN and the
benchmarks, the architecture (GAN or Autoencoder (AE)),
the losses (active negative sampling and training, boundary
loss), and the inference mechanism (discriminator anomaly
score). The models are sorted with respect to the number
of properties. In contrast to the benchmarks, OMASGAN
performs active negative training, introduces self-generated
labels and supervision, performs boundary and f-divergence
loss training, and utilizes a discriminator anomaly score. It
is a GAN rather than an AE and this is desirable because
(a) a distribution metric is established in χ , (b) GANs and
distribution metrics have been shown to outperform AEs
and distance metrics, and (c) contextual anomalies that have
shared features with the data cannot be detected using a
reconstruction anomaly score (near low probability data).

OMASGAN addresses the rarity of abnormal data and pro-
vides data augmentation by creating strong abnormal data on
the distribution boundary, unlike (Sung et al., 2020; Sipple,
2020). Our negative augmentation methodology performs
sampling of negative points, creates optimal points for nega-
tive training closest to the data, and does not need to know
any data features, in contrast to (Sinha et al, 2021). We
perform retraining using active negative sampling setting
the boundary points as strong anomalies. As discussed in

Section 1, this is our contribution. This differs from creating
OoD samples by using (i) low-epoch reconstructions (Za-
heer et al., 2020; Pourreza et al., 2021), (ii) rotated features
(Sinha et al, 2021), and (iii) a CVAE (Bian et al., 2019). Old
is Gold (OGNet) uses weak anomalies far from the boundary,
low-quality reconstructions, and pseudo-anomalies gener-
ated in an ad hoc way not covering the OoD part of the space
(Zaheer et al., 2020). In the second training stage, OGNet
uses the reconstruction loss due to its pseudo-anomaly mod-
ule which generates OoD points but uses a restrictive def-
inition of anomaly as single-epoch blurry reconstructions.
It modifies the role of the discriminator (f-divergences) to
distinguish good from bad quality reconstructions. For good
and poor quality samples, a generator and an old state of the
same AE generator are used, respectively. Anomalies far
from the boundary are also created by (Bian et al., 2019).

The rarity of anomalies is not addressed in (Ruff et al., 2020;
Asokan & Seelamantula, 2020) which however highlight the
benefit of supervision. Minimum Likelihood GAN (MinL-
GAN) and FenceGAN generate samples on the boundary
of the data distribution to subsequently use the discrimina-
tor score for OoD detection (Wang et al., 2018; Ngo et al.,
2019). In contrast to the Boundary of Distribution Support
Generator (BDSG) and Tail of distribution GAN (TailGAN)
(Dionelis et al., 2020), OMASGAN uses any f-divergence,
no likelihood or invertibility, and a discriminator for AD.

5. Evaluation of OMASGAN
We evaluate our model using the AUROC. The LOO method-
ology is used which is setting K classes of a dataset with
(K +1) classes as the normal class and the leave-out class
as the abnormal class. It is more challenging than One Class
Classification (OCC) used by MinLGAN, OGNet, and (Kim
et al., 2020; Nguyen, 2019) which is setting a dataset class
as the normal class and the remaining as the abnormal class.

Models. We train fully-connected networks for syntheticUnd
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data and Convolutional Neural Networks (CNN) with batch
normalization for image data. We utilize CNNs for B(z) to
create OMAS samples and we use the recently developed f-
divergence-based KL-Wasserstein GAN (KLWGAN) (Song
& Ermon, 2020) and the f-GAN (Nowozin et al., 2016).

AD using the f-divergence distribution metric: The dis-
criminator computes f-divergences and for the distributions
P and R, we write this metric as fD(P, R). The f-divergence
metric is used for training and we also use it during infer-
ence. To find the AUROC using the f-divergence metric, we
compute fD(x∗, G′) for a queried test sample x∗ where G′

is the learned data distribution from training. We calculate
fD( δ ∗x , G′ ) where δ ∗x is a Dirac function centered at x∗.

Benchmarks, Data. We compare OMASGAN to the GAN
models AnoGAN (Schlegl et al., 2017), EGBAD (Zenati
et al., 2018), and FenceGAN (Ngo et al., 2019), and to
the AE models GANomaly (Akcay et al., 2018), VAE, and
ADAE (Vu et al., 2019) on MNIST and CIFAR-10. We
compare with the likelihood-based AD models, BDSG and
TailGAN (Dionelis et al., 2020), and with the Autoencoder-
Discriminator (AED) which uses reconstruction and latent
losses, an encoder-decoder-encoder generator, and adversar-
ial training (Table 1), developed by us for benchmarking.
Also, we evaluate OMASGAN using out-of-dataset anoma-
lies, specifically Fashion-MNIST, KMNIST, and SVHN.

5.1. Evaluation of OMASGAN on Synthetic Data

We train our f-divergence-based OMASGAN on synthetic
data in Figure 3. Sensitivity analysis: For bimodal distribu-
tions, we use Q = 4096, N = 100, µ = 8, and ν = 20. The
batch size, N, and Q affect the convergence speed of OMAS-
GAN. For the successfully-converging B(z) and G(z), we
obtain descending loss values in (2). Figure 3 depicts the
OMAS samples, the green B(z) points. The blue points are
from the data distribution. OMASGAN works for multi-
modal distributions with disconnected components, in con-
trast to AE, FenceGAN, and unsupervised models (Nguyen
et al., 2019; Ngo et al., 2019; Ruff et al., 2020). We evaluate
our OMASGAN using histograms of anomaly scores and
with retraining, we increase the AUROC and the Area Under
the Precision-Recall Curve (AUPRC) from 0.91 to 0.99 and
the F1, Precision, Recall and Accuracy from 0.83 to 0.98.

5.2. Evaluation of OMASGAN on MNIST Data

Setup: We evaluate the f-divergence-based OMASGAN on
MNIST using the LOO methodology and pz = N128(0,1).
We train OMASGAN using the KLWGAN until conver-
gence, 500 epochs, and utilize a CNN to generate the G(z)
distribution and our B(z) to generate boundary samples. Ac-
cording to our sensitivity analyses, we use CNN model ar-
chitectures for G(z) and B(z), Q = 1024, N = 256, µ = 0.2,
and ν = 0.3. We train OMASGAN and obtain decreasing

Figure 3. OMASGAN Task 2 for synthetic data where the blue
points are real samples and the green points are B(z) samples.

losses for the successfully-generated G(z), and descending
loss values for the successfully converging B(z). We evalu-
ate OMASGAN and our discriminator J using histograms
of the anomaly scores for normal and abnormal samples.

LOO Evaluation in AUROC: Figure 4 shows that on average
and for all digits, OMASGAN outperforms the GAN bench-
marks EGBAD, AnoGAN, BDSG, and TailGAN. Figure 5
shows that OMASGAN outperforms the AE benchmarks
VAE and GANomaly in AUROC. We evaluate OMASGAN
and compare it with GANomaly using the same inference
conditions as those in OMASGAN, training statistics rather
than testing statistics for the batch normalization layers.

Figures 4 and 5 show that OMASGAN achieves on average
an AUROC of 0.85 on MNIST data and outperforms the
AD benchmarks by at least 0.24 points in AUROC, by a per-
centage of approximately 41%. It is robust and achieves the
lowest standard deviation (SD) of 0.036 averaged over all
digits, compared to EGBAD, AnoGAN, BDSG, TailGAN,
GANomaly, and VAE for AD. These benchmarks have SDs
0.153, 0.093, 0.24, 0.059, 0.074, and 0.199 respectively.

The evaluation of OMASGAN trained on MNIST and tested
on Fashion-MNIST and KMNIST, as in (Nalisnick et al.,
2019), yields an AUROC of 0.83 and 0.71, respectively.

5.3. AUROC Evaluation of OMASGAN on CIFAR-10

Setup: We evaluate our model and according to sensitivity
analyses, in (5) and (6), we use α +δ = 0.7, β = 1, γ = 0.7
in Section 3.4, and ζ = 0.5 (Asokan & Seelamantula, 2020).

LOO Evaluation in AUROC: Figure 6 shows that the per-
formance of the KLWGAN-based OMASGAN using LOO
is better than that of the GAN models AnoGAN, EGBAD,
FenceGAN, and BDSG on average and for all classes. In
Figure 7, on average and for almost all classes, the proposed
OMASGAN outperforms the AE benchmarks GANomaly,
VAE, ADAE, and AED. According to Figures 6 and 7,
OMASGAN outperforms the benchmarks in AUROC aver-Und
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Figure 4. Performance of KLWGAN-based OMASGAN for AD
on MNIST in AUROC using LOO compared to GAN benchmarks.
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Figure 5. Performance of KLWGAN-based OMASGAN in AU-
ROC on MNIST data using LOO compared to AE benchmarks.

aged over all classes. It is robust achieving the lowest SD,
0.056, compared to the AD benchmarks. It outperforms
the benchmarks on average over all classes by at least 0.07
AUROC points, by a percentage increase of at least 11%.

OMASGAN achieves on average an AUROC of 0.71 on
CIFAR-10 using LOO evaluation and outperforms ConAD
(Nguyen et al., 2019). Using OCC, ConAD yields an AU-
ROC improvement of up to 0.06 points, i.e. approximately
9.6%, over previously reported results: 0.06 and 0.05 points
improvement compared to AnoGAN and VAE, respectively.
It achieves an AUROC of 0.67. OMASGAN achieves on
average AUROC values of 0.71 using LOO evaluation and
outperforms Deep Semi-supervised AD (DeepSAD) (Ruff
et al., 2020). Using OCC, DeepSAD yields a performance
improvement even when provided with a few labeled data. It
achieves an AUROC improvement of up to 0.12 points over
previously reported results on CIFAR-10 using one known
abnormal class, achieving an AUROC of 0.73. OMASGAN,
using LOO evaluation on CIFAR-10, achieves an improve-
ment of approximately 7.5% compared to the benchmarks.
Experiments performed using OCC evaluation show that
OGNet outperforms state-of-the-art benchmarks by up to
3.6% improvement in AUROC, in (Zaheer et al., 2020).

OMASGAN trained on CIFAR-10 and tested on SVHN, as
in (Kirichenko et al, 2020), achieves an AUROC of 0.76.
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Figure 6. Performance of KLWGAN-based OMASGAN in AU-
ROC on CIFAR-10 using LOO compared to GAN benchmarks.
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Figure 7. Performance of KLWGAN-based OMASGAN in AU-
ROC, on CIFAR-10 using LOO, compared to AE benchmarks.

5.4. Ablation Study/Analysis of OMASGAN

Benefit of retraining by including negative boundary
samples. OMASGAN trained on MNIST: Figure 8 shows
that, on average and for all the digits, OMASGAN improves
the performance of the KLWGAN implemented in Task 1
for AD. Comparing the training loss in Task 1 to the loss
in Task 3 and to the final loss, OMASGAN improves the
performance of the base model. The base model KLWGAN
achieves an AUROC of 0.59 averaged over all digits, in-
creasing to 0.71 using Task 3, and then to 0.84 using our
final model, and this is the contribution of Tasks 2 and 3.

Effect of base model and chosen f-divergence. In Fig-
ure 9, we compare the OMASGAN model using the KL-
WGAN to the OMASGAN using the f-GAN in AUROC
(Song & Ermon, 2020; Nowozin et al., 2016). The abla-
tion study shows that OMASGAN boosts the performance
of f-GAN by 0.26 in AUROC on average over all digits.
The base model f-GAN achieves on average an AUROC of
0.51, which increases to 0.77 because of OMASGAN Task
3. Figures 8 and 9 show the benefit of the OMASGAN prop-
erties of active negative sampling and training, negative
samples augmentation methodology, boundary loss training,
and discriminator anomaly score, as presented in Table 1.

Improvement of OMASGAN compared to KLWGAN
for AD on CIFAR-10. Figure 10 shows the ablation studyUnd
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Figure 8. Ablation study of KLWGAN-based OMASGAN in AU-
ROC on MNIST: Impact of the losses on the AD performance.
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Figure 9. Comparison of KLWGAN-based OMASGAN to the f-
GAN-based OMASGAN using the LOO evaluation on MNIST.

of OMASGAN in AUROC using LOO. It shows the impact
of the losses on the performance. Our chosen base model,
KLWGAN, yields an AUROC of 0.57 averaged over all
classes and this increases to 0.64 using OMASGAN Task 3
and to 0.71 using the final OMASGAN. In reference to Ta-
ble 1, Figure 10 shows that the 0.14 AUROC improvement
is the contribution of our negative data augmentation and re-
training methodology. This is the benefit of active negative
and boundary loss training. The mean SD over all classes is
0.05, 0.05, and 0.06 for Task1, Task3, and OMASGAN.

Effect of selected inference mechanism. Following our
discussion in Section 5, the anomaly score for a test sample
x∗ is fD( δ ∗x , G′ ) and fD( δ ∗x , G ) if the OMASGAN model
is stopped at Task 3 and Task 1, respectively, in the ablation
study in Figures 8-10. Comparing OMASGAN to Tasks 1
and 3, the performance gradually improves and the use of
the discriminator J, as presented in Section 2, is beneficial.

5.5. Sensitivity Analysis to the Random Seed

Effect of initialization. Figure 11 shows the sensitivity of
the KLWGAN-based OMASGAN on CIFAR-10 to changes
to the seeds 0, 1, and 2. It shows the mean AUROC over
all seeds per LOO class, the AUROC for seed 2, and the
mean AUROC ± SD. The performance of OMASGAN in
AUROC yields a difference of 0.05 between seeds and the
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Figure 10. Ablation study of the KLWGAN-based OMASGAN in
AUROC using LOO on CIFAR-10: Benefit of our loss functions.
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Figure 11. Performance of OMASGAN on CIFAR-10 for seeds 0,
1, and 2. White box: The maximum value is the average AUROC
over seeds, while the minimum value is the AUROC for seed 2
(opposite for blue box). Whiskers show the mean AUROC ± SD.

average SD over all CIFAR-10 classes and seeds is 0.06.
This SD is lower than that of (Ruff et al., 2020), which is
0.1. On average, we set the seed to 2 and obtain more robust
AUROC values with lower SD compared to seeds 0 and 1.

6. Conclusion
We have proposed OMASGAN, a retraining methodology
for AD with negative sampling. Without likelihood, we gen-
erate OMAS samples and strong anomalies leveraging any f-
divergence, the KLWGAN divergence and the f-divergence
(Song & Ermon, 2020; Nowozin et al., 2016). We address
the rarity of anomalies problem and use data only from
the normal class. The evaluation outcomes on MNIST and
CIFAR-10, as well as on synthetic data, using the LOO
methodology show that OMASGAN achieves state-of-the-
art performance and outperforms the benchmarks. Using
AUROC, OMASGAN yields on average (a) an improve-
ment of at least 0.24 points on MNIST over the benchmarks,
achieving values of 0.85, (b) an improvement of at least
0.07 points on CIFAR-10 data, achieving values of 0.71,
and (c) high AUROC values for out-of-dataset anomalies.Und
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OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on
the Boundary

Supplementary Material
The discussions, explanations, experiments, and evaluations in this Supplementary Material are a continuation of the paper
“OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary”.

A. OMASGAN and Illustration of our Algorithm

G(z)

data x

B(z)

G'(z)

Abnormal

Figure 12. Illustration and pictorial representation of the proposed OMASGAN algorithm for AD.

In this section, we present an illustration of the proposed OMASGAN algorithm using the notation and the implicit generative
models introduced in Section 2 of the paper. This section is a continuation of Sections 2 and 3 on pages 1-5 of the paper.
Figure 12 depicts the main idea of the proposed OMASGAN algorithm. Following our discussion in Sections 1-3 of the
paper, OMASGAN first generates minimum-anomaly-score OoD samples created by our negative sampling augmentation
methodology and then performs active negative training for AD. OMASGAN performs model retraining and subsequently
trains a discriminator for AD using the generated samples on the boundary of the support of the data distribution.

In Figure 12, the data are denoted by x, the GAN-generated samples by G(z), the OMAS samples by B(z), and the
active-negative-training-based GAN samples after model retraining by G′(z). The samples x, G(z), B(z), and G′(z) all lie in
the data space, χ ∈ Rk, and we denote the latent space by Z ∈ Rl , where l << k. Both Figure 1 in this section and Figure 3
of the paper illustrate the minimum-anomaly-score OoD B(z) samples generated by the proposed OMASGAN model.

B. Implementation of OMASGAN
The proposed OMASGAN model is implemented in PyTorch, https://github.com/Anonymous-Author-2021/OMASGAN.
The Code Repository can be found in https://anonymous.4open.science/r/7ca4da73-0380-4a24-a640-4c60d29db9f4/.Und
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C. Evaluation of OMASGAN Trained on MNIST Data
The tables and figures in this section refer to Section 5 of the paper.

Table 2. Evaluation of the KLWGAN-based OMASGAN for AD using the AUROC metric, using abnormal out-of-dataset anomalies,
where the normality is MNIST digits 0-9 and the anomalous cases are from the Fashion-MNIST and KMNIST datasets.

MNIST FASHION-MNIST KMNIST

AUROC 0.84 0.71

Figure 13. Samples from the Fashion-MNIST dataset (Xiao et al., 2017).

Figure 14. Samples from the KMNIST dataset (Clanuwat et al, 2018).Und
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Figure 15. Samples from the MNIST image dataset (LeCun & Cortes, 2010).

D. Images from OMASGAN Task 1

Figure 16. Images from the normal class generated by the proposed f-GAN-based OMASGAN model from Task 1, trained on MNIST
data using the LOO evaluation methodology.
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E. Evaluation of OMASGAN Trained on CIFAR-10 Data

Table 3. Evaluation of the KLWGAN-based OMASGAN for AD using the AUROC metric, using OoD abnormal out-of-dataset anomalies,
where the normal cases are from the CIFAR-10 dataset (classes 0-9) and the abnormal/anomalous cases are from the SVHN dataset.

CIFAR-10 SVHN

AUROC 0.76

Figure 17. Samples from the SVHN dataset (Netzer et al., 2011).

Figure 18. Samples from the CIFAR-10 dataset (Krizhevsky, 2009).Und
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F. Images from OMASGAN Tasks 1 and 3

Figure 19. Images from the normal class generated by the proposed KLWGAN-based OMASGAN model from Task 1 (upper) and Task 3
(lower), trained on CIFAR-10 image data using the LOO evaluation methodology.Und
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