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Abstract—The ensemble-optimum support for a sample space-
time covariance matrix can be determined from the ground truth
space-time covariance, and the variance of the estimator. In this
paper we provide approximations that permit the estimation of
the sample-optimum support from the estimate itself, given a
suitable detection threshold. In simulations, we provide some
insight into the (in)sensitivity and dependencies of this threshold.

Index Terms—space-time covariance matrix, parahermitian
matrix, cross-correlation sequence, estimation.

I. INTRODUCTION

The space-time covariance matrix of a vector of M sensor
measurements x[n] ∈ CM , R[τ ] = E

{
x[n]xH[n− τ ]

}
,

where E{·} is the expectation operator, represents the data’s
second order statistics, and is therefore central in the formu-
lation of many broadband array processing problems. This
includes for example broadband MIMO systems [1], cod-
ing [2], beamforming [3], [4], source separation [5], angle
of arrival estimation [6], scene discovery [7], and many
others applications. Based on factorisations of its z-transform
R(z) =

∑
τ R[τ ]z−τ such as the polynomial eigenvalue

(EVD) [8]–[10], or singular value decompositions [8], [11],
well-known narrowband optimal solutions [12], [13] can be
directly extended to the broadband case.

For any of the above applications, the space-time covari-
ance matrix needs to be estimated from the measurements
x[n], and typically for a limited set of snapshots, say for
n = 0 . . . (N − 1), either due to the limited availability of
data, or the need to restrict the estimation to an interval
over which the data can be assumed to be stationary. While
various investigations have been undertaken into the accuracy
of the above decompositions [14], [15] and limiting factors
due to algorithm-internal order reductions [16]–[19] or the
conditioning of the underlying source model [20], it is only
recently that the estimation errors of R[τ ] [21] and their
impact on the factorisation of the parahermitian matrix EVD
of R(z) [22] have been investigated.

In the estimation of a sample covariance matrix R̂[τ ] from a
limited set of data, it is important to know over which support
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this estimate should be calculated as this direct impacts on
the error propagation and computational complexity of any
subsequent processing. As a byproduct of the analysis of the
variance of R̂[τ ], in [21], an optimum support was derived
based on the knowledge of R[τ ]. Since the ground truth
statistics are inaccessible in practise, in this paper we aim
to estimate the optimum support from the data over a given
sample set.

II. SAMPLE SPACE-TIME COVARIANCE MATRIX
ESTIMATION

Since the space-time covariance matrix is constructed of
cross-correlation sequences, its estimation reduces to the esti-
mation of these quantities. This section provides an overview
of the estimator and its variance by summarising results
from [21], [22].

A. Unbiased Estimator

Assuming ergodicity for two stationary signals xm[n] and
xµ[n], m,µ ∈ {1 . . .M}, their cross-correlation sequence
rmµ[τ ] is defined as

rmµ[τ ] = E
{
xm[n]x∗µ[n− τ ]

}
. (1)

An estimator for this quantity is

r̂mµ[τ ] =

{
1

N−τ
∑N−τ−1
n=0 xm[n+ τ ]x∗µ[n] , τ ≥ 0

1
N+τ

∑N+τ−1
n=0 xm[n]x∗µ[n− τ ] , τ < 0 ,

(2)

when applied to N snapshots in time of xm[n] and xµ[n]
for n = 0 . . . (N − 1). It is straightforward to show that the
estimator in (2) is unbiased, and for example for τ ≥ 0,

mean{r̂mµ[τ ]} = E{r̂mµ[τ ]}

=
1

N − τ

N−τ−1∑
n=0

E
{
xm[n]x∗µ[n− τ ]

}
=

1

N − τ

N−τ−1∑
n=0

rmµ[τ ] = rmµ[τ ] ,

i.e. the estimated quantity indeed tends towards the cross-
correlation sequence in (1).
Example. For the estimation of a cross-correlation produced
by mixing matrices of order 30 based on the source model
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Fig. 1. example for a cross-correlation sequence r12[τ ] and its estimate
r̂12[τ ] based on N = 103 snapshots of data.
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Fig. 2. Variance of the sample cross-correlation estimate shown in Fig. 1,
and an approximation based on a sample estimate r̂12[τ ] for |τ | ≤ 100.

in [23], Fig. 1 shows both the cross-correlation sequence r12[τ ]
and its estimate r̂12[τ ] for |τ | ≤ 100 using N = 103 snapshots
of data.

B. Variance of Estimation

The mismatch between the cross-correlation sequence in (1)
and its estimate in (2), as illustrated in the example of Fig. 1,
can be assessed by determining the variance of the estimator.
In [21], this has been derived as

var{r̂mµ[τ ]} =
1

(N−|τ |)2

N−|τ |−1∑
t=−N+|τ |+1

(N − |τ | − |t|)·

·
(
rmm[t]r∗µµ[t] + r̄mµ[τ + t]r̄∗mµ[τ − t]

)
(3)

for a sample size N , where r̄∗mµ[τ − t] = E{xm[n]xµ[n− τ ]}
is the complementary cross-correlation, which vanishes if the
data is complex-valued, circularly symmetric [24].
Example. For the cross-correlation sequence in Fig. 1 and
a sample size of N = 103 snapshots of complex-valued,
circularly symmetric data, Fig. 2 shows the evaluation of
var{r̂mµ[τ ]} according to (3) for |τ | ≤ 100.

C. Modelling Error

Using the above derivations for the variance of its con-
stituent components, the variance of the sample space-time
covariance estimate now becomes the target. The space-time
covariance matrix R[τ ] is assumed to have a support of length
2τmax + 1, i.e. R[τ ] = 0 ∀|τ | > τmax. With R̂[τ ] evaluated
over a support length of 2T + 1, we write its mismatch as

E[τ ] = R[τ ]− R̂[τ ] , (4)

and define a mean square error, termed the ensemble modelling
error, as

ξ = E

{ ∞∑
τ=−∞

‖E[τ ]‖2F

}

=

T∑
τ=−T

E
{
‖E[τ ]‖2F

}
︸ ︷︷ ︸

ξ1

+ 2

τmax∑
τ=T+1

‖R[τ ]‖2F︸ ︷︷ ︸
ξ2

. (5)

Of the two terms in (5), the first, ξ1, is an estimation error
due to (3), and the second, ξ2, forms a truncation error with
ξ2 = 0 for T ≥ τmax.

Based on (3), the ensemble estimation error ξ1 can be
written as

ξ1 =

T∑
τ=−T

M∑
m,µ=1

var{r̂mµ[τ ]} (6)

Therefore, the modelling error ξ depends only on the space-
time covariance matrix and its complement, the sample size
N , and the support of the estimate, T .

D. Ensemble-Optimum Support

The ensemble estimation error in (6) represents the expected
mean square value of the error E(z) •—◦ E[τ ] in (4), which
is directly linked to the perturbation of the eigenvalues and
eigenvectors of the parahermitian matrix EVD of R(z) when
based on a sample estimate R̂(z) [22]. With knowledge of the
exact R(z) and the sample size N , the support providing the
minimum mean squared modelling error across the ensemble
is given by

Tensemble, opt = arg min
T
ξ . (7)

In [21], Tensemble, opt has been explored as a trade-off between
the terms ξ1 and ξ2. With ξ2 = 0 for T > τmax and ξ1 growing
with increasing T , Tensemble, opt < τmax, i.e. generally the
ensemble-optimum support of the estimate will be shorter than
the support of R[τ ].

III. SUPPORT ESTIMATION

A. Preliminary Consideration

To find a practical tool for determining the support of a
sample space-time covariance matrix, the ensemble-optimum
support in (7) raises two issues. Firstly, R[τ ] is not known
and secondly, ξ and ξ1 in (5) are ensemble averages. For an
individual sample space-time covariance matrix estimate R̂[τ ],
its modelling error is ξ̂ = ξ̂1 + ξ2, such that ξ1 = E{ξ̂1}. As
a result, for an individual ensemble probe, we can generally
find a better local support Topt obtained via

Topt = arg min
T
ξ̂ . (8)

While Topt will be based on the knowledge of both R[τ ]
and the specific estimate R̂[τ ], below we aim to find an
approximation, T̂opt that is solely based on R̂[τ ].



B. Idea

If (3) is defined as an operation

var{r̂mµ[τ ]} = f(rmµ[τ ], N) , (9)

and r̂
(T )
mµ [τ ] is a sample estimate with support 2T + 1, such

that r̂(T )
mµ [τ ] = 0 ∀|τ | > T is assumed, then we find that for

sufficiently large T , (9) can be very roughly approximated by

f(r̂(T )
mµ [τ ], N) ∼ f(rmµ[τ ], N) ,

i.e. instead of the inaccessible ground truth, the variance of
the estimation can be based on the sample estimate itself.

Example. As empirical evidence, when using r12[τ ]

and its sample estimate r̂
(100)
12 [τ ] from Fig. 1, in addi-

tion to var{r̂12[τ ]} = f(r12[τ ], N), Fig. 2 also shows
f(r̂

(100)
12 [τ ], N), which behaves very similarly, and therefore

can provide a rough approximation to var{r̂12[τ ]}.
Since the ensemble estimation error, ξ1, can be calculated

from var{r̂mµ[τ ]} according to (6), it can now also roughly
be based on f(r̂

(T )
mµ [τ ], N). Instead of focusing on the overall

estimation error, we only consider the error within a tail
section of the estimate,

χ1[T ] =
∑
m,µ

T+T0∑
τ=T+1

f(r̂(T )
mµ [τ ], N) . (10)

Note that χ1[T ] roughly approximates an estimation error
portion for an estimate of larger support, r̂(T+T0)

mµ [τ ], measured
over the range T ≤ |τ | ≤ T + T0.

If we consider the energy in the tail section of an estimate
r
(T+T0)
mµ [τ ] of increased support, then

χ2[T ] =
∑
m,µ

T+T0∑
τ=T+1

|r(T+T0)
mµ [τ ]|2 (11)

will contain a portion of the estimation error, but also include
a term that would otherwise have been truncated in r̂(T )

mµ [τ ] if
T was too short. Therefore the comparison of χ1[T ] and χ2[T ]
enables us to detect if a truncation error has been incurred, in
the case of the support T of r̂(T )

mµ [τ ] being too restrictive.

C. Hypothesis Test and Ratio of Variances

The reasoning in Sec. III-B leads to the hypotheses

H0 : χ1[T ] ∼ χ2[T ]

H1 : χ1[T ]� χ2[T ] ,

i.e. H0 hypothesises that only an estimation error is incurred,
while H1 indicates an additional truncation error. A value T at
the boundary between H0 and H1 can then provide an estimate
T̂opt for the optimum support Topt in (8).

To find the boundary between the hypotheses, and therefore
T̂opt, here the behaviour of the ratio γ[T ] = χ2[T ]/χ1[T ]
is inspected. Thus, H0 is accepted for γ[T ] ∼ 1, while H1

requires γ[T ]� 1.
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Fig. 3.(a) ratio with threshold selection by a Kσ-pipe based on a single sample
set, and (b) optimum support based on ground truth R[τ ] and estimate R̂[τ ]
with support 2T + 1.

D. Threshold Determination

Given the often rough approximations made in Sec. III-B,
the selection of a suitable threshold in determining the switch
between the two hypotheses in Sec. III-C is key. The proposed
approach is based on inspecting γ[T ] for sufficiently high
values of T , say beyond a value T1, which are bound to exceed
the support of R[τ ], or at least ensure that any elements of
R[τ ] will be small compared to an estimation error. Over a
range of values T1 ≤ τ ≤ 2T1, we determine (i) a linear least
squares fit γ1[T ] to γ[T ], such that

∑2T1

T=T1
|γ[T ]− γ1[T ]|2 is

minimised, and (ii) the standard deviation σ of γ[T ] w.r.t. this
linear fit γ1[T ]. We then check whether for smaller values of
T , i.e. T < T1, values of γ[T ] fall outside a pipe of width Kσ
around this linear fit, and estimate the optimum support as

T̂opt = arg max
T

T s.t. γ[T ] > γ1[T ] +Kσ , (12)

with K yet to be determined.
Example. The approach is exemplified in Fig. 3(a), where

T1 = 50, and γ[T ] as well as the linear fit with a pipe of width
Kσ, here for K = 5, are shown. In this case, T̂opt = 14. With
exact knowledge of R[τ ], and given the sample estimate R̂[τ ],
we can exactly determine the modelling and truncation errors
ξ̂ and ξ2, and therefore the estimation error ξ̂1, displayed in
Fig. 3(b). The search for a minimum of ξ̂ according to (8) for
this example yields Topt = 10. In this case, a more accurate
value for T̂opt could have been obtained for a wider pipe,
i.e. for a larger value of K.

While there are statistical approaches for hypothesis testing
of ratios of variances such as the F -test [25], their application
is currently unclear, as e.g. successive ratios γ[T ] in Fig. 3(a)
are not independent. Therefore, K is maintained as a variable,
and we will explore different values for this parameter when
assessing the approach in simulations in the following section.



IV. SIMULATIONS, RESULTS, AND DISCUSSION

A. Metrics

Support Mismatch. Since the aim of the proposed approach
is to determine the support of R̂[τ ], a first performance metric
is the support mismatch ∆T between the ideal and estimated
values in (8) and (12),

∆T = Topt − T̂opt .

A positive value for ∆T means underestimation, ∆T < 0
overestimation of Topt. The effect of over- vs underestimation
on the modelling error is unequal; e.g. Fig. 3 demonstrates that
underestimation results generally in a greater modelling error
ξ̂ than overestimation. Therefore, the statistics of ∆T when
averaged over an ensemble can be somewhat misleading.

Normalised Modelling Error Difference. Since analogously
to the example in Fig. 3, the exact modelling error ξ is known,
we can find the minimum squared modelling error ξ̂min for the
optimum support Topt and the modelling error ξ̂est obtained
with the estimated support T̂opt,

ξ̂min =
∑
m,µ,τ

|rmµ[τ ]− r̂(Topt)
mµ [τ ]|2

ξ̂est =
∑
m,µ,τ

|rmµ[τ ]− r̂(T̂opt)
mµ [τ ]|2 .

Normalising the difference such that

ξ̂norm =
ξ̂est − ξ̂min∑

m,µ,τ
|rmµ[τ ]|2

creates a metric that is somewhat independent of a specific
R[τ ], such that results become comparable across an ensemble
of different realisations of R[τ ].

B. Fixed Vs Variable Model

The source model in [23] of order 30 has been used to
provide a ground truth space-time covariance matrix R[τ ] ∈
C2×2 and generate the data from which an estimate R̂[τ ] can
be built. In a first simulation, a fixed source model generates
103 data sets, each of size N = 103. Running the proposed
approach with a variety of pipe widths for setting the threshold
to identify T̂opt provides a distribution of values for the metrics
∆T and ξ̂norm that are presented in Fig. 4. On average the best
result for ξ̂norm is achieved for K ≈ 8, but the metrics do not
appear to be too sensitive w.r.t. to this threshold.

For a randomised source model of order 30, also with
M = 2 and generating N = 103 snapshots each, Fig. 5 shows
the distribution of evaluated metrics over an ensemble of 103

instantiations. The results are similar to those in Fig. 4 but with
lower ξ̂; to exclude the impact of ‘unlucky’ (or potentially
in other cases ‘lucky’) picks in terms of a source model,
the remaining simulations are performed using a randomised
source model.
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Fig. 4. Ensemble metrics for fixed model with M = 2 and N = 103.
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Fig. 5. Ensemble metrics for variable model, with M = 2, N = 103.

C. Impact of Spatial Dimension

When increasing the spatial dimension from M = 2 to
M = 6, it might be expected that the summation over an
increased number of terms in (10) and (11) leads to an
enhanced averaging of γ[T ], with a possible reduction of the
pipe width Kσ for a decision threshold. However, the results
over an ensemble of 1000 source models in Fig. 6 suggest
no change in the statistics of the metrics, and a threshold of
K ≈ 8 provides the lowest average modelling error.

D. Impact of Sample Size

Fig. 7 shows the results for an ensemble of 103 source
models for M = 2 when increasing the sample size to
N = 104. In this case, the variance of the estimate is reduced,
thus also reducing the modelling error. Note that in general,
the modelling error drops by almost an order of magnitude
compared to the case {M = 2, N = 103} in Fig. 5. With
a lower variance of the estimates, the ratio γ1[T ] is also
stabilised, such that in average the lowest modelling error is
achieved for K ≈ 4, i.e. with half the pipe width compared
to the cases of N = 103.
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Fig. 6. Ensemble metrics for variable model, with M = 6, N = 103.

1 2 3 5 10 20 30 50
10

-4

10
-3

10
-2

10
-1

1 2 3 5 10 20 30 50

-20

-10

0

10

Fig. 7. Ensemble metrics for variable model, with M = 2, N = 104.

Overall, this demonstrates that the selection of K is not too
sensitive, but that an optimisation of the threshold for at least
different sample sizes N need to be made.

V. CONCLUSIONS

Based on previous exact analysis of the variance of sam-
ple space-time covariance matrix estimation, this paper has
presented an empirical approach to the estimation of the
support for such matrices. Inaccessible quantities such as the
exact space-time covariance matrix, on which an optimum
support selection would be based, are replaced by estimated
quantities as approximations. A drawback of the proposed
approach requires the computation of estimates of the space
time covariance matrix over substantially more lags than
will ultimately be selected as support. Also, a statistically-
motivated determination of the threshold has not been derived
yet.

Nonetheless, simulation results demonstrate reasonable per-
formance in terms of the achieved modelling error, and some
insensitivity to the precise selection of the decision threshold
for the estimated support, compared to what is achievable by
with an optimum support selection based on knowledge of the
ground truth.
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