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ABSTRACT

Estimation errors are incurred when calculating the sample
space-time covariance matrix. We formulate the variance of
this estimator when operating on a finite sample set, compare
it to known results, and demonstrate its precision in simula-
tions. The variance of the estimation links directly to previ-
ously explored perturbation of the analytic eigenvalues and
eigenspaces of a parahermitian cross-spectral density matrix
when estimated from finite data.

Index Terms— Space-time covariance, estimation, para-
hermitian matrix EVD, polynomial matrices.

1. INTRODUCTION

A parahermitian matrix — typically a cross-spectral density
(CSD) matrix emerging as the z-transform of a space-time
covariance matrix — can be decomposed into a product of
analytic paraunitary matrices and a diagonalised parahermi-
tian matrix [1] with few exceptions [2]. A spectrally ma-
jorised, not necessarily analytic version of this factorisation
is the McWhirter decomposition [3], which approximates the
factorisation by polynomial paraunitary and diagonal para-
hermitian matrices. A number of algorithms for the latter
have emerged [3—10] and in turn triggered various applica-
tions ranging from broadband multiple-input and multiple-
output (MIMO) systems [11, 12], to coding [13], beamform-
ing [14, 15], source separation [16] and angle of arrival esti-
mation [17, 18], to name but a few.

In applications, the space-time covariance or the CSD ma-
trix generally have to be estimated from data. While the accu-
racy of the decomposition itself has been investigated in [19,
20], and limiting factors due to algorithm-internal order re-
ductions [8,21-23] and the conditioning of the underlying
source model [24] are known, it is only recently that the ef-
fect of estimating the space time covariance matrix from a
finite data set has been addressed [25]. While [25] linked the
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estimation error to the perturbation of the eigenvectors and
eigenspaces of the CSD matrix, the formulation of this esti-
mation error had still been missing.

This paper aims to close the gap, in order to link eigen-
value and -space perturbations directly to the variance of sam-
ple space-time covariance. To date, results have been derived
for the broadband single channel case, i.e. for the sample
auto-correlation sequence. Various attempts have been under-
taken for random signals that can be modelled as first order
auto-regressive processes [26,27], or generally [28,29]. For
the broadband case, analysis has generally been restricted to
narrowband signals, such that the spatial covariance matrix is
Wishart distributed [30,31]. We derive the variance of a sam-
ple cross-correlation sequence, which then forms the building
block for the sample space-time covariance. Particularisation
of our results agree with [28,30,31] and results from spectral
estimation such as [32].

We commence with a definition of the space-time covari-
ance matrix, and review its properties and matrix factorisation
in Sec. 2. In Sec. 3 we analyse the sample cross-correlation
sequence, which expands to the space-time covariance in
Sec. 4, followed by experimental verification in Sec. 5.

2. SPACE-TIME COVARIANCE MATRIX AND
PARAHERMITIAN MATRIX EVD

2.1. Space-Time Covariance

Given M sensor measurements x,,[n], m = 1...M, or-
ganised in a vector x[n] = [z1[n]...zm[n]]", the space-
time covariance matrix of the data is defined as R[r] =
E{x[n]x"[n — 7]}, with £{-} the expectation operator. The
source model or innovation filter [33] in Fig. 1 ties this data
vector x[n] to L zero-mean unit-variance mutually inde-
pendent complex circularly symmetric Gaussian sources g,
¢ = 1...L, such that E{wg[n|u,[n — 7]} = §[7]d[¢ — V]
for v = 1...L [34]. As a result, the space-time covariance
matrix can be expressed as

R[r] =) Hln/H"[n - 7],
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Fig. 1. Source model for M convolutively mixed signals aris-
ing from L independent unit-variance zero-mean sources.

where H[n] € CM*L is a matrix of filters. If the entry in
the mth row and ¢th column of H[n] represents the impulse
response h,¢[n], then

Poou[T ZZW hjuln — 7] (1)

n (=1

is a cross-correlation sequence that occupies the mth row and
pth column of R[7], with {-}* denoting complex conjugation.

2.2. Cross-Spectral Density

Since the space-time covariance matrix comprises auto- and
cross-correlation sequences, it satisfies the symmetry R[7] =
RH[—7]. Tts z-transform, the cross-spectral density (CSD)
matrix R(z) = > _RI[r]z77 — or short R(z) e—o R][7] to
denote a transfom pair — therefore is a parahermitian matrix,
such that its parahermitian transpose, denoted by the operator
{-}F, is equal to itself: R"(z) = R™(1/2*) = R(2) [35].

2.3. Parahermitian Matrix EVD

A parahermitian, analytic R(z) admits a parahermitian matrix
EVD (PhEVD) [1]

R(z) = U(2)A(2)U(z) , ()

where U(z) is a paraunitary matrix of eigenvectors and A(z)
is a diagonal parahermitian matrix of eigenvalues. In most
standard cases, these factors can be selected to be analytic [2].
This is closely related to the McWhirter decomposition [3],
where the factors U (z) and a spectrally majorised A(z) are
approximated by polynomials, i.e. are of finite order, while
the terms on the r.h.s. of (2) are generally algebraic or tran-
scendental.

If the space time covariance matrix is estimated from a
finite set of samples, the obtained matrix R[r] o—e R(z)
will differ from R(z). Similarly, the PAEVD R(z) =
U(2)A(2)UP(2) will deviate from that in (2). In [25], the
norm of the modelling error

E(z) = R(z) — R(z) 3)

was linked to the deviation in the eigenvalues, i.e. the differ-
ence between A(z) and A(z). The perturbation of the sub-
space angle between a particular eigenspace of U (z) and of

U (z) can in turn be linked to the norm of E(z) and the dis-
tance to the nearest eigenvalue, i.e. near eigenvalues with al-
gebraic multiplicity greater than one, subspaces can undergo
a larger perturbation [25].

3. SAMPLE CROSS-CORRELATION SEQUENCE

In applications, the space-time covariance matrix must be es-
timated from data. If only a set of N snap-shots of x[n],
n = 0...(N — 1), is available, then generally the estimate
for the space-time covariance matrix, R[T], will be prone to
estimation errors. Since the cross-correlation sequence in (1)
is the most general entry of the space-time covariance matrix,

we focus on its estimation in order to explore the estimation
of R[7].

3.1. Unbiased Estimator

The cross-correlation sequence between two signals 2, [n]
and z,[n], m, € {1... M}, is defined as
zin—7]} . 4)

Tmu [T 5{$m

Assuming ergodicity and therefore by implication stationarity
for the involved signals, the estimation of r,,,,[7] over a set of
N time snapshots,

N—|7|-1
) S 20 Tp[n+Tlzyn), >0
Tmu,['r} = N1L|:'\71 (5)
N+M Z:() an[TL]I;[TL - T] , T< 0

can be shown to be unbiased. For example for 7 > 0,

mean{7p,,[7]} = E{Pmu(7]}

1 N—-1—-1
== ] ngo E{xm[n]x#[nfﬂ}
1 N—7—1
= Tmup|T T'mpu )
N g ul7] = 7]

i.e. the quantity estimated via (5) tends towards the true cross-
correlation sequence defined in (4).

3.2. Variance

The variance of the cross-correlation sequence estimator is
given by
var{Pp 7]} = E{(FrmplT]

- rmu [T rpl7] = rmul7])"}

25{72771“ } M } g{rmu[ﬂ}r* M[T}_
— Tmp [T]E{ } + Tmu[ }rmu [T]
= 5{7”,,1# } #[ ]} - 7am;L [T]T.;kn,u [T} N (6)



Inserting the estimation in (5) into (6), we obtain fourth order
terms. For Gaussian signals, the cumulants of order three and
above are zero [36, 37], which also holds for the complex-
valued case [38], such that

E{wm[n)a}[n — T]a), [n]x,n — 7]} =
E{zmln]zyIn — 7]} - E{a), [n]zu[n — 7]}

+ &{wm[n]ar,Inl} - E{a)[n — ]zl — ]}
—I—E{xm[n]xu[n—ﬂ}-E{x;[n—T]xfn[n]} )

Therefore, for 7 > 0, the variance of the estimator in (5)
becomes
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The same result can be obtained for 7 < 0, and matches re-

sults reached in [32].
Note that the first term in (7) can be simplified as

N—|r|-1
N—|r|-1

= Y (Elenlnlanln— (n—v)}-

- E{ap[nleuln — (n—v)]})

N—|r]-1

= Z Tm[n — vy, [n — V]
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t=—N+|7|+1

A similar method works for the second term in (7). With
FplT] = E{@m[n]z,[n — 7]} denoting the complementary
cross-correlation sequence, the variance of the sample cross-
correlation sequence becomes

1 N—|7|-1
var{f (7]} = N2 Z (N =[] = [¢])-
t=—N+|7|+1

’ (Tmm [t]r:lu [t] + 7:m,,u [T + t]f;knu [T - t]) .
®)

wy[n — T]})

If u[n] is complex valued with a circularly symmetric dis-
tribution, then given the source model in Fig. 1, 7y, [7] =
0 V7 € Z. Nevertheless, we continue to carry the term in
order to particularise the result in (8) to the real valued case.

3.3. Particularisation

The result in (8) generalises a number of solutions reported in
the literature. If u[n] € RY and m = p, then (8) simplifies to

1 N—|7|-1
var{7mm[7]} = m Z (N =[] = [¢])-
t=—N+|7|+1

. (|rmm[t}|2+Tmm[7+t]rmm[7—t]) )

This matches with the result reported in [28].

If the transfer function H (z) o—e H[n] is a constant ma-
trix, H (z) = Hy, then the signals x,,[n] and z,[n] only have
non-zero correlation for the instant case 7 = 0. If further
u[n] € R and Hy € RM*L | then the space-time covariance
R[r] = HoH{§[] is Wishart-distributed. For the instanta-
neous and real case, (8) simplifies to

var{ 0]} = % (P 0] [0] + [Py 0]2)

which indeed matches the variance of a Wishart distribution.

4. SAMPLE SPACE-TIME COVARIANCE

4.1. Sample Space-Time Covariance Error

Assume that the space-time covariance matrix has support of
length 27, + 1, i.e. R[7] = O V|7| > Tinax. Further as-
sume that R[T] is estimated over a support length of 27" + 1.
Abbreviating E[7] = R[r] — R|[7], the mean square error is

€=5{ > IE[T]I%}

T=—00

Tmax

Z EIEFIZY + 2 ) IR[FIE,

r=—T T=T+1

&1 &2

where the first term, &1, is an estimation error due to (8), while
the second term, &», represents a truncation error. Note that
& =0if T > Thax.

For the estimation error, using (8),

T M
=YY var{Fmu[r]}

T=—T m,u=1
N—|r|—-1

>y M e

T=—T t=—N+|7|+1
+ vec{R[r — t]}vec{R[T + 1) ., ©
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Fig. 2. (top) ground truth and mean sample cross-correlation
sequence, and (bottom) its variance, both calculated accord-
ing to (8) and estimated from real valued data.

where the operator vec{-} vectorises its argument and T is
the support of the estimate. Therefore, the modelling error £
depends only on the space-time covariance matrix itself, the
sample size N, and the support of the estimate, 7.

4.2. Optimum Support Length

Note that (9) also presents a formulation for the expected
mean square value of the error E(z) e—o E[7] in (3), which
forms the basis for the perturbation analysis of the eigenval-
ues and eigenvector in [25]. Since the sample size N and the
specific ground truth R[7] are given for a particular problem,
the only way to minimise this perturbation is the judicious
selection of the range of lags, || < T, over which R][7] is
evaluated. The optimum value T for T" in terms of the min-
imum perturbation is therefore

Topt = argmin{ .
T

In general, this will be a trade-off between the terms &; and
&s. Since T' > Tyax leads to & = 0, and & generally grows
with increasing T', we find T{,py < Tmax, 1.€. it appears better
to underestimate than to overestimate the support of R[7] in
practise.

5. SIMULATIONS AND RESULTS

We first demonstrate the accuracy of (8) for the variance of
a sample cross-correlation sequence. For an arbitrary given
cross-correlation by means of an innovation filter model of
order 5 with a single source, . = 1 in Fig. 1 and (1), for
N = 100 the theoretical (8) is compared to the mean variance
over an ensemble of size 10* in Figs. 2 and 3 for a real- and
complex-valued scenarios.

To check the accuracy of the expected estimation error
(9), an R|[7] of order 100 is generated by the source model

in [7]. Fig. 4 compares results over an ensemble of 10* sam-
ple sets, each L = 500 long, to the theoretical values. These
match well, and also demonstrate that in this case Ty, = 10
is significantly shorter than 7,,, = 50.

6. CONCLUSIONS

This paper has investigated the dependencies of the modelling
error that is incurred when estimating a space-time covariance
matrix from a finite sample set — this is affected by the size
of the set, but also the ground truth space-time covariance ma-
trix. The derived expressions match what has previously been
identified for sample auto-correlation sequences for the case
of temporal correlation only, and to the Wishart distribution
in the case of spatial correlation only; in simulations, we have
also demonstrated a close match to experiments.

The mean square modelling error is a metric that has pre-
viously been established in [25] to perturb the eigenvalues and
eigenspaces of the space-time covariance matrix; therefore,
the results, particularly (9), now directly link this perturba-
tion to the sample size and the ground truth matrix.
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Fig. 3. Complex valued equivalent to Fig. 2, with (top) real
part, (middle) imaginary part, and (bottom) variance.
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