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ABSTRACT

Estimation errors are incurred when calculating the sample
space-time covariance matrix. We formulate the variance of
this estimator when operating on a finite sample set, compare
it to known results, and demonstrate its precision in simula-
tions. The variance of the estimation links directly to previ-
ously explored perturbation of the analytic eigenvalues and
eigenspaces of a parahermitian cross-spectral density matrix
when estimated from finite data.

Index Terms— Space-time covariance, estimation, para-
hermitian matrix EVD, polynomial matrices.

1. INTRODUCTION

A parahermitian matrix — typically a cross-spectral density
(CSD) matrix emerging as the z-transform of a space-time
covariance matrix — can be decomposed into a product of
analytic paraunitary matrices and a diagonalised parahermi-
tian matrix [1] with few exceptions [2]. A spectrally ma-
jorised, not necessarily analytic version of this factorisation
is the McWhirter decomposition [3], which approximates the
factorisation by polynomial paraunitary and diagonal para-
hermitian matrices. A number of algorithms for the latter
have emerged [3–10] and in turn triggered various applica-
tions ranging from broadband multiple-input and multiple-
output (MIMO) systems [11, 12], to coding [13], beamform-
ing [14, 15], source separation [16] and angle of arrival esti-
mation [17, 18], to name but a few.

In applications, the space-time covariance or the CSD ma-
trix generally have to be estimated from data. While the accu-
racy of the decomposition itself has been investigated in [19,
20], and limiting factors due to algorithm-internal order re-
ductions [8, 21–23] and the conditioning of the underlying
source model [24] are known, it is only recently that the ef-
fect of estimating the space time covariance matrix from a
finite data set has been addressed [25]. While [25] linked the
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estimation error to the perturbation of the eigenvectors and
eigenspaces of the CSD matrix, the formulation of this esti-
mation error had still been missing.

This paper aims to close the gap, in order to link eigen-
value and -space perturbations directly to the variance of sam-
ple space-time covariance. To date, results have been derived
for the broadband single channel case, i.e. for the sample
auto-correlation sequence. Various attempts have been under-
taken for random signals that can be modelled as first order
auto-regressive processes [26, 27], or generally [28, 29]. For
the broadband case, analysis has generally been restricted to
narrowband signals, such that the spatial covariance matrix is
Wishart distributed [30,31]. We derive the variance of a sam-
ple cross-correlation sequence, which then forms the building
block for the sample space-time covariance. Particularisation
of our results agree with [28,30,31] and results from spectral
estimation such as [32].

We commence with a definition of the space-time covari-
ance matrix, and review its properties and matrix factorisation
in Sec. 2. In Sec. 3 we analyse the sample cross-correlation
sequence, which expands to the space-time covariance in
Sec. 4, followed by experimental verification in Sec. 5.

2. SPACE-TIME COVARIANCE MATRIX AND
PARAHERMITIAN MATRIX EVD

2.1. Space-Time Covariance

Given M sensor measurements xm[n], m = 1 . . .M , or-
ganised in a vector x[n] = [x1[n] . . . xm[n]]

T, the space-
time covariance matrix of the data is defined as R[τ ] =
E
{
x[n]xH[n− τ ]

}
, with E{·} the expectation operator. The

source model or innovation filter [33] in Fig. 1 ties this data
vector x[n] to L zero-mean unit-variance mutually inde-
pendent complex circularly symmetric Gaussian sources u`,
` = 1 . . . L, such that E{u`[n]uν [n− τ ]} = δ[τ ]δ[` − ν]
for ν = 1 . . . L [34]. As a result, the space-time covariance
matrix can be expressed as

R[τ ] =
∑
n

H[n]HH[n− τ ] ,



u1[n] x1[n]

uL[n] xM [n]

H[n]
...

...

Fig. 1. Source model for M convolutively mixed signals aris-
ing from L independent unit-variance zero-mean sources.

where H[n] ∈ CM×L is a matrix of filters. If the entry in
the mth row and `th column of H[n] represents the impulse
response hm`[n], then

rmµ[τ ] =
∑
n

L∑
`=1

hm`[n]h∗µ`[n− τ ] (1)

is a cross-correlation sequence that occupies the mth row and
µth column of R[τ ], with {·}∗ denoting complex conjugation.

2.2. Cross-Spectral Density

Since the space-time covariance matrix comprises auto- and
cross-correlation sequences, it satisfies the symmetry R[τ ] =
RH[−τ ]. Its z-transform, the cross-spectral density (CSD)
matrix R(z) =

∑
τ R[τ ]z−τ — or short R(z) •—◦ R[τ ] to

denote a transfom pair — therefore is a parahermitian matrix,
such that its parahermitian transpose, denoted by the operator
{·}P, is equal to itself: RP(z) = RH(1/z∗) = R(z) [35].

2.3. Parahermitian Matrix EVD

A parahermitian, analytic R(z) admits a parahermitian matrix
EVD (PhEVD) [1]

R(z) = U(z)Λ(z)UP(z) , (2)

where U(z) is a paraunitary matrix of eigenvectors and Λ(z)
is a diagonal parahermitian matrix of eigenvalues. In most
standard cases, these factors can be selected to be analytic [2].
This is closely related to the McWhirter decomposition [3],
where the factors U(z) and a spectrally majorised Λ(z) are
approximated by polynomials, i.e. are of finite order, while
the terms on the r.h.s. of (2) are generally algebraic or tran-
scendental.

If the space time covariance matrix is estimated from a
finite set of samples, the obtained matrix R̂[τ ] ◦—• R̂(z)

will differ from R(z). Similarly, the PhEVD R̂(z) =

Û(z)Λ̂(z)ÛP(z) will deviate from that in (2). In [25], the
norm of the modelling error

E(z) = R(z)− R̂(z) (3)

was linked to the deviation in the eigenvalues, i.e. the differ-
ence between Λ(z) and Λ̂(z). The perturbation of the sub-
space angle between a particular eigenspace of U(z) and of

Û(z) can in turn be linked to the norm of E(z) and the dis-
tance to the nearest eigenvalue, i.e. near eigenvalues with al-
gebraic multiplicity greater than one, subspaces can undergo
a larger perturbation [25].

3. SAMPLE CROSS-CORRELATION SEQUENCE

In applications, the space-time covariance matrix must be es-
timated from data. If only a set of N snap-shots of x[n],
n = 0 . . . (N − 1), is available, then generally the estimate
for the space-time covariance matrix, R̂[τ ], will be prone to
estimation errors. Since the cross-correlation sequence in (1)
is the most general entry of the space-time covariance matrix,
we focus on its estimation in order to explore the estimation
of R[τ ].

3.1. Unbiased Estimator

The cross-correlation sequence between two signals xm[n]
and xµ[n], m,µ ∈ {1 . . .M}, is defined as

rmµ[τ ] = E
{
xm[n]x∗µ[n− τ ]

}
. (4)

Assuming ergodicity and therefore by implication stationarity
for the involved signals, the estimation of rmµ[τ ] over a set of
N time snapshots,

r̂mµ[τ ] =


1

N−|τ |

N−|τ |−1∑
n=0

xm[n+ τ ]x∗µ[n] , τ ≥ 0

1
N−|τ |

N−|τ |−1∑
n=0

xm[n]x∗µ[n− τ ] , τ < 0

(5)

can be shown to be unbiased. For example for τ ≥ 0,

mean{r̂mµ[τ ]} = E{r̂mµ[τ ]}

=
1

N − |τ |

N−τ−1∑
n=0

E
{
xm[n]x∗µ[n− τ ]

}
=

1

N − |τ |

N−τ−1∑
n=0

rmµ[τ ] = rmµ[τ ] ,

i.e. the quantity estimated via (5) tends towards the true cross-
correlation sequence defined in (4).

3.2. Variance

The variance of the cross-correlation sequence estimator is
given by

var{r̂mµ[τ ]} = E{(r̂mµ[τ ]− rmµ[τ ])(r̂mµ[τ ]− rmµ[τ ])∗}
= E

{
r̂mµ[τ ]r̂∗mµ[τ ]

}
− E{r̂mµ[τ ]} r∗mµ[τ ]−

− rmµ[τ ]E
{
r̂∗mµ[τ ]

}
+ rmµ[τ ]r∗mµ[τ ]

= E
{
r̂mµ[τ ]r̂∗mµ[τ ]

}
− rmµ[τ ]r∗mµ[τ ] . (6)



Inserting the estimation in (5) into (6), we obtain fourth order
terms. For Gaussian signals, the cumulants of order three and
above are zero [36, 37], which also holds for the complex-
valued case [38], such that

E
{
xm[n]x∗µ[n− τ ]x∗m[n]xµ[n− τ ]

}
=

E
{
xm[n]x∗µ[n− τ ]

}
· E{x∗m[n]xµ[n− τ ]}

+ E{xm[n]x∗m[n]} · E
{
x∗µ[n− τ ]xµ[n− τ ]

}
+ E{xm[n]xµ[n− τ ]} · E

{
x∗µ[n− τ ]x∗m[n]

}
.

Therefore, for τ ≥ 0, the variance of the estimator in (5)
becomes

var{r̂mµ[τ ]} =
1

(N−|τ |)2

N−|τ |−1∑
n,ν=0

(
E
{
xm[n+τ ]x∗µ[n]

}
·

· E{x∗m[ν+τ ]xµ[ν]}+

+ E{xm[n+ τ ]x∗m[ν + τ ]} E
{
x∗µ[n]xµ[ν]

}
+ E{xm[n+ τ ]xµ[ν]} E

{
x∗µ[n]x∗µ[ν + τ ]

})
− rmµ[τ ]r∗mµ[τ ]

=
1

(N−|τ |)2

N−|τ |−1∑
n,ν=0

(E{xm[n]x∗m[ν]} ·

·E
{
x∗µ[n]xµ[ν]

}
+

+ E{xm[n]xµ[ν − τ ]} E
{
x∗m[ν]x∗µ[n− τ ]

})
.

(7)

The same result can be obtained for τ < 0, and matches re-
sults reached in [32].

Note that the first term in (7) can be simplified as
N−|τ |−1∑
n,ν=0

(
E{xm[n]x∗m[ν]} E

{
x∗µ[n]xµ[ν]

})
=

N−|τ |−1∑
n,ν=0

(E{xm[n]x∗m[n− (n− ν)]} ·

· E
{
x∗µ[n]xµ[n− (n− ν)]

})
=

N−|τ |−1∑
n,ν=0

rmm[n− ν]r∗µµ[n− ν]

=

N−|τ |−1∑
t=−N+|τ |+1

(N − |τ | − |t|)rmm[t]r∗νν [t] .

A similar method works for the second term in (7). With
r̄mµ[τ ] = E{xm[n]xµ[n− τ ]} denoting the complementary
cross-correlation sequence, the variance of the sample cross-
correlation sequence becomes

var{r̂mµ[τ ]} =
1

(N−|τ |)2

N−|τ |−1∑
t=−N+|τ |+1

(N − |τ | − |t|)·

·
(
rmm[t]r∗µµ[t] + r̄mµ[τ + t]r̄∗mµ[τ − t]

)
.

(8)

If u[n] is complex valued with a circularly symmetric dis-
tribution, then given the source model in Fig. 1, r̄xy[τ ] =
0 ∀τ ∈ Z. Nevertheless, we continue to carry the term in
order to particularise the result in (8) to the real valued case.

3.3. Particularisation

The result in (8) generalises a number of solutions reported in
the literature. If u[n] ∈ RL and m = µ, then (8) simplifies to

var{r̂mm[τ ]} =
1

(N−|τ |)2

N−|τ |−1∑
t=−N+|τ |+1

(N − |τ | − |t|)·

·
(
|rmm[t]|2 + rmm[τ + t]rmm[τ − t]

)
.

This matches with the result reported in [28].
If the transfer function H(z) ◦—• H[n] is a constant ma-

trix, H(z) = H0, then the signals xm[n] and xµ[n] only have
non-zero correlation for the instant case τ = 0. If further
u[n] ∈ RL and H0 ∈ RM×L, then the space-time covariance
R[τ ] = H0H

T
0 δ[τ ] is Wishart-distributed. For the instanta-

neous and real case, (8) simplifies to

var{r̂mµ[0]} =
1

N

(
rmm[0]rµµ[0] + |rmµ[0]|2

)
,

which indeed matches the variance of a Wishart distribution.

4. SAMPLE SPACE-TIME COVARIANCE

4.1. Sample Space-Time Covariance Error

Assume that the space-time covariance matrix has support of
length 2τmax + 1, i.e. R[τ ] = 0 ∀|τ | > τmax. Further as-
sume that R̂[τ ] is estimated over a support length of 2T + 1.
Abbreviating E[τ ] = R[τ ]− R̂[τ ], the mean square error is

ξ = E

{ ∞∑
τ=−∞

‖E[τ ]‖2F

}

=

T∑
τ=−T

E
{
‖E[τ ]‖2F

}
︸ ︷︷ ︸

ξ1

+ 2

τmax∑
τ=T+1

‖R[τ ]‖2F︸ ︷︷ ︸
ξ2

,

where the first term, ξ1, is an estimation error due to (8), while
the second term, ξ2, represents a truncation error. Note that
ξ2 = 0 if T ≥ τmax.

For the estimation error, using (8),

ξ1 =

T∑
τ=−T

M∑
m,µ=1

var{r̂mµ[τ ]}

=

T∑
τ=−T

N−|τ |−1∑
t=−N+|τ |+1

N−|τ |−|t|
(N−|τ |)2

(
|tr{R[t]} |2+

+ vec{R[τ − t]}Hvec{R[τ + t]}
)
, (9)
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Fig. 2. (top) ground truth and mean sample cross-correlation
sequence, and (bottom) its variance, both calculated accord-
ing to (8) and estimated from real valued data.

where the operator vec{·} vectorises its argument and T is
the support of the estimate. Therefore, the modelling error ξ
depends only on the space-time covariance matrix itself, the
sample size N , and the support of the estimate, T .

4.2. Optimum Support Length

Note that (9) also presents a formulation for the expected
mean square value of the error E(z) •—◦ E[τ ] in (3), which
forms the basis for the perturbation analysis of the eigenval-
ues and eigenvector in [25]. Since the sample size N and the
specific ground truth R[τ ] are given for a particular problem,
the only way to minimise this perturbation is the judicious
selection of the range of lags, |τ | ≤ T , over which R̂[τ ] is
evaluated. The optimum value Topt for T in terms of the min-
imum perturbation is therefore

Topt = arg min
T
ξ .

In general, this will be a trade-off between the terms ξ1 and
ξ2. Since T > τmax leads to ξ2 = 0, and ξ1 generally grows
with increasing T , we find Topt < τmax, i.e. it appears better
to underestimate than to overestimate the support of R[τ ] in
practise.

5. SIMULATIONS AND RESULTS

We first demonstrate the accuracy of (8) for the variance of
a sample cross-correlation sequence. For an arbitrary given
cross-correlation by means of an innovation filter model of
order 5 with a single source, L = 1 in Fig. 1 and (1), for
N = 100 the theoretical (8) is compared to the mean variance
over an ensemble of size 104 in Figs. 2 and 3 for a real- and
complex-valued scenarios.

To check the accuracy of the expected estimation error
(9), an R[τ ] of order 100 is generated by the source model

in [7]. Fig. 4 compares results over an ensemble of 104 sam-
ple sets, each L = 500 long, to the theoretical values. These
match well, and also demonstrate that in this case Topt = 10
is significantly shorter than τmax = 50.

6. CONCLUSIONS

This paper has investigated the dependencies of the modelling
error that is incurred when estimating a space-time covariance
matrix from a finite sample set — this is affected by the size
of the set, but also the ground truth space-time covariance ma-
trix. The derived expressions match what has previously been
identified for sample auto-correlation sequences for the case
of temporal correlation only, and to the Wishart distribution
in the case of spatial correlation only; in simulations, we have
also demonstrated a close match to experiments.

The mean square modelling error is a metric that has pre-
viously been established in [25] to perturb the eigenvalues and
eigenspaces of the space-time covariance matrix; therefore,
the results, particularly (9), now directly link this perturba-
tion to the sample size and the ground truth matrix.
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Fig. 3. Complex valued equivalent to Fig. 2, with (top) real
part, (middle) imaginary part, and (bottom) variance.
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Fig. 4. Comparison of the ensemble modelling error to trun-
cation and expected estimation errors.
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