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ABSTRACT
This paper discusses Expectation-Propagation (EP) methods
for approximate Bayesian inference in the context of linear
regression with Poisson noise. We review two main factor
graphs used for generalized linear models and discuss how
different EP algorithms can be derived. The estimation per-
formance based on EP approximations is compared to the per-
formance using Monte Carlo sampling from the exact poste-
rior distribution. In particular, we observe that using locally
independent or isotropic approximate factors enables more
robust and scalable algorithms while providing reliable pos-
terior means and marginal variances.

Index Terms— Expectation-Propagation, Approximate
Bayesian inference, linear regression, Poisson noise

1. INTRODUCTION

A popular methodology for approximate Bayesian inference
consists of minimizing a Kullback-Leibler (KL) divergence,
regarded as an asymmetric discrepancy measure between an
exact yet complex distribution and an approximating distribu-
tion. Variational Bayes (VB) techniques aim at minimizing
the direct KL divergence between the approximate and exact
distributions [1]. Alternatively, minimizing the reverse KL
divergence (between the approximate and the actual distribu-
tions) turns out to be a saddle point problem. While provably
convergent double loop algorithms [2] minimizing the under-
lying Bethe free energy have been proposed, they are gener-
ally computationally intensive. Expectation-Propagation (EP)
is a family of faster fixed point message passing solvers which
minimize the reverse KL divergence locally [3]. Generally,
when the EP algorithm converges, it gives a better estimate
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compared to VB (e.g., does not tend to underestimate poste-
rior variances). Gaussian approximations are classically used
within the EP framework [4], leading to more tractable KL
divergence minimization problems. To reduce the number of
sequential EP updates involving one-dimensional densities,
it is possible to use, locally, multivariate Gaussian approxi-
mations. In particular, in high dimensional (e.g., imaging)
problems, these factors can be constrained to have diagonal
covariance matrices. Recently, a class of algorithms called
Vector Approximate Message Passing (VAMP) [5] has been
derived using EP with isotropic Gaussian messages over vec-
tors, although the noise model can be non-Gaussian. While
Poisson likelihoods have recently been considered within EP
[6], here we investigate and compare several EP models in
terms of estimation performance and uncertainty quantifica-
tion. More precisely, we compare models involving data aug-
mentation schemes and based on different Gaussian approx-
imations, thus allowing more flexibility than VAMP. These
models and associated a posteriori estimates are also com-
pared, in terms of estimation performance and uncertainty
quantification, to those obtained via Monte Carlo sampling
from the true Bayesian model. To the best of our knowledge,
this is the first time such a study is conducted for regression
with Poisson noise.

The remainder of this paper is organized as follows. Sec-
tion 2.1 introduces the exact Bayesian model used for linear
regression. The two associated factor graphs and associated
update rules are presented in Sections 2.2 and 2.3. Section 3
discusses simulations results obtained for a spectral unmixing
application and conclusions are finally reported in Section 4.

2. EP FOR REGRESSION WITH POISSON NOISE

2.1. Exact Bayesian model

We consider the estimation of a vector x = [x1, . . . , xN ]T

from a set of noisy measurements y = [y1, . . . , yM ]T , with
M ≥ N . Precisely, conditioned on the value of x, the en-
tries of y are independently distributed according to Poisson
distributions, i.e., f(ym|x) =

(
aT
mx
)ym

exp
[
−aT

mx
]
/ym!,

where the vectors {am}m=1,...,M are positive and known.
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Fig. 1. First factor graph (FG1) used to perform EP-based re-
gression without auxiliary variables. The circles (resp. rect-
angular boxes) represent the variable (resp. factor) nodes and
the approximate factors are shown in blue.

Assuming mutual independence between the elements of
y, conditioned on the value of x, yields the following joint
likelihood f(y|x) =

∏M
m=1 f(ym|x) =

∏M
m=1 f(ym|aT

mx).
Since A = [a1, . . . ,aM ]T is known, it is omitted in all the
conditional distributions. We assume that the prior model
p(x) is a product ofN independent distributions, i.e., g(x) =∏N

n=1 gn(xn), where {gn(·)}n are arbitrarily chosen and en-
sure the positivity of x.

Using f(y|x) and g(x), we can obtain the joint density

f(y,x) = f(y|x)g(x) =
M∏

m=1

f(ym|aT
mx)

N∏
n=1

gn(xn),

and the posterior distribution of x is given by f(x|y) =
f(y|x)g(x)/f(y). Inferring x via maximum a posteriori
(MAP) estimation is straightforward if p(x) is log-concave
since the problem reduces to a convex optimization problem
[7, 8, 9]. However, such estimation strategy only provides
point estimates and no a posteriori confidence measures
about x. In particular, here we concentrate on estimating
the posterior mean and covariance (or marginal variances)
of f(x|y). Unfortunately, it is in general not possible to
compute these quantities analytically. A classical approach to
exploit the posterior distribution consists of using simulation
methods. In particular, constrained Hamiltonian Monte Carlo
methods [10] have been investigated to solve regression prob-
lems in the presence of Poisson noise [11] (see also [12] for
comparison of samplers including a bouncy particle sampler
[13]). However, such methods still suffer from a high com-
putational cost and approximate Bayesian methods (and in
particular EP methods) stand as promising alternatives.

2.2. Existing EP approximation

The EP method, used for regression with Gaussian noise [4]
and generalised linear models [14], approximates each exact
factor f(ym|aT

mx) = qm(aT
mx) (resp. gn(xn)) with a sim-

pler factor q̃m(aT
mx) (resp. g̃n(xn)) so that

f(y,x) ≈
M∏

m=1

q̃m(aT
mx)

N∏
n=1

g̃n(xn) = Q(x), (1)

where all the approximate factors belong to the same fam-
ily of distributions (Gaussian distributions here) and so does
Q(x), but they do not need to be normalized densities. In con-
trast to [15], here it does not seem possible (without auxiliary
variables) to gather all the likelihood factors depicted in Fig.
1 (referred to as FG1) into a single factor, because of the pos-
itivity constraints imposed by the Poisson likelihood. To opti-
mize Q(x) so that Eq. (1) is satisfied, EP sequentially refines
the factors

{
q̃m(aT

mx)
}
m

and {g̃n(xn)}n by minimizing the
following Kullback-Leibler (KL) divergences min

q̃m
KL

(
qm(aT

mx)Q
\m(x)||q̃m(aT

mx)Q
\m(x)

)
,

min
g̃n

KL
(
gn(xn)Q

\n(x)||g̃n(xn)Q\n(x)
)
,

(2)

where the cavity distributions Q\m(x) = Q(x)/q̃m(aT
mx)

and Q\n(x) = Q(x)/g̃n(xn) are Gaussian. Solving Eq. (2)
thus reduces to matching the mean and covariance of Q(x)
and of the so-called tilted distributions qm(aT

mx)Q
\m(x)

(resp. g̃n(xn)Q\n(x)). In [6], the authors showed that the
problem in the first row of Eq. (2) can be solved analyti-
cally by computing sequentially one-dimensional integrals. If
gn(·) is a truncated Gaussian or an exponential distribution,
the second row of Eq. (2) can be solved by computing the
mean and variance of a one-dimensional truncated Gaussian
distribution. For more complex priors, Gaussian quadratures
or Laplace approximations [16, 17] can be used. In a similar
fashion to [15], we used a damping strategy here to reduce
convergence issues (see Section 3). The resulting EP model is
denoted EP-F (full covariance) in the remainder of the paper.

EP-F EP-DF EP-DD EP-ID EP-II
Σ1 − diag. diag. iso. iso.
S1 − full diag. diag. iso.
S full full diag. diag. diag.

Table 1. Properties of (Σ1,S1,S) for the different EP ap-
proximations. Using FG2, Σ0 and S0 are assumed diagonal.

2.3. EP using data augmentation

The scheme discussed in Section 2.2 induces N +M sequen-
tial updates of the approximate factors at each iteration, which
may lead to slow convergence if M is large. Here we discuss
an alternative factor graph (FG2), depicted in Fig. 2 which is
based on a data augmentation scheme. This scheme allows
some updates to be performed independently and thus im-
prove the convergence speed of the resulting EP-based meth-
ods. Let u = [u1, . . . , uM ]T be a vector of auxiliary vari-
ables, the model in Eq. (1) can be extended as f(y,u,x) =
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Fig. 2. Second factor graph (FG2) used to perform EP-based estimation using auxiliary variables.

f(y|u)f(u|x)g(x), with f(u|x) =
∏M

m=1 δ(um −aT
mx) =

δ(u−Ax), where δ(·) denotes the Dirac delta function. Note
that Eq. (1) is recovered using

∫
f(y,u,x)du. As in Sec-

tion 2.2, the exact joint density can be approximated by a
product of unnormalized multivariate Gaussian distributions
(see Fig. 2), i.e., q̃u,i(u) = N (u;µi,Σi) and q̃x,i(x) =
N (x;mi,Si), ∀i ∈ {0; 1}. In particular, the factor δ(u −
Ax) is approximated such that u and x are a posteriori inde-
pendent with

Q(u,x) = Q(u)Q(x) = q̃u,0(u)q̃u,1(u)q̃x,0(x)q̃x,1(x).

Moreover, the vectors u and x are a posteriori Gaussian with
mean and covariance (µ,Σ) and (m,S), respectively. Since
f(y|u) = fy(u) and g(x) can be factorized as a product of
M and N independent terms, respectively, we assume that
Σ0 and S0 are diagonal. As in Section 2.2, the EP algorithms
will update the different factors sequentially, but depending
on the structure of (Σ1,S1), some updates can be performed
independently and in a parallel manner. To allow parallel up-
dates, we impose that Σ1 is either diagonal or isotropic, lead-
ing to Σ being diagonal. This approach is particularly inter-
esting here sinceM ≥ N as it avoids inverting the potentially
large and ill-conditioned matrix Σ1. The matrix S1 can also
be either full, diagonal or isotropic (i.e., proportional to the
identity matrix). The different EP-models are summarized in
Table 1, where ”F”, ”D” and ”I” in the EP acronyms stand for
”full”, ”diagonal” and ”isotropic” covariance matrices. We
now discuss how the different updates can be performed.

Update of q̃u,0: the update of q̃u,0 reduces to minimizing

KL (fy(u)q̃u,1(u)||q̃u,0(u)q̃u,1(u)) , (3)

w.r.t. q̃u,0. Since the distribution q̂u,1(u) = fy(u)q̃u,1(u)
factorizes over each un, its mean and diagonal covariance can
be estimated component-wise using the method proposed in
[6]. The positivity of diag(Σ0), the diagonal of Σ0, is en-
sured by including the additional constraints diag(Σ−1) ≥
diag(Σ−11 ) (element-wise) (see [15]). In this case, (µ0,Σ0)
can be found analytically.

Update of q̃x,0: the update of q̃x,0 reduces to minimizing

KL (g(x)q̃x,1(x)||q̃x,0(x)q̃x,1(x)) . (4)

If S1 is full, the moments of the tilted distribution q̂x,0(x) =
g(x)q̃x,1(x) cannot be computed analytically due to the pos-
itivity constraints imposed on x in g(x). However, the ele-
ments of m0 and the diagonal of S0 can be updated sequen-
tially (N updates), as in Section 2.2. If S1 is diagonal, so
is Ŝ0, the covariance of the tilted distribution q̂x,0(x). Thus,

(Ŝ0,m0) can be computed analytically (using a single up-
date). The mean m0 is updated so that m matches the mean
of q̂x,0(x). The diagonal of S0 is updated by imposing pos-
itivity constraints during the minimization of Eq. (4), in a
similar fashion to the update of q̃u,0.

Update of (q̃u,1, q̃x,1): the update of (q̃u,1, q̃x,1) consists
of minimizing the KL divergence

KL (δ(u−Ax)q̃u,0(u)q̃x,0(x)||Q(u,x)) (5)

w.r.t. (q̃u,1, q̃x,1). Computing the full covariance matrix
associated with the tilted distribution q̂u,x(u,x) = δ(u −
Ax)q̃u,0(u)q̃x,0(x)) is not possible but since Q(u,x) =

Q(u)Q(x) with Q(u) =
∏M

m=1Qm(um), it is sufficient
to compute the moments of the marginals of q̂u,x(u,x)
w.r.t. x and {um}m. It can be shown [14] that the marginal∫
q̂u,x(u,x)du = q̃u,0(Ax)q̃x,0(x) is proportional to a mul-

tivariate Gaussian distribution whose mean and covariance
(m̂1, Ŝ1) can be computed analytically. If S1 is full, it is
updated using S−11 = Ŝ

−1
1 − S

−1
0 andm1 = S1(Ŝ

−1
1 m̂1 −

S−10 m0). If S1 is diagonal or proportional to the identity
matrix, (m1,S1) is obtained by minimizing (w.r.t. q̃x,1) the
KL divergence KL

(∫
q̂u,x(u,x)du||Q(x)

)
between two

Gaussian densities, subject to the appropriate constraints
(positivity and/or equality of the diagonal elements of S1).
Estimating the full covariance of

∫
q̂u,x(u,x)dx is not nec-

essary here since Σ1 is assumed to be diagonal. Thus, it is
sufficient to compute the marginal means and variances of
the marginals

∫
q̂u,x(u,x)du\mdx,∀m, where u\m consists

of the elements of u whose mth element has been removed.
These marginals are proportional to univariate Gaussian dis-
tributions and the update of q̃u,1 also reduces to minimizing a
KL divergence between two Gaussian distributions.

3. RESULTS

We compare the estimation performance of the EP algorithms
for unmixing spectral measurements from the single-photon
multispectral Lidar system used in [18]. The matrix A,
whose columns are depicted in [18], consists of N = 15
spectral signatures of materials observed at M = 33 dif-
ferent spectral bands. Most of the signatures are highly
correlated and the condition number of A is 1376. The
quality of the data is tuned by scaling A using αA where
α ∈ {5, 10, 20, 50, 100, 500, 1000, 5000}. For each value of
α, the results are averaged over 2000 realizations of x drawn
from g(x) (product of independent exponential distributions
with mean equal to 1). The resulting average photon counts
E [ym] range from 10 (α = 5) to 104 (α = 5000). Note that
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similar results have been obtained with truncated Gaussian
priors. All the EP algorithms have been damped as in [15]
using ε = 0.7 set to reduce convergence issues. They are
compared to an MCMC algorithm similar to that in [19], used
to sample the exact posterior of x, using NMC = 15000
Monte Carlo iterations (including Nbi = 5000 burn-in iter-
ations), and the estimated parameters (posterior means and
covariances) are considered as exact estimates.

Fig. 3. Top MSEs (left) and NMSEs (right) as a function of α.
Bottom: log-Euclidean distances between the actual posterior
covariance and the covariances estimated via EP (left) and
between these matrices whose off-diagonal terms are set to
zero (right). The acronyms are those used in Table 1.

Fig. 3 compares the estimation performance of the dif-
ferent EP methods with the results obtained via MCMC.
Precisely, the top left subplot depicts the mean square er-
rors (MSEs) E

[
||x− x̂||2

]
, where x̂ is the posterior mean

computed with MCMC or EP approximation. The top right
subplot compares the mean normalised mean squared errors
between the posterior means computed by MCMC and those

approximated by EP, i.e., NMSE =
||x̂EP − x̂MCMC ||2

||x− x̂MCMC ||2
.

The errors are normalised by ||x − x̂MCMC ||2 to highlight
the performance degradation w.r.t. the MCMC algorithm.
These two subplots show that EP-F, EP-DF, EP-DD and EP-
ID generally lead to similar performance in estimating the
posterior mean with NMSEs remaining below 7%, in contrast
to EP-II which leads to significantly worse results. More-
over, it is worth noting that EP-DF performs slightly better
than EP-F, mostly due to the slower convergence of EP-F,
which is also more prone to oscillations not attenuated by
damping (≤ 0.1% of all the signals processed in this study,
for all methods). The posterior covariance matrix estimation
is assessed using the log-Euclidean distance [20], defined
as d(X1,X2) = || log(X1) − log(X2)||F , for positive
semi-definite matrices (X1,X2), where log(·) is the ma-
trix logarithm. The bottom left subplot of Fig 3 compares
the distances between the posterior covariance matrices ob-
tained via EP (ŜEP ) to those obtained by MCMC (ŜMCMC).
The bottom right subplot compares the performance regard-

ing marginal posterior variance estimation, using D̂EP and
D̂MCMC , the diagonal matrices whose diagonal elements
match those of ŜEP and ŜMCMC , respectively. While EP-F
and EP-DF are, by construction, the only methods able to
capture the posterior correlations (bottom left subplot of Fig.
3), it is interesting to note that EP-DD and EP-ID can esti-
mate satisfactorily the marginal variances. Conversely, EP-II
yields much larger distances. It is worth mentioning that,
again, EP-DF performs slightly better than EP-F, probably
due to the convergence issues mentioned above.

Fig. 4. Analysis of the marginal variances obtained with EP-
DF and EP-II, compared to MCMC. The error bars corre-
spond to the 5th-95th percentile intervals

Finally, Fig. 4 compares the mean ratios between the
(actual) N marginal variances obtained by MCMC σ̂2

MCMC

and those approximated by EP σ̂2
EP , using EP-DF and EP-

II. The results obtained with EP-F, EP-DD and EP-ID are
similar to those obtained with EP-DF and are not presented
here. This figure shows that EP-DF only slightly overesti-
mates the marginal variances (by less than 6% on average)
with a small variability of the marginal variance estimates (the
5th-95th percentile interval only varies by 20% in extreme).
In contrast, EP-II tends to overestimate more significantly the
marginal variances (by ≈ 4 times for large α) and the vari-
ability in these estimates is large and thus they do not allow
for reliable uncertainty quantification.

4. CONCLUSION

We compared several EP models for regression with Pois-
son observation noise. Using an extended factor graph, con-
straints can be imposed to factor nodes, which allows simpler
and parallel updates. The EP-based estimates obtained are
similar to those obtained via Monte Carlo sampling, but at
a much lower cost (computational comparisons omitted here
due to space constraints). While graph constraints will impact
the quality of the approximations, the EP approximations can
be used to develop more scalable inference processes, either
for inference in higher dimensions or for hierarchical graphs
[15, 14]. Interestingly, additional structural constraints seem
to also reduce convergence issues in practice. Future work
include a deeper analysis of these preliminary observations
and applications to more complex priors (e.g., using spatial
correlations as in [21]) and noise models (e.g., binomial).
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