
1

Learning to Approximate Computing at Run-time
Paulo Garcia*, Mehryar Emambakhsh*, Andrew Wallace

School of Engineering and Physical Sciences, Heriot-Watt University
{p.garcia, m.emambakhsh, a.m.wallace}@hw.ac.uk

Abstract—Intelligent sensor/signal processing systems are in-
creasingly constrained by tight power budgets, especially when
deployed in mobile/remote environments. Approximate comput-
ing is the process of adaptively compromising the accuracy of
a system’s output in order to obtain higher performance for
other metrics, such as power consumption or memory usage, for
applications resilient to inaccurate computations. It is, however,
usually statically implemented, based on heuristics and testing
loops, which prevents switching between different approximations
at run-time. This limits approximation versatility and results
in under- or over-approximated systems for the specific input
data, causing excessive power usage and/or insufficient accuracy,
respectively. To avoid these issues, this paper proposes a new
approximate computing approach by introducing a supervisor
block embedding prior knowledge about runtime data. The
target system (i.e., signal processing pipeline) is implemented
with configurable levels and types of approximations [1]. Data
processed by the target system is analysed by the supervisor
and the approximation is updated dynamically, by using prior
knowledge to establish a confidence measure on the accuracy
of the computed results. Moreover, by iteratively evaluating
the output, the supervisor block can learn and subsequently
update tunable parameters, to improve the quality of the results.
We detail and evaluate this approach for tracking problem in
computer vision. Results show our approach yields promising
trade-offs between accuracy and power consumption, achieving
2.54% energy saving for our case study.

Index Terms—Tracking, EKF, Approximate Computing, Prior
Knowledge, Field Programmable Gate Array (FPGA)

I. INTRODUCTION

Power/performance trade offs are well established compro-
mises in the design of all embedded systems [2]. In both
hardware and software domains, there is a great deal of for-
mal and empirical knowledge which guides system architects
towards optimal design time decisions, and myriad runtime
operation modes (i.e., power saving modes) controlled locally
or remotely [3]. Approximate computing promises unprece-
dented power savings by introducing a trade off between
power and another dimension: accuracy [4]. For applications
resiliant to innacurate computations [5], or where there isn’t
a single golden result [6], approximate computing methods
can improve traditional design strategies for power reduction:
essential in the dark silicon era.

Despite its promise, approximate computing is still an
immature technology: a formal model of the impact of ap-
proximations on other design metrics does not yet exist [7].
Hence, most approximate computing applications require two
premises to be implemented successfully: (a) adequate test
data are available, to correctly model the accuracy impact

∗these authors contributed equally to this work.

of approximations [8]; and, (b) approximations are performed
iteratively at design time, to meet the required power/accuracy
goals, and remain static throughout deployment [9].

This is in stark contrast to performance/power trade offs,
where well established benchmark suites offer near total
coverage of application scenarios [10]: in approximate com-
puting, test data that allows adequate modeling of accuracy is
often unavailable. In performance/power trade-offs, systems
can self-tune their operation based on load and run time
parameters to dynamically adjust metrics [1]. In approxi-
mate computing, approximations are static: mainly because
there is no trusted method to determine if accuracy suffices,
without access to ground truth [5]. In this paper, we tackle
this problem: adjusting the level of approximations at run
time, for signal processing applications. Our hypothesis states
that prior knowledge about processed data can guide built-
in approximation engines, dynamically modifying the level of
approximation whilst ensuring that accuracy suffices for the
required task. We define prior knowledge as any heuristics
or statistical assumptions about the data, which have been
empirically or formally verified.

Specifically, this paper offers the following contributions:

• We introduce the concept of prior knowledge-guided
approximations. This represents a statistical measure of
approximation impact, unlike test data-based empirical
measures prevalent in the state of the art [9]. To be
more specific, we use Kullback-Leibler (KL) divergence
to evaluate if approximation error is within the acceptable
bounds, changing approximation level accordingly at run-
time.

• We introduce a model of run time approximations, which
use prior knowledge to ensure that accuracy suffices,
without access to ground truth, unlike iterative compar-
isons to ground truth prevalent in the state of the art
[4], [8]. Our approach dynamically modifies the level of
approximation in function of KL divergence value.

• We describe and evaluate a proof of concept of our
approach, using an Extended Kalman Filter (EKF) for
target tracking [11], where we have prior knowledge
about the target’s motion. Specifically, we assume that
the object’s motion statistics remain Gaussian.

The remainder of this paper is organized as follows: Section
II describes a top level view of our methodology, explaining
how prior knowledge can guide approximations dynamically.
Section III describes a case study of our proposed method,
where prior knowledge is used to dynamically adjust the
approximations applied to an EKF for tracking. Section IV
describes our experimental setup and the obtained results.

2

Fig. 1: Block diagram

Finally, Section V presents our conclusions and future work.

II. APPROXIMATION METHODOLOGY

Our methodology is based on equipping the processing
pipeline with variable levels of approximation, i.e., config-
urable approximations, and an approximation engine within a
supervisor block (which may contain additional optimisations
such as parameter tuning): a block diagram is depicted in Fig.
1. Depending on the application and the deployment technol-
ogy (e.g., CPU, ASIC, FPGA) the nature of approximations
varies, but our method is applicable across the entire spectrum.
Traditional approximation methods include bit width reduction
[4], memoisation [12], predictive memory access [13], arith-
metic re-writes [9], input-based approximations [14], etc.

Based on prior knowledge about the data, our approximation
engine dynamically monitors the processing pipeline’s output,
and verifies whether or not the calculations still obey the
assumptions about the data. If yes, then it is assumed that
current levels of accuracy are still within error bounds: hence,
the pipeline can be approximated further. If not, then it is
assumed that accuracy has exceeded error bounds, and the
level of approximation is reduced. Using this method, it
is possible to converge on an approximation strategy that
optimises power consumption in situ, without access to ground
truth.

Our approach is predicated on runtime-configurable levels
of approximation. In software solutions running on CPUs
and GPUs, this can be achieved through different software
versions [15] or through Instruction Set Architecture (ISA)
level approximations [1]. In bespoke hardware solutions im-
plemented on ASIC or FPGA, through configurable hardware
versions which clock- or power-gate accurate circuitry; this is
the approach we use on our experiments, which we detail in
Section IV.

III. CASE STUDY: EKF TRACKING

The proposed approximate computing algorithm is evalu-
ated for a non-linear, Gaussian, single-target tracking problem.
It is assumed that the target is circularly rotating over the
xy-plane. To have the paper self-contained and to simplify
explaining the points at which approximation is imposed, the
motion model and EKF equations are detailed in this section.

It is assumed that the sensor measures the range and bearing
(azimuth) of the target in meters and radians, respectively. This

Fig. 2: The tracking scene containing the FoV of the sensor,
target motion trajectory and state parameters definition.

is a typical sensing scenario in LiDAR, radar and stereo vision
used in numerous applications, e.g., autonomous vehicles [16],{

rk =
√
x̄2k + ȳ2k + nrk

φk = atan2(ȳk, x̄k) + nφk

, (1)

where x̄k and ȳk are the true states of the target location,
Zk = [rk, φk] contains the measured range and bearing values,
and Nk = [nrk , nφk

] is a random vector sampled from a Gaus-
sian with zero mean, and all are at the kth iteration. atan2(.)
computes the angle between the point (vector) [x̄k, ȳk] and
positive x-axis.

It is assumed that at time k, the target has a three dimen-
sional state vector Xk = [xk, yk, θk]ᵀ, in which [xk, yk] and
θk are the position and pose states of the target, respectively.
This is shown in Fig. 2. The state estimation equations are,

x̂k = xk−1 + (∆t)vk cos(wk∆t+ θk−1) +mxk

ŷk = yk−1 + (∆t)vk sin(wk∆t+ θk−1) +myk

θ̂k = θk−1 + wk∆t+mθk

. (2)

uk = [vk, wk] is the speed vector containing the radial and
angular speed parameters in m/sec and rad/sec, respectively,
which can be computed from previous state vectors. ∆t is
the time update resolution in seconds. X̂k = [x̂k, ŷk, θ̂k]ᵀ

is the estimated state vector for the kth iteration. Mk =
[mxk

,myk ,mθk]ᵀ is a random vector sampled from a Gaussian
distribution with zero mean.

Due to the non-linearity in (1) and (2), Gaussianity will
not be preserved and therefore, a linear approximation is used
based on Taylor series expansion. The Jacobian matrix for the
estimation step is computed using 2 as follows:

JX,k−1 =

 1 0 −(∆t)vk sin(wk∆t+ θk−1)
0 1 (∆t)vk cos(wk∆t+ θk−1)
0 0 1

 . (3)

Assuming ΣX,k−1 and Qk are the state and noise covariance
matrices at k− 1 and k, the estimated state covariance matrix
at iteration k will be: ΣX̂,k = JX,k−1ΣX,k−1J

ᵀ
X,k−1 + Qk.

3

The correction step of EKF incorporates the measurement at
time k. Let Rk be the measurement covariance matrix. Then
the corrected state vector can be computed as follows,

Xk = X̂k + Kk(Zk − h(X̂k))
Kk = ΣX̂,kH

ᵀ
kS

−1
k

Sk = HkΣX̂,kH
ᵀ
k + Rk

. (4)

Kk is the Kalman gain, Sk is the innovation covariance and
Xk is the (corrected) state vector at the kth iteration. h(.)
is a non-linear function, which maps the current estimated
target state to the coordinate frame of the sensor. Hk is the
measurement’s Jacobian matrix, which is computed as follows
using 1,

Hk =
1√

x2k + y2k

[
xk yk 0
−yk xk 0

]
. (5)

The corrected covariance matrix for the kth iteration will then
be,

ΣX,k =

 1 0 0
0 1 0
0 0 1

−KkHk

ΣX̂,k. (6)

A. KL divergence for Gaussian motion

Comparison with the prior knowledge can be performed in
various ways. For an iterative filtering, which estimates and
corrects the state of the object using the obtained measure-
ments, the prior knowledge can be defined using the target’s
motion. Any deviation from this known model can be used to
compromise over approximation during run-time.

One solution to quantify such model is to stack state vectors
for a given number of consecutive iterations. Then estimating
the statistics of the stacked tracks, using either parametric or
non-parametric approaches, can be used to map the result to
our prior knowledge.

To be more specific, in this paper, we use a paramet-
ric approach to approximate the probability density function
(PDF) of the stacked target states from iteration k to k +N ,
i.e. sk:k+N . Our prior knowledge is then compared with
the computed approximated PDF. In our work, we use KL
divergence to perform this task as follows,

DKL(Hk,N ||Hp) =
∑
i

Hk,N log
Hk,N

Hp
(7)

in which Hk,N is the approximated PDF of the kth to (k +
N)th state samples and Hp is the ”prior knowledge” PDF of
the target’s motion.

For this experimental setting, we assume that the object’s
motion statistics remains Gaussian (our prior knowledge). This
can be iteratively evaluated by (7). It can be easily shown
that the KL divergence for two Gaussian distributions can be
simplified as follows,

DKL(Hk,N ||Hp) = log
σp
σk,N

+
σ2
k,N + (µk,N − µp)2

2σ2
p

− 1

2
(8)

in which, (µk,N , σ2
k,N) and (µp, σ2

p) are the mean vector
and variance of the stacked samples and prior knowledge,
respectively. For our experiments, we assume that µp is the
radius of the target’s circular rotation, which is known with a
±σp standard deviation (both in meters).

We define the stacked samples sk:k+N as the Euclidean
distance between the target state [xk, yk]ᵀ and centre of
rotation. The mean and variance µk,N and σ2

k,N are then
computed as follows,

µk,N =
∑

i s
i
k:k+N

N

σ2
k,N =

∑
i (s

i
k:k+N−µk,N)2

N

(9)

in which, sik:k+N is the ith element in sk:k+N . Small values
for DKL(.) correspond to higher similarity between the prior
knowledge and tracks. Therefore, more intense approximation
is imposed. On the other hand, the approximation level is
reduced once the DKL(.) is higher than a given threshold.

IV. EXPERIMENTAL RESULTS

Figure 3 presents our methodology to obtain accuracy and
power profiles for several degrees of approximation, and to
generate a version with configurable approximations.

We begin by implementing EKF in Matlab and applying
several algorithm-specific approximations (described in detail
in Sub-Section IV-A). Matlab simulations are performed to
obtain accuracy profiles for each approximation at this step.
Matlab Coder is then used to generate C code corresponding to
the exact and various approximated versions. C code generated
by Matlab is not directly synthesizable to FPGA: hence, we
refactor it manually to obtain synthesizable versions. Func-
tionality and corresponding accuracy are not affected by this
step. We then apply algorithm-independent approximations
on this refactored C code, and use a High Level Synthesis
tool (Xilinx Vivado HLS) to generate Verilog Hardware De-
scription Language (Verilog HDL) exact and approximated
versions. Matlab’s HDL coder offers a direct route from
Matlab to FPGA, but not all language constructs are supported
and it would not enable us to perform algorithm-independent
optimisations: hence the use of HLS through Xilinx’s tools.

RTL simulation and FPGA synthesis (we target Virtex 7
technology) is performed using Xilinx Vivado Design Suite
to obtain resource usage and power consumption. Power
consumption is estimated through Xilinx Power Estimator tool
embedded in Vivado, which uses resource usage information
and switching rates obtained from RTL simulation to calculate
a high accuracy measure of power consumption. This step
enables us to obtain power profiles for each approximation.

The final step combines the various versions into one
configurable solution. This is an FPGA implementation which
combines accurate and approximated versions, where the level
of approximations can be configured and modified at runtime.
Unused logic (e.g., an exact version of some operation when
running in corresponding approximate mode) is clock gated to
eliminate dynamic power consumption. This version is then
used to obtain results for dynamic approximations by the
approximation engine using prior knowledge.

4

Fig. 3: Experimental design flow.

A. Power and Accuracy Profiles

Algorithm-dependent approximations are modifications on
the implementation of certain constructs, which vary from
algorithm to algorithm. These can be complete re-writes of al-
gorithm functionality; however, since our goal is to determine
the validity of prior knowledge for runtime approximations,
simple arithmetic re-writes suffice. We implemented four
different re-writes:

1) COS re-write: in the exact HDL version, cosine func-
tions are implemented using look-up tables with 180
entries. In the approximated version, these are quantised
to use only 90 entries, requiring fewer data than the exact
version.

2) SIN re-write: identically to cosine, sine functions are
re-written using a quantized loop-up table.

3) SQRT re-write: the square root of the sum of squares√
x2 + y2, which requires two DSP multipliers and a

look-up table for the square root, is replaced by a sum of
absolutes |x|+ |y|, which requires only two conversions
to unsigned and an adder.

4) ATAN re-write: the arc tangent function is realized in the
exact version through a look up table. In the approximate
version, it is approximated through the first three terms
of a Taylor series, requiring only arithmetic operations,
thus reducing memory requirements.

We detailed several algorithm-independent approximations
in Section II. In our experiments, we implemented bit width
reduction, from floating to fixed point. The default bit width
is 64 bits (Matlab generates double precision floating point
operations). Our approximations replaced 64 bits data with
fixed point 27 bits data (15 integer and 12 fractional bits).
This is one of the fixed point bit widths recommended for
power reductions in the Virtex 7 family.

Version Power (W) % of baseline
Static Dynamic Total

Exact 0.247 0.552 0.799 100%
COS 0.247 0.523 0.770 96.37%
SIN 0.247 0.523 0.770 96.37%

SQRT 0.247 0.534 0.781 97.74%
ATAN 0.247 0.532 0.779 97.49%

27 bits Fixed Point 0.246 0.538 0.785 98.24%

TABLE I: Power profiles for exact and each individual ap-
proximation.

We ensured that during our RTL simulations, 100 iterations
of the complete function are performed, using the same
randomly generated input data for all versions, in order to
obtain representative activity that ensures high confidence in
the power estimation. Table I depicts power consumption for
the exact and each individual approximated version. Static
power remains constant across approximations because the
contribution of on-chip memories (BRAMs) dominates, and
the number remains constant except for a small reduction when
reducing bit widths.

Our next set of experiments started measuring the power
consumption of versions that combine bit width reduction with
several of the other approximations: results are presented in
Table II.

Approximations (using 27FP) Power (W) % of baseline
COS 0.756 94.61%
SIN 0.756 94.61%

SQRT 0.767 95.99%
ATAN 0.765 95.74%

COS & SIN 0.741 92.74%
COS & SQRT 0.767 95.99%
COS & ATAN 0.736 92.11%
SIN & SQRT 0.738 92.36%
SIN & ATAN 0.736 92.11%

SQRT & ATAN 0.747 93.49%
COS & SIN & SQRT 0.709 88.73%
COS & SIN & ATAN 0.707 88.48%

COS & SQRT & ATAN 0.718 89.86%
SIN & SQRT & ATAN 0.718 89.86%

COS & SIN & SQRT & ATAN 0.689 86.23%

TABLE II: Power profiles for combinations of different ap-
proximations.

We use Matlab simulation to determine the accuracy of each
combination, compared to the baseline. Table III depicts the
accuracy of each version. Results in the ”Absolute” tab are the
mean and standard deviation (σ), respectively, of the absolute
error (Euclidean distance in meters) compared to the ground
truth (real object position) in our simulation. Results in the
”Accuracy” tab are the ratios between the exact version results
and the absolute value of the difference between exact and
approximate results.

5

Version Absolute (m) Accuracy (%)
Mean σ

Exact 0.5633 0.3092 100
COS 0.6742 0.2805 83.55
SIN 0.6524 0.3652 86.34

SQRT 0.6968 0.3764 80.84
ATAN 3.3520 1.7953 16.80

COS & SIN 0.6044 0.3973 93.19
COS & SQRT 0.7497 0.4101 75.13
COS & ATAN 0.9771 0.6937 57.65
SIN & SQRT 0.7353 0.3711 76.60
SIN & ATAN 7.7667 2.5248 7.252

SQRT & ATAN 1.4812 0.8149 38.02
COS & SIN & SQRT 0.5870 0.3680 95.96
COS & SIN & ATAN 1.7503 1.0135 32.18

COS & SQRT & ATAN 0.9949 0.7006 56.61
SIN & SQRT & ATAN 7.7528 2.5424 7.265

COS & SIN & SQRT & ATAN 1.8295 1.0765 30.78

TABLE III: Accuracy profiles for combinations of different
approximations, for 100 iterations. Exact version uses double
floating point precision (64 bits); every other version uses 27
bits fixed point precision.

The final integrated version with configurable approxima-
tions, including clock gated logic, is compared against the
baseline in Table IV.

Power (W) FPGA Resources
Total LUT FF DSP BRAM

Exact 0.799 46449 17666 61 55
Approx. 0.689 44995 16981 58 55

TABLE IV: Resource usage and ower consumption for base-
line and final configurable approximations version.

B. Dynamic approximations using prior knowledge

The results of dynamically performing the approximation
using the algorithms explained in Section II and III are
detailed here. First, using the approximation results of each
individual step, an ”approximation level” is defined. To do
this, various combinations of the micro approximations are
sorted in ascending order according to their accuracy error.
This results in a vector of tuples containing pairs of indexes
(used as the approximation level) and strings indicating the
approximation combination.

The first tuple in this vector corresponds to the approxi-
mation method, which generates the highest accuracy. Its last
element, however, creates the weakest accuracy. At each filter-
ing step, in order to use different approximation combinations,
the approximation level is either increased or decreased. Deter-
mining whether to increment or decrement the approximation
level is performed by evaluating the KL divergence result (8).

The result of the overlay tracking plot using dynamic ap-
proximation in various iterations is shown in Fig. 4. Red shows
ground truth, green shows tracking without approximation and
blue shows tracking after approximation, using KL divergence
thresholds of 0.5, 1, 2, 3.

At every iteration, KL divergence is computed according
to (8), with sample stack size N = 75. If it is less than a
given threshold T (for our results in Fig. 4, T = 0.5, 1, 2
and 3) the approximation level is incremented; otherwise, it is

(a) (b)

(c) (d)

Fig. 4: Tracking results, where red, green and blue show the
true state, tracking without approximation and tracking after
approximation, respectively, using KL divergence threshold:
(a) 0.5, (b) 1, (c) 2, (d) 3.

decremented to have a more precision tracking performance.
The Euclidean distance between the found track and true
state is computed for each iteration and shown in Fig. 5-
a, as well as the KL divergence in Fig. 5-b. When the KL
divergence goes above T in Fig. 5, the accuracy deteriorates.
The approximation level is then immediately reduced in order
to compensate the accuracy. Therefore, in only a few more
iterations the accuracy again increases. This causes median
accuracy error of 0.1661 (m) with median KL divergence
1.2098 for 5000 iterations.

Using the power profiles in Table II, the consumed energy of
each approximation can be computed by multiplying the power
with the time resolution (∆t = 0.1 (s)). The accumulated
energy is plotted in Fig. 6 for the last 1500 iterations. The
baseline which consumes a constant power of 0.799 (W),
results in a total of ≈ 394 (J). However, the accumulated
energy consumption for the dynamic approximation case is
≈ 384 (J). This shows about 2.54% energy reduction. By
compromising the accuracy and increasing the KL divergence
threshold, more intense approximations can be obtained, which
results in even lower energy consumption. This is shown in
Fig. 6 as the dashed green and cyan lines for thresholds 1.5
and 4.0, respectively

V. CONCLUSIONS AND FUTURE WORK

We have described the use of prior knowledge to perform
runtime approximations. Our experiments, on a tracking ap-
plication using EKF, demonstrate that prior knowledge can
indeed be used to ensure that accuracy is within acceptable
bounds, without having to perform empirical evaluations based
on representative test data. Our results support the conclusion

6

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iteration number

0

0.5

1

1.5

2

2.5

3

3.5

4
E

u
c
li

d
e
a
n

 d
is

ta
n

c
e
 b

e
tw

e
e
n

T
ru

e
 s

ta
te

 a
n

d
 t

ra
c
k

 (
m

)

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iteration number

0

0.5

1

1.5

2

2.5

3

3.5

4

K
L

 d
iv

er
g
en

ce

(b)

Fig. 5: (a) Euclidean distance between the true state and tracks;
(b) Corresponding KL divergence.

Fig. 6: Accumulated energy consumption for the baseline
(no approximation) and dynamic approximations, with three
different KL divergence thresholds.

that approximate computing need not be limited to design
time: thus enabling power optimisations with the same degree
of runtime configuration as traditional performance optimisa-
tions.

Future work will address three limitations of our study: (a)
the approximation engine, which leverages prior knowledge, is
external to the test system: hence, its power contribution was
not modeled. We will integrate a hardware version embedded
in the processing pipeline so power evaluation is completely
accurate. (b) the utilized approximations are ad hoc heuris-
tics, and result in a poor theoretical lower limit to power
consumption (86.23%). We will adopt more sophisticated
approximation methodologies, using state of the art automated
tools and benchmarks, in order to obtain greater power savings.
(c) We have only modeled one case study; we will experiment

with several different algorithms from various domains in
order to evaluate the coverage of our approach, in function
of different types of application-specific prior knowledge.

ACKNOWLEDGMENT

We acknowledge the support of the Engineering and Phys-
ical Research Council, grant references EP/K009931/1 (Pro-
grammable embedded platforms for remote and compute in-
tensive image processing applications), EP/K014277/1 (MOD
University Defence Research Collaboration in Signal Pro-
cessing) and EP/N012402/1 (TASCC: Pervasive low-TeraHz
and Video Sensing for Car Autonomy and Driver Assistance
(PATH CAD)).

REFERENCES

[1] V. Vassiliadis, K. Parasyris, C. Chalios, C. D. Antonopoulos, S. Lalis,
N. Bellas, H. Vandierendonck, and D. S. Nikolopoulos, “A program-
ming model and runtime system for significance-aware energy-efficient
computing,” SIGPLAN Not., vol. 50, no. 8, pp. 275–276, Jan. 2015.

[2] S. Das, J. R. Doppa, P. P. Pande, and K. Chakrabarty, “Reliability and
performance trade-offs for 3d noc-enabled multicore chips,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2016.
IEEE, 2016, pp. 1429–1432.

[3] S. Senni, L. Torres, G. Sassatelli, and A. Gamatie, “Non-volatile
processor based on mram for ultra-low-power iot devices,” ACM Journal
on Emerging Technologies in Computing Systems (JETC), vol. 13, no. 2,
p. 17, 2016.

[4] S. Mittal, “A survey of techniques for approximate computing,” ACM
Computing Surveys (CSUR), vol. 48, no. 4, p. 62, 2016.

[5] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A
survey,” IEEE Design & Test, vol. 33, no. 1, pp. 8–22, 2016.

[6] S. Venkataramani, K. Roy, and A. Raghunathan, “Approximate com-
puting,” in VLSI Design and 2016 15th International Conference on
Embedded Systems (VLSID), 2016 29th International Conference on.
IEEE, 2016, pp. 3–4.

[7] S. Venkataramani, S. T. Chakradhar, K. Roy, and A. Raghunathan,
“Approximate computing and the quest for computing efficiency,” in
Proceedings of the 52nd Annual Design Automation Conference. ACM,
2015, p. 120.

[8] A. Yazdanbakhsh, D. Mahajan, H. Esmaeilzadeh, and P. Lotfi-Kamran,
“Axbench: A multiplatform benchmark suite for approximate comput-
ing,” IEEE Design & Test, vol. 34, no. 2, pp. 60–68, 2017.

[9] K. Nepal, S. Hashemi, H. Tann, R. I. Bahar, and S. Reda, “Automated
high-level generation of low-power approximate computing circuits,”
IEEE Transactions on Emerging Topics in Computing, 2016.

[10] J. L. Henning, “Spec cpu2000: Measuring cpu performance in the new
millennium,” Computer, vol. 33, no. 7, pp. 28–35, 2000.

[11] G. Y. Kulikov and M. V. Kulikova, “The accurate continuous-discrete
extended kalman filter for radar tracking,” IEEE Transactions on Signal
Processing, vol. 64, no. 4, pp. 948–958, 2016.

[12] S. Sinha and W. Zhang, “Low-power fpga design using memoization-
based approximate computing,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 24, no. 8, pp. 2665–2678, 2016.

[13] A. Yazdanbakhsh, B. Thwaites, H. Esmaeilzadeh, G. Pekhimenko,
O. Mutlu, and T. C. Mowry, “Mitigating the memory bottleneck with
approximate load value prediction,” IEEE Design & Test, vol. 33, no. 1,
pp. 32–42, 2016.

[14] A. Raha, H. Jayakumar, and V. Raghunathan, “Input-based dynamic
reconfiguration of approximate arithmetic units for video encoding,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 24, no. 3, pp. 846–857, 2016.

[15] V. Vassiliadis, K. Parasyris, C. Chalios, C. D. Antonopoulos, S. Lalis,
N. Bellas, H. Vandierendonck, and D. S. Nikolopoulos, “A program-
ming model and runtime system for significance-aware energy-efficient
computing,” in ACM SIGPLAN Notices, vol. 50, no. 8. ACM, 2015,
pp. 275–276.

[16] M. B. Jensen, M. P. Philipsen, A. Mgelmose, T. B. Moeslund, and
M. M. Trivedi, “Vision for looking at traffic lights: Issues, survey, and
perspectives,” IEEE Transactions on Intelligent Transportation Systems,
vol. 17, no. 7, pp. 1800–1815, July 2016.

