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ABSTRACT

A generalisation of the SVD is proposed for broadband
sensor array signal processing. A novel technique for
computing the broadband SVD is outlined. This
involves applying a sequence of elementary paraunitary
matrices and is referred to as the second order
sequential best rotation algorithm (SBR2). An
application of the SBR2 algorithm to broadband
subspace identification is briefly illustrated.

1. INTRODUCTION

The singular value decomposition (SVD) is a very
important tool for narrowband adaptive sensor array
processing. It finds application in areas as diverse as high
resolution direction finding, stabilised adaptive
beamforming and blind signal separation [1,2]. The SVD
decorrelates the signals received from an array of sensors
by applying a unitary matrix of complex scalars which
serves to modify the signals in phase and amplitude.
Because the transformation is unitary, the associated
singular values represent the true energy associated with
each of the decorrelated components so the signal and
noise subspaces may sometimes be identified and
separated.

In broadband applications, or a situation where
narrowband signals have been convolutively mixed, the
received signals cannot be represented in terms of  phase
and amplitude. Instantaneous decorrelation using a unitary
matrix is no longer sufficient to separate them. It is
necessary to impose decorrelation, not just at the same
time instant for all signals, but over a suitably chosen
range of relative time delays. This is referred to as strong
decorrelation and achieving it requires a matrix of suitably
chosen finite impulse response (FIR) filters. If each filter
is represented in terms of its z-transform, this takes the
form of a polynomial matrix.

In this paper we generalise the SVD to broadband
adaptive sensor arrays by requiring the strong

decorrelation to be implemented using a paraunitary
polynomial matrix. A paraunitary polynomial matrix
represents a multi-channel all-pass filter and, accordingly,
it preserves the total signal energy at every frequency [3].
We also present a novel technique for computing the
required paraunitary matrix and show how the resulting
broadband SVD algorithm (SBR2) can be used in practice
to identify broadband signal and noise subspaces. The
algorithm, being highly generic in nature, has potential
application to a wide range of important problems. These
include broadband adaptive beamforming, broadband
blind signal separation [4], multi-channel adaptive noise
cancellation, the analysis of multiple-input multiple-output
(MIMO) communication channels and the design of filter
banks for optimal data compaction.

Our approach is quite distinct from other methods
reported to date. One fairly obvious technique is to reduce
the broadband problem to narrowband form using a DFT
or FFT to split the data into narrower frequency bands. A
conventional SVD can then be used to decorrelate the
sensor signals within each band. However, the SVD will
arrange the uncorrelated output channels in order of
decreasing energy. In the context of blind signal
separation [4] this means that the original signals are
likely to be assigned to a different channel in each
frequency bin and so the reconstituted broadband signals
may be remixed in an arbitrary manner. Furthermore, they
may not be as strongly decorrelated as possible since the
individual frequency bins are only statistically
independent to an approximation governed by the effect
of overlapping sidelobes in their frequency response. This
is a well known feature of the independent frequency bin
technique for space time adaptive processing in radar
detection [5].

Regalia and Huang [6] have addressed the problem of
computing an adaptive lossless FIR filter for optimal data
compaction. This leads to the determination of an
optimum paraunitary matrix as required for our broadband
SVD algorithm. Their approach exploits the fixed degree
parameterisation proposed by Vaidyanathan [3] resulting



in a difficult nonlinear optimisation. However, they re-
formulate the problem using a state space model and
propose an iterative solution which avoids the problems of
local minima associated with gradient descent techniques.
A comparison with the SBR2 algorithm presented in this
paper has still to be carried out.

Lambert [7] has addressed the problem of broadband
blind signal separation in the context of convolutive
mixing. He represents the convolutive mixing in terms of
DFT filter matrices as well as polynomial matrices. He
has developed an EVD algorithm for polynomial matrices
by generalising some conventional linear algebra and
control techniques from the complex number field to the
field of rationals. His method involves the approximate
inversion of FIR filters and is therefore quite distinct from
the one proposed here. A comparison with the SBR2
algorithm is currently being carried out.

This paper is organised as follows. Section 2 briefly
describes how the SVD is used in narrowband sensor
array signal processing. Section 3 discusses broadband
sensor arrays and shows how the convolutive mixing of
independent signals may be formulated in terms of
polynomial matrices. The concept of a broadband SVD
suitable for convolutive mixtures is then introduced. A
tractable approach to computing the broadband SVD is
described in section 4 and a prototype algorithm is then
outlined. Section 5 presents the results of some
preliminary numerical simulations using the algorithm to
perform broadband subspace decomposition. Section 6
contains some concluding remarks.

2. NARROWBAND  SVD

To illustrate the use of SVD in sensor array signal
processing, we consider a situation where the narrowband
signals },.....2,1)({ qitsi = emitted from q different

sources are received by an array of p sensor elements
where qp ≥ . The output signals },....2,1)({ pitxi =  may

be represented by an "instantaneous mixture" model of the
form

NASX +=  (2.1)

where S is a Tq × matrix whose rows constitute the signal

vectors T
is  each comprising T samples of the

corresponding signal )(tsi .  X is a Tp× matrix whose

rows constitute the corresponding signal vectors
T

ix received by elements in the sensor array. A represents
a qp ×  matrix of complex values where the general

element ijA  represents the relative phase and amplitude

of the jth signal at the ith sensor. The Tp ×  matrix N
constitutes random samples of a white noise process with

variance 2σ . It is assumed that the original (unit power)

signals )(tsi  are statistically independent and therefore
uncorrelated so that

q
H ISS = . (2.2)

Clearly the signals (t)xi  received at the sensor array will
not generally be uncorrelated due to the mixing described
in equation (2.1). Indeed, it follows immediately that the
correlation matrix, given by

p
HH IAAXX 2σ+=   , (2.3)

will not be diagonal in general circumstances.

Given a data matrix X whose individual signals ix are not
uncorrelated, there are several well known techniques for
generating a set of uncorrelated signals by linear
transformation of the original set. One approach is to
perform a singular value decomposition of the data matrix
X i.e. to compute a transformation of the form

DVUX H= (2.4)

where U is a pp × unitary matrix, V is a Tp × matrix

whose rows, T
iv , are orthonormal and D is the diagonal

matrix }..........,,diag{ 21 pddd  with pddd ≥≥ .....21 .

Since U is unitary, we may write

DVUX = (2.5)

and so it is clear that the rows of  DV constitute a linear
combination of the original signals. Furthermore, since the
rows of V are orthonormal, it can be seen that the rows of
DV represent uncorrelated signals of magnitude id . It is

worth noting here, that the unitary matrix U can also be
obtained by performing an eigenvalue decomposition

(EVD) on the covariance matrix HXX defined in
equation (2.3). It follows immediately from equation (2.4)
that

UDUXX 2HH = (2.6)

so the eigenvalues of HXX are 2
id and the corresponding

eigenvectors are the rows of U .

Assuming that the signal to noise ratio (SNR) is
sufficiently high and the mixing matrix has full column
rank, performing an SVD of the data matrix X in equation
(2.1) will produce a diagonal matrix in which σ≈id  for

qi >  and σ>>id for qi ≤ . The first q rows of V define
the signal subspace; the other rows define the noise
subspace which may thus be identified and separated. A
critically important feature of the SVD is that the matrix
U  which transforms the matrix of correlated signals X
into the matrix of uncorrelated signals DV is unitary. As a



result, the total energy of the original signals is preserved
under the transformation i.e.
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Without this property, the distribution of energy between
the signal and noise subspaces would not have any
physical significance.

3. BROADBAND SIGNALS AND
CONVOLUTIVE MIXING

The purpose of this paper is to suggest a novel technique
for extending the SVD to broadband signals and the
associated problem of convolutive mixing. For ease of
notation in the broadband case, we confine our attention
initially to the special case of two signals (assumed to be
real) and two sensors. In the case of broadband signals,
the relative delays between different propagation paths
cannot be represented in terms of phase and amplitude
factors imposed at the sensor elements as in equation
(2.1). Instead, the mixing must be represented as a linear
superposition of delayed samples of the signals emitted by
each source. In the case of two signals and two sensors
this may be expressed in the form:

)()()(
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(3.1)

where ⊗  denotes the convolution operator i.e.

∑ =−=⊗=
=
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k
tktskatsatx

0
.........2,1,0)()()()( (3.2)

(and we have assumed that 0)( =ts  for 0<t ). Each
sensor to signal channel is described by a different FIR
filter ija  (i,j = 1,2) which models the effect of multipath

propagation and dispersion. This is generally referred to
as convolutive mixing. In terms of the polynomial
representations (z-transforms) given by

lzpazazaaza −−− ++++= )(........)2()1()0()( 21

........)3()2()1()0()( 321 ++++= −−− zszszsszs (3.3)

........)3()2()1()0()( 321 ++++= −−− zxzxzxxzx

the convolution in equation (3.2) may be expressed as a
simple product of the form

)()()( zszazx =  (3.4)

Similarly equation (3.1) may be written in the form
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i.e.
)()()( zzz sAx = (3.6)

where )(zA  is now a polynomial matrix. If the broadband

signals )(1 ts and )(2 ts in equation (3.1) are statistically
independent, they will also be uncorrelated and so the
cross-correlation at all lags must be zero i.e.

,...)1,0(0)]()([)]()([ 1221 ==−=− kktstsEktstsE (3.7)

Assuming that these expectation values are estimated by
unnormalised temporal averages of the form

[ ] ∑ −=−
=

T

t
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0
2121 )()()()(    , (3.8)

it is possible to express equation (3.7) in the form

0)()/1()/1()( 2121 == zszszszs (3.9)

In terms of polynomial matrices, the correlation at all lags
may be expressed in the form
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where )/1()()( zszsz iii =σ  corresponds to the auto-
correlation function or spectrum of the ith signal. Note that

the polynomial matrix )(zsR  is diagonal. The tilde
operation is used to represent paraconjugation i.e. the
combined operations of matrix transposition, substitution

of 1−z  for z  and, more generally, complex conjugation
[3]. As a result of the mixing process in equation (3.6), the
received signals )(1 tx and )(2 tx  will generally be
correlated and the polynomial correlation matrix will not
be diagonal since
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The first stage of many signal processing algorithms is to
filter and recombine these signals in order to generate
signals )(1 tv and )(2 tv  which (to a good approximation)
are uncorrelated. This may be achieved by a number of
standard techniques such as multi-channel linear
prediction using a least squares lattice filter [1]. However,
since these methods do not conserve the spectral energy in
the signals, they can not be used to identify the signal and
noise subspaces. In order to overcome this limitation, it
would be highly desirable to have a suitable broadband
SVD algorithm.

We propose a broadband SVD algorithm of the form
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i.e.
)()()( zzz xHv = (3.13)

where
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and )(zH is constrained to be a paraunitary matrix. This
means that

IHHHH == )()(
~
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~

)( zzzz (3.15)

where the tilde again denotes paraconjugation. The
polynomial matrix is constrained to be paraunitary so that
the spectral energy of the two signals is conserved as a
result of the transformation [3]. This ensures that the
energy in the resulting broadband signal and noise
subspaces has proper physical significance.

The challenge then, is to compute a paraunitary matrix
)(zH such that the correlation matrix in equation (3.14) is

as close to diagonal as possible. In general, it will not be
possible to achieve exact diagonalisation since the
paraunitary matrix is composed of FIR filters. These
cannot be expected to undo the type of correlation
induced by an FIR (or rational) mixing matrix. However,
if the number of delay stages in the filter elements of the
paraunitary matrix is sufficiently large, the decorrelation
can be achieved to a very good approximation.

Since a general polynomial matrix is not necessarily
paraunitary, it is vital to ensure that the approximate
diagonalisation is carried out over the restricted subspace
of paraunitary matrices. The easiest way of generating a
paraunitary matrix is to use a suitably parameterised
representation - one which is guaranteed to be paraunitary
irrespective of the parameter values. Vaidyanathan [3] has
shown that (apart from a possible channel swap) an
arbitrary FIR paraunitary matrix can be decomposed into
a set of rotations interspersed by delays. In the two
channel case, a paraunitary matrix )(zNH of degree1 N is
decomposed as

01 )()(.......)( QΛQΛQH zzz NN = (3.16)

where )(zΛ  denotes a unit delay applied to one channel
i.e.
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1 The degree of a paraunitary matrix is defined as the number of
delays needed to implement it. This is not the same as the order
which is the highest power of  z-1 in the polynomial matrix.

and iQ  represents a simple 2 x 2 unitary matrix which
can be parameterised by a single rotation angle. For the
purposes of broadband SVD, the challenge is to identify
rotation matrices NQQ .......0  which minimise the output
cross-correlation over multiple time lags. Attempting to
optimise the parameters of such a filter is still quite
difficult since the individual rotations cannot be computed
independently and a multi-parameter nonlinear
optimisation is required. It is worth noting that in the
limiting case of a single stage this takes the form of a
single rotation matrix and so the problem reduces to that
of conventional narrowband SVD.

4. SEQUENTIAL BEST ROTATION
ALGORITHM

In order to simplify the problem we adopt a different
formula for generating the paraunitary matrices. This
takes the form

1
1......)( dd

L
Lz ΛQΛQH = (4.1)

where the integer parameters id  can be negative or
positive. It can be seen that any polynomial matrix
generated by (4.1) is paraunitary since each stage is
paraunitary. However the degree is no longer certain.
Equation (4.1) introduces the important new concept of an

“elementary paraunitary matrix” id
ii z ΛQV =)( which

comprises a number (possibly negative) of delays applied
to one channel followed by a rotation [4]. It is elementary
in the sense that it only involves one rotation, but it does
not necessarily have degree one. The second order
sequential best rotation algorithm (SBR2) seeks to
generate a paraunitary matrix of this type by calculating
and applying a sequence of elementary paraunitary
matrices as illustrated in figure 1. This sequence is
designed to minimise the strong decorrelation measure
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where )(τijr  (i,j = 1,2) denotes the estimated correlation

between signals i and j at lag τ  given by
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To simplify the analysis, and avoid the problem of an
effective window length which depends on the lag τ , we
make the assumption that the block of data repeats
cyclically so that )()( Ttxtx ii ±= . Provided the block
length T is sufficiently large, this should be just as good
an approximation as the use, for example, of zero
padding.



Each step of the algorithm applies a single elementary
paraunitary matrix, chosen to maximise an instantaneous
measure of decorrelation evaluated at that stage (equation
4.4). This might not appear to be a sensible strategy since
the successive elementary paraunitary matrices do not
commute and applying a rotation doesn't just affect the
current state but also the potential future gains of the
algorithm. Unlike the narrowband case, applying a poorly
chosen rotation is likely to make the problem more
difficult by increasing the order of the mixing polynomial
for no good reason. However, the freedom to choose an
optimum delay for each stage makes the process in figure
1 much more meaningful.

In order to explain the operation of the algorithm we
introduce the following set of measures relating to the
instantaneous correlation of  two signals )(1 tx  and )(2 tx :

2
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and
2

12123 )0(2rNNN =−= (4.6)

3N  constitutes an instantaneous measure of cross-

correlation between the two signals while 2N  is simply
the norm of the instantaneous correlation matrix. It is easy
to show that 2N  is invariant to a rotation of the two signal

channels and obvious that 1N  is invariant to a delay

applied to either channel. As 2N  is invariant and

constitutes the sum of 1N  and 3N , any rotation which

leads to a reduction in the value of 3N  must increase 1N

by the same amount. Since 1N  is unaffected by
subsequently delaying either channel, it follows that
successive steps of the SBR2 algorithm must lead to a
strict increase in the value of 1N  overall.

At each stage of the algorithm, the delay is chosen to
achieve the maximum possible increase in the value of

1N . Now for any pair of signals, the value of 3N  can be

driven to zero by rotating them through an angle θ  given
by

)0()0(
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so it follows that the best delay is the one for which 3N  is
greatest prior to the rotation i.e. the one which maximises
the instantaneous correlation between the shifted signals.
It has been shown [8] that this sequence of operations
must converge to a solution which achieves strong

decorrelation in the sense that 0max
3 →N  but the proof is

not included here due to limitations on space. The SBR2
algorithm for two signals may be summarised as follows:

1) Apply a relative delay between the two signals so that
the instantaneous correlation between them is maximised.

2) Rotate the signals through an angle θ  which drives the
instantaneous correlation to zero.

3) Repeat steps 1 and 2 until the value of 1N  achieves its
maximum value to within a specified tolerance.

In this paper we have chosen to describe the SBR2
algorithm in terms of elementary paraunitary matrices
applied directly to the received signals (data domain).
However, just as the conventional SVD algorithm can also
be computed in terms of similarity transformations
applied to the associated covariance matrix, so the SBR2
algorithm can be formulated in terms of elementary
paraunitary matrices and their paraconjugates applied
from the left and right respectively to the pre-computed
broadband correlation matrix defined in equation (3.11).
This formulation (covariance domain) may not be quite so
good from a numerical perspective, but it leads to a more
efficient computation and has the advantage that the
broadband correlation can be windowed in time to reduce
the effect of sample noise if appropriate. It follows that
the SBR2 algorithm may be viewed more fundamentally
as a paraunitary technique for diagonalising any para-
symmetric polynomial matrix.

Vaidyanathan [9] has shown that in certain circumstances
the paraunitary matrix required to achieve strong
decorrelation may not be uniquely defined without
imposing spectral majorisation on the output signals. It is
worth pointing out that, by virtue of the cost function
used, the SBR2 algorithm tends to impose spectral
majorisation on the output signals provided this is
consistent with the requirement for strong decorrelation,
bearing in mind that individual frequency components are
not necessarily independent.

In this short paper we have only presented the SBR2
algorithm for the relatively simple case of two signal
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)sin(θ

)sin(θ−

‘Elementary Paraunitary Matrix’

Figure 1. Diagrammatic representation of SBR2 algorithm



channels. This is sufficient to explain the key features of
our approach. However, the method may be generalised to
multiple channels in several ways. We have developed
two specific multi-channel versions. One of these may be
viewed as a generalisation of the classical Jacobi
algorithm for matrix diagonalisation. The other may be
viewed as a generalisation of the standard cyclic-by-rows
Jacobi algorithm. The results presented in the next section
were produced using the former option.

5. RESULTS

In order to demonstrate briefly that the SBR2 algorithm
works in practice, we present the results of a preliminary
numerical experiment. The propagation of 3 signals onto
5 sensors was modelled by means of a 5 x 3 polynomial
mixing matrix whose entries were 5th order FIR filters
with coefficients drawn randomly from a uniform
distribution in the range [-1, 1]. The source signals took
the form of independent BPSK sequences where each
sample takes the value 1±  with probability 1/2. Gaussian
random noise was added to each simulated sensor output
with variance chosen to achieve the desired SNR. Blocks
of 1000 data samples were used for each simulation.

The SBR2 algorithm was used to strongly decorrelate the
signals and diagonalise the broadband covariance matrix
as indicated in equation (3.14). The signal and noise
subspaces were then identified and separated based on the
energy of the decorrelated output channels. The signal
subspace was defined by three strongest channels. The
integrity of the signal and noise subspaces was quantified
using a measure of the form sn ααα /= where

nα denotes the projection of the original signals onto the

computed noise subspace and sα represents the projection
of the original signals onto the computed signal subspace.
The smaller the value of α the more reliable the subspace
estimation.

The value of α as a function of SNR is plotted in figure 2.
Each point on the graph represents the value of α
averaged over 100 independent realisations of the
experiment. It can be seen that 2.0<α  for values of SNR
down to -10dB indicating that the algorithm is capable of
effective broadband subspace decomposition. Numerous
other successful computer simulations have been carried
out and will be reported in a future publication.

6. CONCLUSIONS

In this paper we have introduced the concept of a
broadband SVD and suggested a tractable approach to
performing the necessary computation. A prototype
algorithm has been outlined and some initial results
presented. In many respects, the method presented here
may be viewed as a direct extension of the Jacobi
algorithm for conventional eigenvalue or singular value

decomposition. A proof of convergence has been
obtained. Numerous variations and refinements are
possible. Several of these have been investigated but they
can not be reported in this short paper. Together with
others which remain to be explored, they will be presented
in a future publication. #
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