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Abstract—The problem of paraunitary (PU) filter bank design
for subband coding has received considerable attention in recent
years, not least because of the energy preserving property of
this class of filter banks. In this paper, we consider the design
of signal-adapted, finite impulse response (FIR), PU filter banks
using polynomial matrix EVD (PEVD) techniques. Modifications
are proposed to an iterative, time-domain PEVD method, known
as the sequential best rotation (SBR2) algorithm, which enables
its effective application to the problem of FIR orthonormal filter
bank design for efficient subband coding. By choosing an optimiza-
tion scheme that maximizes the coding gain at each stage of the
algorithm, it is shown that the resulting filter bank behaves more
and more like the infinite-order principle component filter bank
(PCFB). The proposed method is compared to state-of-the-art
techniques, namely the iterative greedy algorithm (IGA), the ap-
proximate EVD (AEVD), standard SBR2 and a fast algorithm for
FIR compaction filter design, called the window method (WM).
We demonstrate that for the calculation of the subband coder, the
WM approach offers a low-cost alternative at lower coding gains,
while at moderate to high complexity, the proposed approach
outperforms the benchmarkers. In terms of run-time complexity,
AEVD performs well at low orders, while the proposed algorithm
offers a better coding gain than the benchmarkers at moderate to
high filter order for a number of simulation scenarios.

Index Terms—Orthonormal subband coders, paraunitary (PU)
matrix, principal component filter banks (PCFB), polynomial ma-
trix eigenvalue decomposition, sequential best rotation.

I. INTRODUCTION

P ARAUNITARY filter banks have been extensively
studied for subband coding and applied to an increasing

number of applications, including noise reduction [1], audio
and image coding [2] and digital communications [3], [4]. For
the case where the order of the filters is unconstrained, it is
known that a principal component filter bank (PCFB) [5], [6]
exists and is an orthonormal or paraunitary (PU) filter bank
that is simultaneously optimal for a number of objectives [7],
including mean-squared error and coding gain for subband
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coding in data compression applications [8]. This is also true
when the filter orders are constrained to be not greater than the
number of subband channels. In this case, the zero-order PCFB,
viz. the Karhunen-Loeve transform (KLT) or the singular-value
decomposition (SVD) [10], provides the optimal solution [11].
The PCFB also exists for the special case of the two-channel
filter bank. However, it is believed that the PCFB does not
generally exist for the case where order-constrained (or finite
McMillan degree [12]) filters are used [7], [13].
A number of authors have proposed methods for the design

of suboptimal finite impulse response (FIR) PU filter banks.
Typically, the filter is chosen to optimise a specific objective
function for a known input power spectral density (PSD), such
as coding gain [2], [14], [15] and multiresolution energy com-
paction [16]. As a consequence, all such methods require the
numerical optimization of nonlinear and nonconvex functions.
A common approach has been to calculate an optimal FIR com-
paction filter for the first filter [17], [18], and then find the re-
maining filters using an appropriate completion strategy to con-
struct the filter bank [16], [19]. In [16], the FIR compaction filter
design problem is reduced to a semi-infinite linear (SIP) pro-
gram. The authors solve a discretized version of the SIP using
standard linear programming methods, which becomes compu-
tationally costly and complex for large filter orders. A more
efficient discretization method is proposed in [17], called the
window method. However, the main disadvantage of this type
of approach is that global optimality is not guaranteed due to
the fact that there is ambiguity caused by the nonuniqueness
of the FIR compaction filter [18], [19]. In [20], Tkacenko and
Vaidyanathan propose a different strategy for the design of filter
banks, called the iterative greedy algorithm (IGA), which in-
volves simultaneously designing all of the filters at once, thus
avoiding the need to compare the performance of different spec-
tral factors of a given FIR compaction filter. The IGA parame-
terizes a dyadic-based structure, similar to that in [12], by min-
imising the difference between a desired response and a causal
FIR PU filter bank consisting of degree-one PU building blocks.
A drawback of this algorithm is that it is very demanding com-
putationally.
PU filter bank design has also been presented in the con-

text of the eigenvalue decomposition (EVD) of para-Hermitian
matrices in [22]–[24] and signal subspace analysis of broad-
band signals [25]–[27]. The approach by Regalia and Loubaton
[25] exploits the fixed degree parameterization proposed in [12].
They reformulate the problem using a state space model and
propose an iterative solution, which avoids the problems of local
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minima associated with gradient descent techniques. Lambert
et al. [27] have developed an EVD for polynomial matrices by
generalising some conventional linear algebra and control tech-
nique from the complex number field to the field of rational
functions. Requiring the approximate inversion of FIR filters in
the frequency domain, issues around stability arise.
An alternative PU filter bank design can be obtained by

generalization of the EVD to polynomial matrices, such as
the second order sequential best rotation (SBR2) algorithm,
proposed by McWhirter et al. in [22]. This algorithm has been
successfully applied to broadband extensions of narrowband
problems, which traditionally have been addressed by the
EVD, including subspace decomposition. In constrast with
IGA, where a fixed constraint is imposed on the order of the
filters, the filter order of the filter banks constructed by SBR2
can grow with every iteration.
Tkacenko [24] has recently proposed a fixed order algorithm

for approximating the polynomial matrix EVD based on ap-
plying a given number of degree-one (second order) filter stages.
Like the SBR2 algorithm, it aims to increase the zero order di-
agonal energy in a monotonic fashion. However, this method,
referred to as the approximate EVD (AEVD) algorithm, is not
designed (or claimed) to converge as the number of stages in-
creases and its performance has been found to saturate at a much
lower level than that of SBR2. While a detailed discussion is
beyond the scope of this paper, the AEVD is included as one of
several benchmarkers later.
In this paper, we consider the application of the SBR2 al-

gorithm to the problem of PU filter bank design for subband
coding. A new cost function is proposed, which is based on the
coding gain, and improves the diagonalization and coding gain
performances compared to the SBR2 algorithm, for which ini-
tial results have been reported in [28]. The resultant algorithm
can converge to a solution that yields a PU filter bank, which is
approximately optimal for subband coding, in a relatively small
number of iterations. It is shown that the resulting filter banks
tend towards the infinite-order PCFB as the number of iterations
is increased. The algorithm is based on a polynomial cross-spec-
tral density (CSD) matrix which for the subband coder design
possesses a specific structure, incorporating both para-Hermi-
tian and pseudocirculant properities. We therefore demonstrate
how these implicit properties can be exploited to enhance the
estimation accuracy of the CSD matrix.
In Section II, we present a review of relevant theory and

results pertaining to filter bank design and the extension of the
EVD to polynomial matrices. A review of the SBR2 algorithm
is given as a technique for computing the polynomial EVD. In
Section III, a new cost function for SBR2 is introduced, which
improves the energy compaction ability of the algorithm. The
applicability of the modified SBR2 to the problem of data com-
pression is investigated in Section IV. This leads to a method
by which a priori knowledge about the subband signals is used
to improve the decorrelation performance of this algorithm.
The resulting technique is compared to the state-of-the-art, IGA
[20], the AEVD [24] and the computationally efficient window
method [17] in Section V. We present experimental results
which suggest that our algorithm outperforms the window
method, IGA and AEVD on a set of benchmark problems for

moderate to large filter orders. Finally, conclusions are given
in Section VI.

II. OPTIMAL FILTER BANKS AND POLYNOMIAL MATRIX
DECOMPOSITIONS

A. Preliminary

A polynomial matrix is a matrix whose elements are poly-
nomials, or equivalently a polynomial with matrix coefficients
[29]. In this paper, we will use the term polynomial to include
Laurent polynomials which can include negative powers of the
indeterminate variable. We denote a polynomial matrix
in the indeterminate variable by

...
. . .

...

(1)

where , and

(2)

with . Since the leading term of is
constant, the effective order of is . A transform pair
as in (1) is denoted as — .

B. Filter Bank Optimality

A typical model of a subband coder is the -channel, max-
imally decimated, uniform filter bank shown in Fig. 1(a) and
its polyphase form [12] shown in Fig. 1(b). It consists of an
analysis bank followed by subband processors , applied to
the subband signals, and a synthesis bank. The subband proces-
sors are typically scalar quantisers. If in Fig. 1(b)
is chosen such that , for some constant
and integer , then the subband coder is a perfect reconstruction
filter bank, which in the absence of any subband processing is
transparent from input to output, i.e., . Further-
more, an elegant and simple reconstruction may be obtained, if
the matrix is unitary for all normalized
angular frequencies ; that is, satisfies the PU or orthonor-
mality condition [12]

(3)

where is an polynomial matrix and is the
paraconjugate transpose of , i.e., . In
this case, the synthesis bank is simply given by .
Another important property of PU filter banks is their lossless-
ness, which means that the total signal power at every frequency
is conserved by the transformation [12], i.e., defines an
all-pass filter. Our discussions are limited to maximally deci-
mated, uniform PU filter banks.
The design of an optimal PU subband coder, for a given fixed

budget of quantiser bits, consists of simultaneously optimizng
the analysis and synthesis filters as well as choosing a subband
bit allocation strategy such that the reconstruction error is mini-
mized. The scalar input signal is typically assumed to be a
zero mean, wide-sense stationary (WSS) random process with a
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Fig. 1. (a) -channel uniform, maximally decimated filter bank and (b) its
equivalent polyphase represention.

known power spectrum . This is equivalent to saying
that the -fold blocked input signal vector is jointly WSS
[12], where denotes the low-rate time index. Assuming
a high bit rate for the quantizer and optimum bit allocation,
an optimal PU filter bank maximizes the well-known coding
gain [8]

(4)

where is the variance of and is the variance of the
th subband signal . The denominator is the geometric

mean of the subband variances. Since is fixed, the optimiza-
tion of the analysis filters consists of minimising this geometric
mean under the orthonormality condition. For the unconstrained
filter order case, Vaidyanathan derives a set of necessary and
sufficient conditions for optimality of a PU filter bank [8]:
1) strong (or total) decorrelation—the subband signals are
decorrelated at all relative time lags, i.e.,

, where denotes the
expectation operator, the complex conjugation of , and

the Kronecker delta function;
2) spectral majorization—the set of subband spectra

has the property
, where the subbands are numbered

such that . In other words, the PSD matrix
of is diagonalized for every such that

the eigenvalues of are arranged in decreasing
order [1].

A procedure for obtaining optimal PU systems, for the uncon-
strained order case, is presented in [8]. We can also obtain an
optimal PU system through the design of a PCFB, which is de-
fined as follows: Consider that channels are discarded in
the synthesis part of the -channel filter bank in Fig. 1. A filter
bank that minimizes the average mean square reconstruction
error for all is called a PCFB. The set of subband variances

generated by a PCFB is said to majorise any other possible

set of subband variances. It turns out that the orthonormal PCFB
is also optimal for energy compaction: the subband variances
are arranged as , such that

is maximized. For the case is max-
imized by , which is an optimal compaction filter. Fur-
thermore, since the filters of a PCFB are orthonormal,
satisfies the Nyquist- constraint, viz.

(5)

where is a real coefficient FIR filter [12]. A quantita-
tive measure of energy compaction performance is given by the
compaction gain [17]

(6)

which is maximized by a compaction filter, i.e., the first filter of
a PCFB.

C. Polynomial Matrix EVD

Given a vector of signals , compression can be
achieved by exploiting redundancy in the form of correlation
between the signals constituting .
If these signals are only correlated at zero relative time-lag, then
the Karhunen-Loeve transform (KLT) matrix can perform
decorrelation

(7)

whereby is derived from an EVD of the covariance matrix
, with diagonal and uni-

tary matrices, or from an SVD operating on the data matrix. The
decorrelation according to (7) converts the form of the redun-
dancy from correlation between the signals to disparity between
the signal powers. Compression is realized by discarding low
power channels which lie in the noise-only subspace estimated
by the KLT.
If signals in are correlated for lags other than lag zero,

then the KLT can only achieve instantaneous decorrelation, and
not strong decorrelation as defined in Section II-B. While this
problem occurs in many techniques such as separation of con-
volutively mixed signals, we here concentrated on the subband
coding idea, where is obtained by demultiplexing an input
signal as shown in Fig. 1.We would like to find a polyphase
matrix with z-transform — , such that the
transformed data vector

(8)

is strongly decorrelated. This requires the CSD matrix of
the transformed signals to be diagonalized, such
that the polynomial matrix is given by

(9)
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where — is the CSDmatrix based on the covariance
matrix of the input data vector, and

is defined likewise based on .
We refer to (9) as a polynomial EVD (PEVD) and demand as

a generalization of the EVD that the polynomial matrix is
constrained to satisfy the PU condition in (3).

D. PCFBs and PEVDs

To explore the energy compaction property of the PEVDwith
respect to data compression, we assume that only the first
signals of the -element transformed data vector in (8)

are retained

(10)

The total power of this compressed signal vector

(11)

is maximized for each . The terms ,
are the diagonal entries of the covariance matrix corre-
sponding to the CSD in (9). By applying the PU matrix

to , as shown in Fig. 1(b) with

(12)

represents an approximate reconstruction of , whereby
— .

Since (11) is maximized, the sum of the variances of the
signals suppressed in (10) is minimized. With being

PU, the power of the reconstruction
error is also minimized. Therefore, the PU matrix

responsible for this minimization can be interpreted as an
extension of the PCFB for subband coding, motivating the need
for a PEVD.

E. Polynomial EVD via the Sequential Best Rotation
Algorithm (SBR2)

A number of algorithms have been reported to approximate
the PEVD factorization of (9) in [21], [22], [24], and [27]. We
review the sequential best rotation (SBR2) approach [22], which
will form the basis of the proposed subband coding scheme in
Section III.
An iterative approach to obtain the decomposition (9) is de-

scribed in [22]. This method calculates a sequences of PU oper-
ations consisting of delays and rotations to iteratively eliminate
the largest off-diagonal terms in the CSD matrix. The approach
in [21] and [22] is based on second-order statistics, and therefore
termed second order sequential best rotation (SBR2) algorithm.
After iterations, SBR2 is set to achieve the decomposition

(13)

(14)

where is an estimate of the CSDmatrix based on the
available samples of , and provides an estimate of

the approximately diagonalized CSD matrix of the trans-
formed signals .
SBR2 starts by setting . In each subsequent

step , SBR2 will eliminate the largest off-diagonal element of
. This element can be identified by its coordinates

and lag

(15)

where is the element in row and column of the
covariancematrix corresponding to . The elimi-
nation of this element is performed by the generalized similarity
transform

(16)

whereby the elementary PU matrix

(17)

consists of a delay matrix and a Jacobi rotation . The
delay matrix shifts the largest off-diagonal element of
onto lag zero by setting

(18)

The operation will transfer the largest off-
diagonal element onto the lag-zero slice. The Jacobi rotation

...
... (19)

with identity matrices of dimensions
and , respectively,

for , contains angles and selected to eliminate
the largest off-diagonal element and transfer its energy onto
the main diagonal [10]. The transfer is performed such that the
larger element lies higher up on the diagonal, which during the
iteration process leads to spectral majorization.
The iteration continues until is sufficiently diagonal-

ized, such that the maximum off-diagonal element

(20)

falls below a preselected threshold . In this case, is the
approximately diagonalized CSD matrix of (13), and the PU
matrix in (13) is given by

(21)

The accuracy of this decomposition depends on , the sample
size over which is estimated as an approximation of the
true CSD matrix , as well as optimality of the estimation
procedure to be discussed in Section IV.
The order of both and can grow significantly

with the number of iterations . Therefore, a trim function was
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proposed in [22] to truncate the highest order coefficient ma-
trices at each SBR2 stage based on a small threshold, and thus
limit the increase in order on both polynomial matrices.

III. MODIFIED SBR2 (SBR2C) ALGORITHM

There is an important limitation of the search strategy em-
ployed by the SBR2 algorithm described in Section II. The
parameter values for each delay-rotation matrix are chosen
using a generalization of the classical Jacobi algorithm [10].
This method may be viewed as a “greedy” optimization scheme
that annihilates the largest cross correlation at each algorithm
iteration. Therefore, SBR2 is proportionately more sensitive
to changes (in correlation) in dominant signals than it is to
changes in weak signals. This is because, in general, the largest
cross-correlation coefficients occur between dominant signals,
which are minimized by the algorithm at every step. The
detrimental effect on algorithm performance when operating
on estimated CSD matrices is twofold:
1) The extent to which polynomial matrix diagonalization
(strong decorrelation) is carried out is restricted: after a
number of iterations, the algorithm begins to zero noise-re-
lated cross correlations between dominant signals rather
than true signal-related cross correlations between weaker
signals.

2) The extent to which spectral majorization is performed is
limited: Energy in weaker, correlated signals is not com-
pacted into as few channels as possible. This is usually be-
cause energies due to cross-correlation terms, which are
spread among pairs of weak signals, are not transferred to
the autocorrelation of the signals.

The above problems can be alleviated by the use of a cost
function which is proportionately equally sensitive to changes
in any of the signals. The coding gain in (4) for subband coding
has this property. Here, we define a new cost function simply
by substituting the variance terms in the coding gain definition
(4) by variances obtained after diagonalization steps,
usin, e.g., SBR2, and based on sample statistics in

, giving

(22)

As with the coding gain, minimization of the product of the
transformed signal variances in (22) leads to maximal energy
compaction and spectral majorization. In this paper, the SBR2
algorithm with this cost function is referred to as the SBR2 al-
gorithm modified for subband coding (SBR2C). We now make
the following assertion.
Theorem 1: The cost function in (22) is maximized at

each step of the SBR2C algorithm if the largest normalized
magnitude squared off-diagonal term with indices , and

(23)

in is zeroed.

Proof: The indices and identify the two signals
involved in the elementary similarity transformation in
(16) at step . Note that the numerator in (22)—i.e., the arith-
metic mean of sample variances—can be treated as a constant
under PU operations and therefore throughout the SBR2

algorithm. Further, since signals indexed and are the only
ones modified by the transformation in question, we may write

(24)

where represents the product of the sample variances
that are invariant under the th elementary PU transformation.
Following the transformation process, we have

(25)

but from properties of the transformation it can easily be shown
that

(26)

and therefore

(27)

It follows that for any one iteration of the algorithm, the
cost function is maximized by choosing the correct set

at the th iteration such that the objective function

(28)

is as close to unity as possible. The denominator of (28) can
be viewed as a normalization factor that essentially stabilizes
the algorithm. In essence, this is because large cross-covariance
coefficients due to strong signals, say, are attenuated relative to
those associated with weaker signals. Hence, the maximization
of entails a generalized classical Jacobi search for the largest
normalized cross-covariance term.
There are two modifications that need to be made to the SBR2

algorithm in order to obtain the modified SBR2 algorithm. The
first is that the correlation based objective function
in (15) is replaced by the quotient

(29)

based on (28), searching over all normalized cross-correlation
functions. Second, the stopping criterion in (20) needs to be
defined in terms of in (29) rather than .
The proposed modified cost function in (29) improves the

strong decorrelation and spectral majorization performances
of the SBR2 algorithm. Hence, the SBR2C algorithm is more
suited to the applications of data compression and broadband
subspace decomposition than its correlation-based counterpart.
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Note that the algorithm intrinsically aims to design a filter bank
that is optimal for multichannel data compression because its
optimization is exclusively geared towards the maximization of
energy compaction. The proof of convergence for SBR2 in [22]
no longer holds for the modified SBR2 algorithm, since the
condition will arise if either or tend
to zero. However, the original proof remains valid if individual
signal powers are artificially bounded from below by a small
noise-related offset value.

IV. CSD MATRIX ESTIMATION

The SBR2 algorithm and its proposed modification, the
SBR2C algorithm, can be classed as “blind” techniques since
they require knowledge of neither the source signals nor their
mixing. However, these algorithms require the CSD matrix

of the demultiplexed data vector . In practise, an
estimate of this CSD matrix has to be calculated based
on a finite window of data. The accuracy of this estimate
is therefore crucial for the performance of subband coding.
Below, we first review two important properties of the CSD
matrix in Section IV-A, in order to suggest two procedures in
Section IV-B that implicitly exploit the CSD matrix’ properties
and therefore yield enhanced estimates.

A. CSD Matrix

Consider the subband coder in Fig. 1(b). We assume that the
scalar input signal is a zero mean, WSS random process
[9]. The blocked filter bank input vector is given by

(30)

where are the demulti-
plexed signals. The CSD matrix

(31)

has the form

...
. . .

...

(32)

where

(33)

is the cross-correlation sequence between subband signals
and . The CSD matrix has the following

important properties:
1) Para-Hermitian Property. From the definition of the cross
correlation function

and
, it follows that

.

2) Pseudocirculant Property. An polyno-
mial matrix with entries as defined
in (32) is pseudocirculant if there exist polynomials

, such that [12]

(34)

The pseudocirculant property of means that each row is
derived from the previous one by right-shifting elements and
forming a wrap-around with a multiplication by

...
. . .

. . .
...

(35)

whereby here specifically , are the
polyphase components of the autocorrelation function of .
The pseudocirculant property of is intimated but not ex-
plicitly derived in [12]; since it is central to the estimation of

below, (35) is shown in Appendix A.

B. Estimation of

Based on the availability of a finite window of input data
, we discuss a direct approach that yields a

suboptimal estimation of , followed by two estimates that
exploit the properties of and lead to enhanced accuracy.
1) Subband-Based Calculation of : If is ergodic,

(31) can be converted to estimate via

(36)

In this case, every entry of is estimated from
samples. If the influence of marginal values of is neglected,

will be para-Hermitian. However, every entry along the
diagonals of is estimated from a different data set, and
the pseudocirculant property according to (35) will only be
achieved in the limit .
2) Improved Subband-Based Calculation: An improved es-

timate can be obtained by forcing it to be pseudocircu-
lant. If is a cross-correlation entry of , reflecting
the structure in (35), it can be obtained by averaging across the
diagonals of in (36).With the entries of

(37)

for . Note that compared to , every
entry of is now an estimate drawn from rather than

samples.
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3) Calculation Based on Input Autocorrelation: A third op-
tion is to draw the elements of the estimate directly from
an estimate of the autocorrelation sequence of

(38)

to form an estimate according to (35) by splitting
in (38) into its polyphase components

.
Alternatively, can be constructed in closed form from

(38), in analogy to FIR block filtering [34], as

(39)

whereby

. . .

(40)

(41)

and is a unitary DFT matrix normalized by .

The CSD estimate is based on samples for every
entry, and provides the same accuracy and result as .
When using any subband coder in the following results section,
it is always assumed that it operates on an estimate provided by
the latter two optimal methods discussed in this section.

V. SIMULATIONS AND RESULTS

To demonstrate the performance of the proposed SBR2C
algorithm, we define two simulation scenarios in Section V-A.
Simulations on the achievable coding gain are presented in
Section V-B, followed by comments on the influence of estima-
tion inaccuracies in Section V-C and the algorithm and encoder
complexity in Section V-D.

A. Simulation Scenarios

In general, we assume subband coding of a signal
which can be modelled as the output of an innovation filter [31]
excited by uncorrelated noise. Popular processes for subband
coding use autoregressive (AR) models of first and second
order—AR(1) [13], [16], [17] and AR(2) [13], [16], [18]—or
higher order models such as AR(4) [19], [20], AR(5) [13],
[18], and ARMA(5) [32] providing a multiband structure. For
this reason, we utilize an AR(4) process characterized by a
transfer function with two complex conjugate pole pairs

and , and magnitude response shown
in Fig. 2(a).
Further, an ensemble of 330 moving average (MA) systems

of order 14 is utilized, whereby the coefficients of sample
systems are drawn from independent and identically distributed

Fig. 2. (a) PSD of input signal produced by AR(4) model, and (b)–(e)
magnitude responses of filters for theoretical PCFB (dashed), SBR2C
(solid, iterations) and SBR2 (dotted, iterations).

Fig. 3. (a)–(d) magnitude responses of filters for theoretical PCFB
(dashed), IGA (solid, filter order ) and AEVD (dotted, filter order

iterations), obtained for the AR(4) model in Fig. 2(a).

Gaussian processes of unit variance and zero mean. The ex-
citation of the innovation filters are formed by uncorrelated
zero mean and unit variance quaternary phase shift keying
(QPSK) sequences. With the exception of the window method,
all algorithms below operate on decomposed into
polyphase components.

B. Coding Gain

1) PCFB Approximation and Spectral Majorization: Multi-
plexing the AR(4) process into polyphase compo-
nents for subband coding, Figs. 2 and 3 show the results for the
proposed SBR2 system as well as for SBR2, IGA, and AEVD in
terms of the filter bank filters and the spectral majorization. The
CSD matrix estimate for SBR2C, SBR2, and AEVD, and
the estimate of the power spectral density required for
IGA are based on samples of .
The true PSD of is shown in Fig. 2(a). Based on this

PSD, a theoretical PCFB can be stated, which consists of
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Fig. 4. Spectral majorization of elements in (14) after iterations for
(a) SBR2 and (b) SBR2C, with the latter achieving complete spectral majoriza-
tion with .

-band filters with a binary magnitude response and a frag-
mented passband spectrum in order to yield the theoretical
maximum coding gain according to [5] and [6]. This
theoretical PCFB is shown as a benchmark for various algo-
rithms in Figs. 2(b)–(e) and 3(a)–(d). The filter banks obtained
for SBR2C and SBR2 after iterations are charac-
terized in Fig. 2(b)–(e), and exhibit a close approximation of
the PCFB except in spectral regions where the PSD has low
values. IGA and AEVD were selected of order and

respectively—values which will be justified below
in Sections V-B2 and V.D—yielding the filter banks shown in
Fig. 3(a)–(d). The proposed SBR2C algorithm is the closest in
approaching the ideal PCFB characteristic. The motivation for
the cost function alteration over SBR2 as derived in Section III
becomes evident when considering the subchannels of weakest
power. Fig. 4 underlines this by showing the majorization prop-
erties of both SBR2C and SBR2 after iteration, where
SBR2C fulfills spectal majorization for all subchannels, while
SBR2 does not achieve this for the two weakest subchannels.
2) Coding Gain Evolution: The evolution of coding gain

based on the AR(4) process is shown in Fig. 5, comparing the
proposed SBR2C algorithm to the benchmarkers. The coding
gain results are averaged over different randomized excitations
of the AR(4) innovation filter . The upper bound is given
by the coding gain, which can be calculated for the theoret-
ical PCFB [5], [6]. For comparison, an KLT is in-
cluded, which performs the optimal narrowband decorrelation
in the sense of (7). IGA converges quickly with order , but the
coding gain value again decreases beyond a value of ,
which had therefore been selected to evaluate the filter banks
in Fig. 3 of Section V-B1. The IGA algorithm requires an it-
eration parameter, which gave best results for values of around
1000; however even a substantial increase in this iteration index
could not alter the drop in performance. AEVD, SBR2, and
SBR2C are based on similar principles, but while AEVD con-
verges quickly, SBR2C achieves a higher coding gain, which,
due to its better spectral majorization performance with respect
to weaker subbands, also outperforms SBR2.

Fig. 5. Evolution of coding gain with iteration number (SBR2, SBR2C) or
filter order (IGA, AEVD) for AR(4) process.

Fig. 6. Evolution of ensemble averaged normalized coding gain with iteration
number (SBR2, SBR2C) or filter order (IGA, AEVD, WM) for random
MA(14) processes. All algorithms operate on subbands, except for
WM with .

To verify the result for the AR(4) model, the various algo-
rithms were tested on the randomized MA(14) process for
subbands. Since every sample of the MA(14) ensemble has a
different associated optimal coding gain as defined by
the theoretical PCFB, a normalized coding gain

(42)

is introduced, which in the case of ideal subband coding con-
verges towards unity. The estimation of the CSD matrix
or the input PSD is again based on samples of

. The resulting normalized coding gain averaged over 330
ensemble processes is shown in Fig. 6. The general behavior
of algorithms is similar to the AR(4) system, with AEVD pro-
viding fast initial convergence, and the proposed SBR2C algo-
rithm, achieving the highest normalized coding gain with in-
creasing number of iterations.
The window method (WM) [17] defines a compaction filter

for which a complementary filter for an channel filter
bank is easily found. Since for values of the method
becomes ambiguous, the WM approach is here restricted to
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Fig. 7. Evolution of ensemble averaged normalized compcation gain with it-
eration number (SBR2, SBR2C) or filter order (IGA, AEVD, WM) for
randomMA(14) processes. All algorithms operate on subbands, except
for WMwith . The KLT’s average normalized compaction gain of 0.363
is omitted.

the exception . While its coding gain reaches a value
of around 0.85 when normalized with respect to the optimum
PCFB coding gain for , the increased performance for
a PCFB for leads to lower values for in Fig. 6.
While the displayed performance may seem modest, the WM
offers computational advantages, as will be seen later.
To underline the impact of the modifications applied in

SBR2C over SBR2, Fig. 7 demonstrates the evolution of the
compaction gain as defined in (6) and normalized with
respect to the optimal performance of the PCFB analogously
to (42), analogous considerations for WM as applied in Fig. 6.
Since SBR2 gives more weight to the diagonalization of strong
subchannels, its performance with respect to compaction gain
is superior over the proposed SBR2C algorithm. However, it is
interesting to note that both algorithms converge to very similar
compaction gains for an increased number of iterations.

C. Influence of Estimation Errors

Section IV concentrated on the estimation of the CSD ma-
trix based on data available over a finite window. This section
explores the impact of different data window sizes on the ac-
curacy of subband coding algorithms. Given the dominance of
SBR2, SRB2C, and AEVD as established on Section V-B2, the
comparison is restricted to these three methods. As an example,
we the utilize the AR(4) innovation filter, with results averaged
over 200 different instances of QPSK excitations.
The results for two different window sizes of

and , are compared with the case of knowledge of
true underlying statistics, i.e., . A suitable performance
measure is the normalized coding gain error

(43)

which assesses the normalized mismatch with respect to the per-
formance of the ideal PCFB. For an optimal algorithm, is
expected to converge to zero for large and sufficient iterations
in case of SBR2 and SBR2C or filter order in case of the

AEVD. The results in Fig. 8 show the superiority of SBR2C

Fig. 8. Normalized coding gain error obtained for AR(4) process with
with SBR2C (solid), SBR2 (dashed), and AEVD (dotted) for knowledge of true
statistics (square), and finite data windows of with (star) and

(circle); for the latter two, curves are averaged over an ensemble of
50 variations on the excitation sequence of the innovation filter .

Fig. 9. Dependency of filter order on iteration number for SBR2 and
SBR2C.

over SBR2 in terms of convergence to the PCFB performance.
The graph also highlights the performance difference between
the suboptimal and optimal estimation methods for de-
scribed in Section IV-A, which leads to an alteration in the effec-
tive data size by a factor of . The results for the next best
competitor to SBR2C, the AEVD, are only shown for the knowl-
edge of true statistics, which is still outperformed by SBR2 for
a sufficiently high number of iterations.

D. Computational Complexity

1) Iterations, Filter Order, and Run Time Complexity: The
number of iterations , which governs the convergence of SBR2
and SBR2C, and the filter order , which is the main parameter
of the remaining benchmarkmethods, have been shown together
in previous plots but are not directly equivalent. With order
trimming during the iteration process applied to both SBR2 and
SBR2C as mentioned in Section II-E and outlined in [22], the
relation between and has beenmeasured for the randomized
MA(14) process. The averaged results on the dependency be-
tween and are given in Fig. 9, showing an initial fast growth
in order and a gradual slowing and saturation as iterations
progress. Although measured for MA(14), these results have
been found for all systems attempted, and motivate the selection
of and in Figs. 2 and 3 in Section V-B1 for
SBR2/SBR2C and AEVD, respectively, to yield systems of
comparable order.
The run time complexity defines the computation cost of ap-

plying the PU encoder matrix to input data, and is hence
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Fig. 10. CPU time requirement for calculation of encoder matrix for
different approaches as a function of iteration number (SBR2 and SBR2C) or
filter order (IGA, AEVD, and WM).

Fig. 11. Achievable normalized coding gain versus CPU time required to cal-
culate the encoder matrix .

directly related to the filter order . Therefore, the relation be-
tween the achievable coding gain and run time complexity is
similar to the results displayed in Fig. 6, whereby the curves
for SBR2 and SBR2C are nonlinearly compressed according to
Fig. 9 into the range , increasing both the superi-
ority of the AEVD at low orders , and the superiority
of SBR2C at moderate to high orders .
2) Algorithm Complexity: The complexity of determining

the encoder matrix based on the various algorithms has
been assess by the CPU time measured during 400 h of sim-
ulations for the coding gain evolution across an ensemble of
330 randomized MA(14) processes. Fig. 10 reveals the IGA as
a very complex algorithm, followed by the AEVD. The over-
head of normalising the cross-correlation functions in SBR2C
results in a small complexity degradation with respect to SBR2
particularly at lower orders, while WM. although restricted to

, represents an approach with very low complexity com-
pared to IGA, AEVD, and SBR2/SBR2C.
To assess the achievable coding gain in terms of the effort

of calculating the encoder matrix, Fig. 11 relates the results of
Figs. 10 to 6 for the randomizedMA(14) processes. At low com-
plexity, the window method can deliver the best coding gain.

Otherwise, the SBC2C algorithm offers the best coding perfor-
mance at the lowest cost compared to SBR2, AEVD, and IGA.

VI. DISCUSSION AND CONCLUSION

In this paper, we have investigated PU filter bank design
techniques for subband coding. Specifically, we have related
principal component filter banks to a polynomial matrix EVD,
which is applied to the CSDmatrix of the polyphase component
vector of the signal to be encoded. Spectral majorization is a
key condition for good coding gain performance, which has
motivated the extension of an existing PEVD algorithm, the
SBR2 algorithm in [22] by an alternative cost function, leading
to the SBR2 algorithm for subband coding, or SBR2C. Since
optimal estimation of the CSD matrix is crucial, two estimation
techniques have been considered, which exploit the implicit
structure of the CSD matrix, possessing both para-Hermitian
and pseudocirculant properties. Compared to a direct com-
putation, the optimal approaches are equivalent to effectively
increasing the data window by a factor , when an -channel
subband coder is considered.
TheproposedSBR2Calgorithmcanconverge toasolution that

yields an -channel perfect reconstruction filter bank, which
is approximately optimal for subband coding in a small number
of iterations. The solution provided by the PEVD obtained by
SBR2C converges to that provided by the principle component
filter bank (PCFB) for subband signals as thenumberof iterations
increases.Thecodingperformanceof theproposedalgorithmhas
been demonstrated to exceed current state-of-the-art methods,
such as the iterative greedy algorithm (IGA), the approximate
EVD (AEVD), or the standard SBR2 algorithm for moderate to
large filter orders on a set of benchmark problems.When consid-
ering the calculation of the encoder matrix, the window method
has been shown to yield moderate coding gain performance at a
very lowcost.On the samebenchmarkproblems,whenadmitting
moderate to high filter order, the SBR2C algorithm provides
the best coding performance at the lowest cost.
The proposed SBR2C algorithm has been mainly targetted to-

wards subband coding, since a number of competitor algorithms
and benchmarks exist in the area. However, since the algorithm
applies a PEVD to the CSD matrix rather than analyzing the
PSD of the single-channel input signal, the applicability of the
derived SBR2C algorithm is considerably wider, and can in-
clude multichannel coding or MIMO subband coding.

APPENDIX A
PSEUDOCIRCULANT PROPERTY OF

In the following, we show that the cross-spectral density ma-
trix of the demultiplexer output in Fig. 1(b) is a pseu-
docirculant matrix for a WSS input signal. The cross correlation
between the th and th polyphase components, , can
be—according to the description in (30)—expressed in terms of
the input signal to the demultiplexer and its autocorrelation

(44)
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(45)

The step from (44) to (45) is based on the wide sense stationarity
of , which retains this property when decimated to
[12]. From (45), an entry of the CSD matrix in (32) can
be denoted as

(46)

With the polyphase decomposition of the autocorrelation se-
quence

(47)

we need to distinguish two cases in order to identify (46) with
one of the polyphase components —

.
a) Case Since

(48)

b) Case Therefore , and
the insertion of a spurious into the argument of the
autocorrelation sequence leads to

(49)

(50)

With the substitution in (49), the two cases (48)
and (50) confirm the pseudocirculant property of as
defined in (34) and (35).
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