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Introduction Measuring Reliable Detections
Existing object detectors perform well at finding objects (humans, cars, etc.) in imag- Error rate measurements using true and false
es. This has many civilian as well as networked battlespace applications — not lim- positives (TP, TN, FP, FN) measure accuracy, o ioesificat oln p—
ited to video. not reliability. FP and FN are penalised equal-  0.8{ —inaccuracy error
Giving each detection a probability measure helps ranking of detection confidence ly and confidence errors are not considered. 0.6l
and identification of uncertain bounding boxes. Then, slower, more accurate algo- FN with probability 0.49 and 0.01 are counted ;
rithms or human operators can classify uncertain regions. the same (right). ® 04

Mean squared error addresses this:
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The current state of the art detector is FPDW[l]/ d shdmg window classifier with classifier is most well-calibrated. The Adaboost negative detections, the detection distribution changes

5120-dimensional feature vectors, followed by Adaboost with decision trees as weak classifier, although more accurate, is less reliable. and Adaboost followed by SE-GP is closer to the well-
learners. calibrated line.

We use the same features for all classifiers and evaluate Adaboost, support vector
machines (5VM), relevance vector machines (RVM) and two Gaussian Process classi-
fiers: linear (Linear-GI’) and squared exponential (SE-GP) [2].

Adaboost and SVM generate scores so we convert these to probabilities using sig-
moid, platt [3] and isotonic regression [4] methods.

Conclusion
Overall, using detections generated by Adaboost then running SE-GP on these to pro-
duce a probability is the most reliable detection scoring method. This is still computa-
tionally expensive as SE-GP is O(n?).

Future Work

We will extend this analysis to other modalities (SAR, sonar imagery) and are pro-

ducing a GPU-accelerated version of the Gaussian Process classifier to generate near-
realtime accurate detections.
0.5 We are also investigating ways to identify signals which differ significantly from the
training data where any generated detections will be unreliable.
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the Art (Adaboost/FPDW[1]) performs best on this curve.
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