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ABSTRACT

In blind source separation (BSS), the number of sources prese-
nt in the measured speech mixtures is unknown. The focus of
this work is therefore to automatically estimate the number
of sources from binaural speech mixtures. Collapsed Gibbs
sampling (CGS), a Markov chain Monte Carlo (MCMC) tech-
nique, is used to obtain samples from the joint distribution
of the speech mixtures. Then the Chinese Restaurant Pro-
cess (CRP) within the framework of the Dirichlet Process
(DP) is exploited to cluster samples into different components
to finally estimate the number of speakers. The accuracy
of the proposed method, under different reverberant environ-
ments, is evaluated with real binaural room impulse responses
(BRIRs) and speech signals from the TIMIT database. The
experimental results confirm the accuracy and robustness of
the proposed method.

Index Terms— Blind source separation, Collapsed Gibbs
sampling, Chinese restaurant process, Dirichlet process

1. INTRODUCTION

The signal processing community exploits BSS to attempt to
solve the machine cocktail party problem (CPP) [1]. In most
of the BSS approaches, not only are speech mixtures acquired
by microphones, but also the number of speakers in the mix-
tures is assumed as a prior knowledge [2]. This assumption
limits the BSS application in real scenarios, particularly in
the underdetermined cases, where the number of sources is
greater than the number of sensors.

In order to overcome this limitation, some approaches have
been proposed to determine the number of sources for BSS
[3–8]. In [3, 4], multimodal (audio-video) information is ex-
ploited and the video modality is used to determine the num-
ber of speakers and assist the source separation process. How-
ever, in some cases, only the speech mixtures are available,
which limits the application of the above methods.
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Nonparametric Bayesian refers to a class of techniques
that allows parameter dimension to depend on the data sam-
ples [9]. In [5, 6], full Bayesian inference was assumed over
all model parameters to calculate the number of sources. The
variational expectation maximization (VEM) algorithm was
applied to count the number of active sources in a speech
mixture. However, in these methods, the maximum possible
number of sources and full set of parameters need to be initial-
ized. In recent work [7], the DP was utilized to determine the
optimal number of mixture components. In this method, how-
ever, the speech mixtures were generated in a non-reverberant
environment and the parameters of binaural cues were used.

In the proposed method, the acquired speech mixtures of
the left and right channels are transformed to the frequency
domain and a Gaussian Mixture Model (GMM) is used to de-
termine the number of sources. Moreover, the CGS method,
from a class of convenient MCMC algorithms, is used with
the DP [10] to obtain the samples from the joint distribution.
In this sampling method, only the latent parameters related
to the observed data and hyperparamters of the prior distribu-
tion are exploited [11]. Then, the CRP is exploited to cluster
samples into different components and obtain the number of
sources [12]. Hence, the proposed method can be used to es-
timate the number of sources from the speech mixtures which
are generated in the reverberant environment. The computa-
tional cost of this approach is also relatively low.

The remainder of the paper is organized as follows, in
Section 2, the model of the binaural speech mixtures and DP
are described. In Section 3, the proposed method based on
DP is presented; experimental results are shown in Section 4
to confirm the accuracy of the proposed approach. Finally,
conclusions are drawn in Section 5.

2. MODEL AND DIRICHLET PROCESS
DESCRIPTION

The aim of solving underdetermined BSS is to mimic hu-
man auditory perception [13]. Therefore, the microphones
are named as left and right channels. Assuming the speech
sources are 𝑠(𝑡), and 𝑙(𝑡) and 𝑟(𝑡) are signals acquired by the
left and right microphones, respectively. According to [14],
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the signals are represented as 𝑙(𝑡) = 𝑠(𝑡) ∗ ℎ𝑙(𝑡) + 𝑛𝑙(𝑡) and
𝑟(𝑡) = 𝑠(𝑡) ∗ ℎ𝑟(𝑡) + 𝑛𝑟(𝑡), where ℎ𝑙(𝑡) and ℎ𝑟(𝑡) are the
impulse responses of the left and right channels, respectively.
The 𝑛𝑙(𝑡) and 𝑛𝑟(𝑡) are the additional noises of left and right
channels.

In the frequency domain, the Fourier transform of the left
and right channels are 𝐿(𝜔, 𝑡) and 𝑅(𝜔, 𝑡), respectively [14].
The interaural spectrogram is a kind of sparse representation
[15], which can be obtained by the ratio of 𝐿(𝜔, 𝑡) to 𝑅(𝜔, 𝑡).
The interaural spectrogram is expressed as:

𝐿(𝜔, 𝑡)

𝑅(𝜔, 𝑡)
= 𝑒−𝑗𝜔(𝜏𝑙−𝜏𝑟)𝐻(𝜔)𝑁(𝜔, 𝑡) (1)

where 𝑁(𝜔, 𝑡) = 𝑁𝑙(𝜔, 𝑡)/𝑁𝑟(𝜔, 𝑡) represents the Fourier
transform of the noise and 𝐻(𝜔) = ℱ{ℎ𝑙(𝑡)}/ℱ{ℎ𝑟(𝑡)} is
the ratio of Fourier transforms of the impulse responses [14].

According to the assumption of W-disjoint orthogonal-
ity (W-DO) [16], at most one source is active at each time-
frequency (T-F) point in the interaural spectrogram. There-
fore, the mixture distribution of T-F points can be used to
cluster and determine the optimal number of speakers.

We assume 𝐷 is the number of channels, 𝑁 is the num-
ber of frequency bins in the mixture and 𝐾 is the number of
time frames in the spectrogram. The proposed approach is a
model-based clustering method, which assumes the parame-
ters of data points are generated by a mixture model. Then,
the number of components in the mixture is calculated by us-
ing the latent parameters after DP with the CGS [17].

Hence, in the Dirichlet process mixture model (DPMM),
considering each data point 𝑥𝑖 is generated from a distribution
defined by parameter 𝜃𝑖 and 𝜽 = {𝜃1, ..., 𝜃𝑁}. By using DP,
the model can be described as:

𝐺 ∼ 𝐷𝑃 (𝛼,𝐻) (2)

𝜃𝑖 ∼ 𝐺 (3)

𝑥𝑖 ∼ 𝐹 (𝜃𝑖) (4)

where 𝛼 is the concentration parameter to control the disper-
sion of the new distribution 𝐺, 𝐻 is the basement distribution
and 𝜃𝑖 is generated from the new discrete distribution 𝐺. 𝐹 is
a distribution, which generates 𝑥𝑖. Each observation is based
on an independent parameter 𝜃𝑖. Because of the nonunique-
ness of parameter sets and 𝐺 is discrete, there is always a
non-zero probability of two samples colliding [18].

From the Bayesian rule [19], the relation between param-
eters and observed data point is:

𝑝(𝜃𝑖∣𝑥𝑖) ∝ 𝑝(𝑥𝑖∣𝜃𝑖)× 𝑝(𝜃𝑖) (5)

where 𝑝(𝜃𝑖∣𝑥𝑖) is the posterior probability, 𝑝(𝑥𝑖∣𝜃𝑖) is the
likelihood function and 𝑝(𝜃𝑖) is the prior probability [19].
The method can be implemented easily based on the CGS
with models based on conjugate prior distributions [20]. For

every observed data point 𝑥𝑖, there is a distribution and a pa-
rameter set 𝜃𝑖 which is generated from the 𝑖th distribution.
From (2), (3) and (4), 𝜽 must have some identical factors,
which indicates these parameters come from the same dis-
tribution. Therefore, the latent variables are associated with
these parameters and represent the clusters of the observed
data. Based on the description above, the graphical model is
shown in Figure 1:

Fig. 1: The graphical model of the proposed DP. The number of input data
points is defined as 𝑁 .

3. COLLAPSED GIBBS SAMPLING AND DATA
CLUSTERING

For the observed data point 𝑥𝑁 , its cluster assignment 𝑧𝑁 is
considered as the latent variable. By using the same process
as in [19, 21], the conjugate prior is exploited, which is as-
sumed as the Normal Inverse Wishart distribution in the pro-
posed method.

The predictive distribution of 𝑝(𝑥𝑁 ∣𝑥1:𝑁−1) is used in the
CRP, where 𝑥1:𝑁−1 = {𝑥1, ..., 𝑥𝑁−1}. Assume 𝑥1:𝑁−1 and
𝑥𝑁 are generated from the same distribution and 𝜔 is the pa-
rameter set of this distribution. It can be obtained as:

𝑝(𝑥𝑁 ∣𝑥1:𝑁−1) =

∫
𝜔

𝑝(𝑥𝑁 , 𝜔∣𝑥1:𝑁−1)𝑑𝜔

=

∫
𝜔

𝑝(𝑥𝑁 ∣𝜔)𝑝(𝜔∣𝑥1:𝑁−1)𝑑𝜔 (6)

From (6), the predictive distribution of 𝑝(𝜃𝑁 ∣𝜃1:𝑁−1) can be
expressed similarly :

𝑝(𝜃𝑁 ∣𝜃1:𝑁−1) =

∫
𝐺

𝑝(𝜃𝑁 ∣𝐺)𝑝(𝐺∣𝜃1:𝑁−1)𝑑𝐺 (7)

where 𝜃1:𝑁−1 = {𝜃1, ..., 𝜃𝑁−1}.
Therefore, with the setting of the DP, the latent variable

𝑧𝑁 is utilized to cope with the clustering problem and map
the parameters sets into a number of clusters, the expression
is:

𝑝(𝑧𝑁 = 𝑚∣𝑧1:𝑁−1) =
𝑝(𝑧𝑁 = 𝑚,𝑧1:𝑁−1)

𝑝(𝑧1:𝑁−1)
(8)

where 𝑧1:𝑁−1 = {𝑧1, ..., 𝑧𝑁−1} and 𝑧𝑁 = 𝑚 means the la-
tent variable 𝑧𝑁 belongs to component 𝑚. The predictive dis-
tribution (8) is the expression of the probability that the new
data point 𝑥𝑁 belongs to the component 𝑚.

Because the DP is based on an infinite mixture model, in
order to simplify the expression and reduce cost of calcula-
tion, we assume the number of clusters is 𝐶, thus (8) is ex-
pressed as:



𝑝(𝑧𝑁 = 𝑚,𝑧1:𝑁−1)

𝑝(𝑧1:𝑁−1)

=

∫
𝒑
𝑝(𝑧𝑁 = 𝑚,𝑧1:𝑁−1∣𝒑)𝑝(𝒑)𝑑(𝒑)∫

𝒑
𝑝(𝑧1:𝑁−1∣𝒑)𝑝(𝒑)𝑑(𝒑)

=

∫
𝒑
𝑝(𝑧𝑁 = 𝑚,𝑧1:𝑁−1∣𝒑)𝐷𝑖𝑟( 𝛼

𝐶 , ...,
𝛼
𝐶 )𝑑(𝒑)∫

𝒑
𝑝(𝑧1:𝑁−1∣𝒑)𝐷𝑖𝑟( 𝛼𝐶 , ...,

𝛼
𝐶 )𝑑(𝒑)

(9)

where 𝒑 = {𝑝1, ..., 𝑝𝐶}, the proportional coefficient vector
for components, 𝐷𝑖𝑟 represents the Dirichlet distribution.

In [18] :∫
𝒑

𝑝(𝑛1, ..., 𝑛𝐶 ∣𝒑)𝑝(𝒑∣𝛼1, ..., 𝛼𝐶)𝑑(𝒑)

=
𝑛!

𝑛1!, ..., 𝑛𝐶 !
⋅ Γ(

∑𝐶
𝑖=1 𝛼𝑖)∏𝐶

𝑖=1 Γ(𝛼𝑖)
⋅
∏𝐶

𝑖=1 Γ(𝛼𝑖 + 𝑛𝑖)

Γ(
∑𝐶

𝑖=1 𝛼𝑖 + 𝑛)
(10)

where 𝑛1, ..., 𝑛𝐶 are the numbers of data points belonging to
different components, which satisfy a multinomial distribu-
tion. The Gamma function satisfies Γ(𝑋) = (𝑋−1) ⋅Γ(𝑋−
1). Therefore, (10) can be expressed as:

Γ(𝑛𝑚,𝑁−1 +
𝛼
𝐶 + 1)

∏𝐶
𝑙=1 Γ(𝑛𝑙,𝑁−1)

(𝑁 + 𝛼− 1)Γ(𝑛+ 𝛼− 1)
× Γ(𝑁 + 𝛼− 1)∏𝐶

𝑙=1 Γ(𝑛𝑙,𝑁−1)

=
𝑛𝑚,𝑁−1

(𝑁 + 𝛼− 1)
(11)

where 𝑛𝑚,𝑁−1 is the number of variables in 𝑧1:𝑁−1, which
belongs to component 𝑚, 𝑛𝑙,𝑁−1 is the number of variables
in 𝑧1:𝑁−1 belonging to component 𝑙 and𝑁 is the total number
of samples. For 𝐶 components, the sum of (11) is:

𝑝(𝑧𝑁 = 𝑚∣𝑧1:𝑁−1, 𝛼) =

∑𝐶
𝑚=1 𝑛𝑚,𝑁−1

(𝑁 + 𝛼− 1)
=

𝑁 − 1

(𝑁 + 𝛼− 1)
(12)

Hence, (12) is the probability of new data belonging to the ex-
isting components. Because (13) is a probability distribution,
the summation should be one. The difference value between
one and (13) is the probability of the new data belonging to a
new component, which is expressed as:

𝑝(𝑧𝑁 = 𝐶𝑛𝑒𝑤∣𝑧1:𝑁−1, 𝛼) =
𝛼

(𝑁 + 𝛼− 1)
(13)

After the procedure of CRP is illustrated, the key point
is estimation of the predictive distribution. In the proposed
method, the Gaussian Inverse Wishart distribution [19] is se-
lected as the prior distribution with parameter set 𝝓, where
𝝓 = {𝛽0, 𝜇0, 𝜈0,S0}.

By using the CGS, the cluster parameters are integrated
out and the latent variable is the only one that needs to be
sampled [20]. Therefore, the equation of posterior prediction
can be expressed as [11]:

𝑝(𝑧𝑁 = 𝑚∣𝑧1:𝑁−1, 𝑥1:𝑁 , 𝛼,𝝓) (14)

∝ 𝑝(𝑧𝑁 = 𝑚∣𝑧1:𝑁−1, 𝛼)𝑝(𝑥1:𝑁 ∣𝑧1:𝑁−1, 𝑧𝑁 = 𝑚,𝝓)

Therefore, in the proposed method, the mean and variance
parameters of each component are no longer needed in the
process. In (14), 𝑝(𝑧𝑁 = 𝑚∣𝑧1:𝑁−1, 𝛼) can be known from
(12) or (13), which is called the prior probability.

Then, the likelihood expression of the new data is ex-
pressed as :

ℒ𝑛𝑒𝑤 = ℒ𝑜𝑙𝑑 × 𝑝(𝑥𝑁,𝑚∣𝝓)
𝑝(𝑥1:𝑁−1,𝑚∣𝝓) (15)

where ℒ𝑜𝑙𝑑 and ℒ𝑛𝑒𝑤 are the values of likelihood for the pre-
vious and current input data, respectively. 𝑥1:𝑁−1,𝑚 repre-
sents the data points in 𝑥1:𝑁−1, which belongs to the compo-
nent 𝑚. In (15), the expression for 𝑝(𝑥𝑁,𝑚∣𝝓) is:∫

𝜇

∫
Σ

𝑝(𝑥𝑁,𝑚, 𝜇,Σ∣𝝓)𝑑𝜇𝑑Σ

=

∫
𝜇

∫
Σ

∏
𝑁 ∣𝑧𝑁=𝑚

𝑝(𝑥𝑁,𝑚∣𝜇,Σ)𝑝(𝜇,Σ∣𝝓)𝑑𝜇𝑑Σ (16)

where in (16), 𝑝(𝑥𝑁,𝑚∣𝜇,Σ) is a Gaussian distribution and
𝑝(𝜇,Σ∣𝝓) is the Gaussian Inverse Wishart distribution.

Therefore, from [11] the new parameters are given as:

𝜇𝑁 =
𝛽0𝜇0 +𝑁𝑥1:𝑁

𝛽𝑁
(17)

𝛽𝑁 = 𝛽0 +𝑁 (18)

𝜈𝑁 = 𝜈0 +𝑁 (19)

S𝑁 = S0 +𝑂 +
𝛽0𝑁

𝛽𝑁
(𝑥1:𝑁 − 𝜇0)(𝑥1:𝑁 − 𝜇0)

𝑇 (20)

𝑂 =

𝑁∑
𝑖=1

(𝑥𝑁 − 𝑥1:𝑁 )(𝑥𝑁 − 𝑥1:𝑁 )𝑇 (21)

where 𝑥1:𝑁 is the standard derivation of the data points. Then,
by using the new parameters from (17) - (21), the posterior
predictive probability 𝑝(𝑥𝑁 ∣𝑥1:𝑁−1,𝑚,𝝓) is expressed as:

𝑝(𝑥𝑁,𝑚∣𝝓)
𝑝(𝑥1:𝑁−1,𝑚∣𝝓)

= (𝜋)
−𝐷
2 (

𝛽𝑁
𝛽𝑁−1

)
−𝐷
2

∣S1:𝑁 ∣−𝜈𝑁
2

∣S1:𝑁−1∣
−𝜈𝑁−1

2

Γ( 𝜈0+𝑁
2 )

Γ( 𝜈0+𝑁−𝐷
2 )

(22)

The prior in (14) is defined by (12) and (13), the likeli-
hood in (15) is expressed by using (22). Therefore, the value
of probability of the data point belonging to the existing com-
ponent 𝑚 can be expressed as:

𝑛𝑚,𝑁−1

(𝑁 + 𝛼− 1)
× ℒ𝑜𝑙𝑑 × 𝑝(𝑥𝑁 ∣𝑥1:𝑁−1,𝑚,𝝓) (23)

or a new component
𝛼

(𝑁 + 𝛼− 1)
× ℒ𝑜𝑙𝑑 × 𝑝(𝑥𝑁 ∣𝑥1:𝑁−1,𝑚,𝝓) (24)

Therefore, in (24), the value is for the new data cluster. If a
new component is added, the number of components will in-
crease, otherwise, the value of components remains unchanged.
After all of the data points are clustered, the number of com-
ponents in the mixture is confirmed. The components give
different distributions which can be used to infer the number
of sources in the speech mixtures.



4. EXPERIMENTAL RESULTS

In this section, the proposed method is evaluated with mix-
tures which are generated with real BRIRs [22]. In all of the
experiments, speech signals are randomly selected from the
whole of the TIMIT database [23] to generate the mixtures.
Moreover, in order to confirm the proposed method is valid
for all of the cases, the azimuth between sources is selected
from 15 ∘ to 75 ∘ with the step size of 15 ∘ to set the phys-
ical separation as a variable. In these experiments, 20 pairs
of mixtures are evaluated for each of the determined and un-
derdetermined cases. In the proposed method, the CGS is
utilized to extract data samplers.

To show the generalization ability of the proposed method,
the real BRIRs from Hummersone [22] are exploited in the
experiments. This dataset has four rooms with different𝑅𝑇60s,
named A, B, C and D. Table 1 illustrates the parameters of
these four rooms.

Table 1: Room settings for real BRIRs [22]

Room Size Dimension (𝑚3) 𝑅𝑇60 (𝑠)
A Medium 5.7× 6.6× 2.3 0.32
B Small 4.7× 4.7× 2.7 0.47
C Large 23.5× 18.8× 4.6 0.68
D Medium 8.0× 8.7× 4.3 0.89

The experimental results for each room with different set-
tings are shown in Figures 2 & 3. Besides, some mixtures
are generated by five sources. One source is located at 0 ∘

azimuth. The remaining four sources are located symmetri-
cally, e.g. 15 ∘ and −15 ∘, 30 ∘ and −30 ∘, between 15 ∘ to
75 ∘ azimuths. These experimental results are shown in Table
2.

Fig. 2: Average accuracy of estimation from the mixtures which are gen-
erated with TIMIT database and the BRIRs [22] in different rooms and az-
imuths for two sources scenarios.

From Figures 2 & 3, we can observe that when the az-
imuths become larger, the average accuracies of clustering are
improved. For example, it can be seen from Figure 2 that in
room A, the performance of estimation accuracy is improved
from around 80 % to around 87 % with the increase of az-
imuth from 15 ∘ to 75 ∘.

In addition, the experimental results in Figures 2 & 3 con-
firm that the proposed method always performs better at lower

Fig. 3: Average accuracy of estimation from the mixtures which are gen-
erated with TIMIT database and the BRIRs [22] in different rooms and az-
imuths for three sources scenarios.

𝑅𝑇60s at all azimuths. And the average accuracy of the pro-
posed method is inversely proportional to the number of sour-
ces in mixtures, e.g. the accuracies in Figure 2 are better than
Figure 3, when compared at the same room environments and
azimuths.

Table 2 shows that the average accuracies of the proposed
method with five source scenarios in all cases are above 70 %.

Table 2: The average accuracies of the proposed method with mixtures gen-
erated by five sources scenarios and different azimuths for the real BRIRs
[22].

Room A B C D
15 ∘&30 ∘ 75.1 % 74.7 % 71.3 % 70.0 %
30 ∘&45 ∘ 77.3 % 74.9 % 72.6 % 70.1 %
45 ∘&60 ∘ 80.1 % 78.3 % 75.1 % 71.2 %
60 ∘&75 ∘ 82.4 % 79.9 % 75.7 % 72.7 %

Because the algorithm with CGS requires less amount of
parameters, the computational complexity and cost are re-
duced. Using the proposed method on a 3.5 GHz Intel Core
i5, the average running time of the proposed method is 62.3
s while the running time with the Gibbs sampling exploited
in [7] is 97.5 s, the improvement of the running time is around
36.1 %.

The above experimental results confirm that the proposed
method has robust estimation performance when the room en-
vironments have high reverberation time and sources are also
physically close to each other.

5. CONCLUSIONS

In this paper, we proposed a method to automatically deter-
mine the number of sources from the binaural speech mix-
tures. By using the DP and the CGS, the prior knowledge of
possible maximum number of sources was no longer assumed
and only the hyperparameters of the prior distribution were
exploited. The proposed method also reduces the computa-
tional complexity while estimating the number of speakers
from the speech mixtures, which are generated in a reverber-
ant room environments.
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