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Abstract—An analysis of the effect of the number of sensors
on the non-cooperative target node localisation is presented.
This work examines the target localisation using a centralised
range based approach. In doing this, the work leverages an
algorithm based on a class of matrix structure called Euclidean
distance matrices (EDMs) for the specific purpose of improving
localisation performance when the fusion centre (FC) cannot
receive certain sensors’ information due to fading or shadowing,
etc. While this interesting approach to the problem of localisation
has been found to be successful, it is also shown at high delay
values the proposed alternating rank-based EDM algorithm
outperforms the conventional linear least squares (LLS) based
algorithm for the minimum number of sensors. The localisation
error decreases when the conditioning of EDM is better, i.e.,
when the sensors are further apart from each other and closer
to the target.

I. INTRODUCTION

In a target localisation problem, it is often necessary to
localise radio frequency (RF) emissions from radio commu-
nications systems to provide a greater level of situational
awareness for units in an operational area. Techniques to
perform localisation can be divided into various categories.
Range based techniques rely on measurements of distances
between nodes that are often based on received signal strength
(RSS) [1], time of arrival (ToA) [2], and time difference
of arrival (TDoA) [3], [4]. Range free techniques [5], on
the other hand, rely on knowledge of connectivity possibili-
ties, i.e., who is connected to whom, to ascertain locations.
Furthermore, localisation can adopt a distributed approach,
where the sensors themselves perform many calculations and
analysis to locate the target or a centralised approach, where
sensors perform limited analysis. In this case, there is a greater
instance of sensors simply forwarding information to a central
base station or fusion centre (FC), which would in turn locate
the target. The wireless sensor network (WSN) configuration
that is explored in this work is a Mobile Ad-Hoc Sensor
Network (MASNET), which is a particular class of WSN
[6], [7] that consists of a large number of inexpensive sensor
nodes that are distributed over a large region. These sensor
nodes pass their sensor data such as the sensor node identity
and time information to FC to locate the target node. Each
sensor node may be equipped with multiple sensors along with

limited processing and wireless communications capabilities.
Although the transmission range of individual sensor nodes
is limited, they can communicate over long distances using
multihop wireless transmissions within a network.

In this work, the range based information that is transmitted
to the FC from the MASNET sensors are ToA estimates
and sensor position information. The FC will then perform
two initial analytical tasks, which will eventually achieve
localisation of the RF emisiions. These are:

• Translate the ToA estimates and sensor position informa-
tion into distances.

• Attempt to tabulate these distances into an Euclidian
distance matrix (EDM) structure.

EDMs are matrices of the squared distances between points,
(i.e., distances between sensor and target nodes, and distances
between sensor nodes) and due to the fact that they have
a certain structure, they have many useful properties and
applications such as crystallography, wireless sensor networks,
acoustics, etc [8]. The use of EDMs leads to two more key
analytical steps:

• Given a matrix with noisy data, test if its structure is in
fact EDM or not.

• Given an incomplete set of distances, determine whether
a configuration of points exists that generates a matrix
that is EDM.

These last two steps are in fact two fundamental problems
associated with EDM completion and denoising problems.
Assuming that an attempt at creating an EDM has been made
in the initial first two steps, it is necessary to examine it
carefully to verify if it is indeed EDM and also try to exploit
EDM structure to compensate for sensors that may be hidden
from the FC due to fading or shadowing, etc.

Recent approaches to localisation involving EDM structure
in [8]–[11] have only focused on 2 dimensional position
information and to the best of the authors’ knowledge, EDM
localisation has never been undertaken in 3 dimensional space.
In [8], the fundamental properties of EDM were reviewed
and algorithms for denoising and completing distance data
were shown. While a cooperative joint synchronization and
localisation algorithm in ad-hoc networks was proposed in
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Fig. 1: System model for two different scenarios mixed (LHS)
and separated (RHS).

[9], the complexity of the approach was prohibitive. The main
focus of this paper is the performance of sensor links in
the context of non-cooperative enemy targets and the ability
to localise such targets based on noisy sensor information.
The entire analysis will be supported by WINNER II channel
models [12], [13].

II. PROBLEM FORMULATION

Two proposed scenarios are shown in Fig. 1. One is a mixed
scenario where the target and sensor nodes are in the same
region and the other is a separated scenario, where the target
node and sensor nodes are separated by a gap zone. It is
assumed that the location of the sensor nodes is known as
well as the distances between them. Once the target starts
to transmit RF signals, the sensor nodes acquire the time
information of the received signal. The time information is
then transmitted to a FC, which converts this information into
corresponding distances to localise the target node. Since 3-
dimensional space is considered, at least 4 sensor nodes are
needed to localise the target node. There are two sets of nodes,
where the first set is a single target node (m = 1) and the
second set comprises the s sensor nodes. This problem is
similar to that in [8], thus the structure of EDM may be defined
here as:

D =

[
edm(T) edm(T,S)

edm(S,T) edm(S)

]
, (1)

where the definitions are given in Table I. Since there is only
one target, so there is no squared distances between target
nodes, i.e. edm(T) = 0. The squared distances between the
sensor nodes edm(S) are known since it is assumed that the
sensor nodes’ locations are known. This is another advantage
of rank-based EDM approach, where the distances between
sensors and their locations act as reference and additional
information. According to the symmetric property of an EDM:
edm(T,S) = edm(S,T), which are the squared distances
between the target and sensor nodes measured using the time
information of received signal at each sensor, the measured
distances are subject to noise and delay due to multipath
components. Following the approach in [8], a mask matrix
W is defined as follows:

W =

[
WT WT,S

WS,T WS,

]
(2)

TABLE I: Notations and Definitions

Notation Meaning
d Dimensional space
edm(D) EDM created from target nodes
edm(S) EDM created from sensor nodes
edm(S,T) EDM created from sensor nodes and target node
φ Initial value for unobserved distances
W Mask matrix
DW Restriction of D to non-zero entries in W
J Geometric Centering Matrix
G Gram Matrix, G = TTS
1 Column vector of all ones
U Eigenvectors Matrix
X̂ Estimated nodes position matrix
diag(G) Column vector of the diagonal entries of G
||.||F Frobenius Norm

where the elements in WT,S and WS,T are defined as:

wi,j =

{
1, if (m, j) ∈ K
0, otherwise.

(3)

Here m is the index of target node, j is the index of sensor
nodes (i.e. j = 1, 2, ....s), and K is the set of observed
distances between target and sensor nodes. Furthermore, the
indexing DW is defined as the restriction of D to the entries
where W is non-zero as stated in Table I. Thus the goal of
the mask matrix, W, is simply to differentiate between the
observed and unobserved entries in D.

III. ALTERNATING RANK BASED EDM ALGORITHM

According to the rank property established in Theorem 1
in [8], the rank of an EDM corresponding to points in Rd is
at most d+ 2, where d is defined in Table I. In other words,
the rank of an EDM does not depend on the number of points
generating it. The number of sensor nodes s can be in hundreds
or thousands, while d is three or less. This EDM rank property
can be exploited to develop tractable algorithms for EDM
completion and denoising problems. Using the two pieces
of information available, which are a subset of potentially
noisy distances and the desired embedding dimension, the
relative position of the target node can be calculated. This is
done by alternating between these two properties in the hope
that the algorithm converges to an EDM from the produced
sequence of matrices. The approach is shown in detail in
Algorithm 1 and appropriate definitions may be seen in Table
I. EW ← DW means assigning the observed part of D to the
observed part of E.

To ensure convergence to a matrix that is EDM, rank
thresholding, i.e., truncating the eigenvalues [λ]ki=1 =
λ1, .....λd, 0, ...0, where k is the number of target and sensor
nodes, is performed on the Gram matrix, G which is defined
in Table I, for centered locations. A linear map from a G to an
EDM is given in step 8 in Algorithm 1 [14]. After computing
EDM E, the next stage is to apply a multidimensional scaling
(MDS) algorithm in order to determine the best point set
representation of a given set of distances. Note that the
positions resulting from MDS are relative positions, which



may be rotated, or translated.
Next a procrustes analysis [15] is applied, which is the
problem of finding the optimum alteration that happened to
the nodes. Since the initial locations of sensor nodes are
known, these locations are compared to the new locations that
were recomputed after the convergence of the algorithm. The
details of this analysis can be found in [8] [Section II (C)].
After computing the appropriate rotation matrix and translation
vectors, the initial insight into the position target node can be
altered based on this change to provide a more appropriate
estimate for the target node location.

Algorithm 1 Alternating Rank Based EDM Algorithm

Inputs: D, W, d, max.tolerance
Output: E

Initialization and Definitions:
1: D11T−W ← φ Initialize unknown entries

2: J← I− 1

k
11T Define Geometric centering matrix

3: repeat
4: G← −1

2
JDJ Compute Gram Matrix

5: U, [λ]ki=1 ← EVD(G) Eigenvalue Decomposition
6:

∑
← diag(λ1, .....λd, 0, ...0)

7: Compute G← U
∑

UT

8: Compute E = diag(G)1T − 2G+ 1diag(G)
9: Compute e1 = ||E−D||F

10: EW ← DW Enforce known entries
11: EI ← 0 Set Diagonal to zero
12: (E)− ← 0 Assign zeros to the negative entries
13: Compute e2 = ||E−D||F
14: if (e1 < max. tolerance) ∨ (e2 < max.tolerance) then
15: return E
16: else
17: D← E
18: end if
19: until Convergence or MaxIter
20: X̂ =

∑1/2
UT

IV. RESULTS

In this section, we present a comparison of localisation error
for using all ten sensors with that obtained using four randomly
picked sensors out of the available ten. We assume that all the
sensors detected the transmitted signal from the target, i.e.,
there is no missing information. The height of the target node
is set to 5 m and the heights of the sensor nodes are varying
between 0 and 4 m. The sensors and target nodes are randomly
distributed in an area of 200×200 m2 for the mixed scenario.
For the separated scenario, the target node is randomly located
in an area of 20×20 m2, whereas the sensors are divided into
two equal perpendicular rectangular areas of 200 × 20 m2

and 20 × 180 m2 with a gap zone in between as shown in
Fig. 1. The position of target and the ten sensors nodes are
randomly chosen and fixed throughout the simulation. The
delay parameter, µ is the mean of the exponential random
variable in [12], [13]. The amount of added delay can be

Fig. 2: Localisation error vs µ for the two scenarios: separated
(top) and mixed (bottom), with different number of sensors
(Ns = 4, 10). The solid lines are for the ten sensors and the
dotted lines are for two different picks of four sensors.

treated as a positive bias to the theoretical time of flight that
a signal would take to travel between the transmitter and the
receiver if they were in free space. Hence, it represents noise
included in the time information measurements. For example,
if µ = −8.5, it is equivalent to 10−8.5 ≈ 3ns and if µ = −7,
it is equivalent to 10−7 ≈ 100ns. Consequently, low values
of µ translates to low mean values of additional random time
delays and therefore less noise and vice versa for high values
of µ. In a three-dimensional space, the minimum number of
sensors required to localise the target is four. The total number
of available sensors is ten. A comparison between the proposed
alternating rank-based EDM algorithm and the conventional
method based on linear least squares (LLS) [16] is indicated
in Fig. 2 and Fig. 3.

The first set in Fig. 2 compares the localisation error over
four randomly picked sensors and when all the ten sensors are
used, in terms of average location error, i.e., error between the
estimated and actual target node position. First, we observe
that the localisation errors for the separated scenarios are
larger than mixed scenarios. This is because the sensors
in the separated scenarios experience similar receiving time
information, hence calculate similar distances. This leads to
an EDM which is not well-separated in terms of distances
and hence not well-conditioned [17]. However, in the mixed
scenarios, the sensors experience varying receiving times and
corresponding distances, improving the conditioning of the
EDM, leading to better performance [17].

Moreover, for smaller values of µ (low noise), both the
proposed alternating rank-based EDM algorithm and the con-
ventional LLS algorithm with the minimum number of sensors
(four), achieve localisation errors closer to the ten sensor
results. However, the performance gap between using all ten
sensors and only four sensors, is prominent for higher values
for µ. This is because more information (obtained using all
ten sensors) is beneficial at higher noise levels. Also, there are



Fig. 3: CDF plot for the random choice of four sensors
from the ten sensors in the mixed (left) and separated (right)
scenarios with high delays µ = −7.

some rare cases, such as the case using the best four sensors in
high noise, where four sensors perform better than ten using
the proposed algorithm. This occurs when these sensors are
very close to the target and experience smaller overall delays.
As the amount of noise increases, the proposed alternating
rank-based EDM algorithm outperforms the corresponding
LLS algorithm. The high noise levels result in large deviation
of the measured distances from the expected value, thereby
causing outliers in the system. These outliers in turn degrade
the performance of the conventional LLS algorithm, resulting
in large errors in the estimated target node position. This
behaviour is analysed in detail in Fig. 3.

In Fig. 3, the cumulative distributive function (CDF) of
the localisation error is plotted for the proposed alternating
rank-based EDM algorithm evaluated using all possible com-
binations of four out of ten sensors. The figure also shows
the LLS performance using all ten sensors with and without
outliers. These results confirm the observations from Fig. 2,
that for approximately 90% of the combinations, the proposed
algorithm outperforms the LLS algorithm with outliers at high
delay µ = −7. However, the LLS algorithm without outliers
performs better than the proposed algorithm. This indicates
that the proposed alternating rank-based EDM algorithm is
more robust towards handling outliers than the conventional
LLS algorithm.

V. CONCLUSION

In this work, an analysis of the effect of the number of
sensors on the target node localisation was presented. It was
shown that at high delay values the proposed alternating
rank-based EDM algorithm outperformed the conventional
LLS algorithm for the minimum number of sensors. The
results indicate that the localisation error depends on the
amount of delay and the operating scenario for the sensors
(separated or mixed). The sensor nodes in the separated
scenario experience similar receiving time information which

results in larger localisation error than in the mixed scenario
where the receiving times are much different. Also, the error
decreases when the conditioning of EDM is better, i.e., when
the sensors are further apart from each other and closer to the
target. Furthermore, unlike the LLS algorithm, the proposed
algorithm is less sensitive to outliers resulting from larger
errors in the measured distances, thereby making it suitable
for the required application.
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