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Abstract—In this paper, an enhanced Gaussian mixture-
probability hypothesis density filter (GM-PHD) using convo-
lutional neural network (CNN) based weight penalization is
proposed to track multiple targets in video. Existing GM-PHD
filter based tracking methods are not always able to accurately
track the targets when they are in close proximity, especially
with noisy detection responses or in a crowded environments.
To address this issue, a measurement classification step which
combines a confidence score with a gating technique is presented
to discard the false measurements and initialise new-born targets.
High level human features extracted from a pre-trained CNN
are utilized to penalize the ambiguous weights in the weight
matrix. In addition, we integrate an improved track management
scheme with occlusion handling to form the tracks of confirmed
targets and maintain the track continuity. Experimental results
on two publicly available benchmark video sequences validate
the efficacy of our proposed method in video-based multi-target
tracking.

Index Terms—Multi-target tracking, tracking by detection,
GM-PHD filter, weight penalization

I. INTRODUCTION

Video-based multi-target tracking has been an emerging
technique in the last decade, since it is crucial in many applica-
tions such as intelligent video surveillance, behavior analysis,
assistive technology and human-computer interactions [1], [2].
Many researchers have been seeking higher-level tracking
systems to locate a number of targets, retrieve their trajectories,
and recognise their identities from video sequences. However,
there still exist many challenging problems caused by more re-
alistic environments such as the presence of noise, occlusions,
background clutter, and illumination changes. To address these
challenges, traditional approaches have involved explicit as-
sociation between measurements and targets in multi-target
tracking such as multiple hypotheses tracking (MHT) [3]
and the joint probabilistic data association filter (JPDAF) [4].
Recently, tracking-by-detection with data association driven
by the recent advancements in object detection has become
the leading paradigm for multi-target tracking in video [5]–
[9]. Nevertheless, these methods are not capable of effectively
accounting for target birth and death, and suffer from being
computationally expensive in data association.

Different from data association-based tracking approaches,
the random finite set (RFS) based PHD filter [10] which
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originated from radar tracking has been successfully explored
in video-based multi-target tracking [1], [11]–[14], since this
online state estimation technique has the ability to deal with
varying number of targets, reduce missed detections, and
mitigate spatial noise. Two implementations of approximating
the PHD filter function have been made by a Gaussian
mixture as in the GM-PHD filter [15] or the sequential Monte
Carlo (SMC) method via a set of weighted random particles
known as the SMC-PHD filter [16]. In fact, the GM-PHD
filter has been extended to handle nonlinearity in dynamical
and measurement models, as well as being able to avoid
the computational complexity in terms of using a clustering
method in the SMC-PHD filters, as a result, it can be more
efficiently applied in real world applications [17]. However, the
performance of conventional GM-PHD filter based tracking
methods may degrade significantly when tracking closely
spaced targets, especially with noisy detections or in a crowded
environment. To address this issue, a collaborative penalized
GM-PHD filter was proposed by Wang et al. [18], which
employed track identities to perform weight refinement by
collaboratively penalizing the weights of targets with the same
identities. But this method may no longer be applicable to
achieve effective performance with noisy observations in a real
world tracking scenario. Zhou et al. [13] explored the fusion of
multiple features to penalize the ambiguous weights, so as to
improve the tracking accuracy. However, both trackers would
track the merged measurements within the occlusion area as
one single target without an occlusion handling method.

In this paper, we propose an enhanced GM-PHD filter
using CNN-based weight penalization for video-based multi-
target tracking, as outlined by the block diagram in Fig.
1. The proposed system exploits the confidence score of
detection results and incorporates our previous work [19]
namely a gating technique to apply measurement classification.
Recently, deep convolutional neural networks (CNNs) have
outperformed heuristic, hand-crafted features in terms of ap-
pearance modelling [20]. Therefore, a pre-trained CNN model
[21] is integrated to improve the weight penalization, following
by improved track management with occlusion handling to
achieve better tracking performance.

II. THE PROPOSED TRACKING SYSTEM

For a video-based multi-target tracking system, the state
of a target 𝑚 is represented by a six dimensional vector
x𝑚
𝑘 = [𝑝𝑚𝑥,𝑘, 𝑝

𝑚
𝑦,𝑘, 𝑣

𝑚
𝑥,𝑘, 𝑣

𝑚
𝑦,𝑘, 𝑤

𝑚
𝑘 , ℎ𝑚

𝑘 ]𝑇 and contains the actual
2D image location, velocity and the bounding box size of
the target respectively, where 𝑚 = 1, . . . ,𝑀𝑘, and 𝑀𝑘
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Fig. 1. Block diagram of the proposed tracking system for video-based multi-
target tracking

denotes the number of tracked targets at time 𝑘. The observed
measurement vector z𝑛𝑘 = [𝑝𝑛𝑥,𝑘, 𝑝

𝑛
𝑦,𝑘, �̄�

𝑛
𝑘 , ℎ̄

𝑛
𝑘 ]

𝑇 , typically
contains the 𝑛-th target location and size information, where
𝑛 = 1, . . . , 𝑁𝑘, and 𝑁𝑘 is the number of measurements at
time 𝑘 . Based upon the random finite set (RFS) framework, a
multiple target state and a multiple target measurement at time
𝑘 can be represented by two finite sets: X𝑘 = {x1

𝑘, ...,x
𝑀𝑘

𝑘 }
and Z𝑘 = {z1𝑘, ..., z𝑁𝑘

𝑘 }.

A. The Gaussian Mixture PHD Filter

The PHD filter proposed by Mahler [10] is a natural
extension of the single-target Bayesian framework to multi-
targets; representing the multi-target states and multi-target
measurements, as well as recursively propagating the first-
order moment of the multi-target posterior 𝑝𝑘(X𝑘∣Z1:𝑘), re-
ferred to as the intensity function 𝜈𝑘(x∣Z1:𝑘) abbreviated by
𝜈𝑘(x). The GM-PHD filter proposed by Vo and Ma [15]
introduces a closed-form solution to the PHD recursion. The
posterior PHD intensity function can be represented by a
sum of weighted Gaussian components that are propagated
analytically in time [17]. Given a posterior intensity 𝜈𝑘−1 in
a Gaussian mixture form at time 𝑘 − 1, then

𝜈𝑘−1(x) =

𝐽𝑘−1∑

𝑗=1

𝑤𝑗
𝑘−1𝒩 (x;m𝑗

𝑘−1,P
𝑗
𝑘−1) (1)

where 𝐽𝑘−1 denotes the number of Gaussian components
at time 𝑘 − 1, 𝑤𝑗

𝑘−1 is the corresponding weight of the 𝑗-
th Gaussian component, and 𝒩 (⋅;m,P) illustrates Gaussian
components with mean m and covariance P. Since the PHD
filter requires an additional algorithm to provide target identity
information, we employ the method in [17] to assign a
unique label 𝐼𝑗𝑘−1 as a hidden identity to individual Gaussian

components to form the identity set ℐ𝑘−1 = {𝐼1𝑘−1, ..., 𝐼
𝐽𝑘−1

𝑘−1 },

allowing these labels to propagate through time without affect-
ing the GM-PHD recursion. The GM-PHD prediction can also
be represented by a Gaussian mixture at time 𝑘 [15],

𝜈𝑘∣𝑘−1(x) = 𝜈𝑠
𝑘∣𝑘−1(x) + 𝛾𝑘(x) (2)

𝛾𝑘(x) =

𝐽𝛾,𝑘∑

𝑗=1

𝑤𝑗
𝛾,𝑘𝒩 (x;m𝑗

𝛾,𝑘,P
𝑗
𝛾,𝑘) (3)

𝜈𝑠
𝑘∣𝑘−1(x) = 𝑒𝑘∣𝑘−1

𝐽𝑘−1∑

𝑗=1

𝑤𝑗
𝑘−1𝒩 (x;Fm𝑗

𝑘−1,Q+FP𝑗
𝑘−1F

𝑇 ) (4)

where 𝜈𝑠𝑘∣𝑘−1(x) denotes the predicted intensity of survival
targets and 𝛾𝑘(x) is the predicted intensity of new-born targets
with new identities ℐ𝛾,𝑘 = {𝐼1𝛾,𝑘, ..., 𝐼𝐽𝛾,𝑘

𝛾,𝑘 }, F is the state
transition matrix and Q is the process noise covariance. The
spawned targets are treated as new-born targets in this paper.
The predicted intensity of the GM-PHD filter can be modelled
as,

𝜈𝑘∣𝑘−1(x) =

𝐽𝑘∣𝑘−1∑

𝑗=1

𝑤𝑗
𝑘∣𝑘−1𝒩 (x;m𝑗

𝑘∣𝑘−1,P
𝑗
𝑘∣𝑘−1) (5)

and meanwhile its identity set is given as, ℐ𝑘∣𝑘−1 = ℐ𝑘−1 ∪
ℐ𝛾,𝑘. Once the new set of observations is available, the GM-
PHD update at time 𝑘 can be given as [15],

𝜈𝑘(x) = 𝑝𝑀𝜈𝑘∣𝑘−1(x) +
∑

z∈Z𝑘

𝐽𝑘∣𝑘−1∑

𝑗=1

𝑤𝑗
𝑘(z)𝒩 (x;m𝑗

𝑘∣𝑘(z),P
𝑗
𝑘∣𝑘)

(6)
where

𝑤𝑗
𝑘(z) =

(1− 𝑝𝑀 )𝑤𝑗
𝑘∣𝑘−1𝑞

𝑗
𝑘(z)

𝜅𝑘(z) + (1− 𝑝𝑀 )
∑𝐽𝑘∣𝑘−1

𝑖=1 𝑤𝑖
𝑘∣𝑘−1𝑞

𝑖
𝑘(z)

(7)

𝑞𝑗𝑘(z) = 𝒩 (z;Hm𝑗
𝑘∣𝑘−1,R+HP𝑗

𝑘∣𝑘−1H
𝑇 ) (8)

where H is the observation matrix, R is the observation noise
covariance, 𝑝𝑀 denotes the missing detection probability, and
𝜅𝑘 denotes the clutter density. Each predicted Gaussian com-
ponent gives rise to (1 + ∣Z𝑘∣) updated components assigned
with the same identity label, i.e., 𝐼𝑗𝑘 = 𝐼𝑗𝑘∣𝑘−1. More details of
the GM-PHD filter framework are available in [15] and [17].

B. Measurement Classification

The observable measurements can be obtained by an object
detector at each time step 𝑘. Due to the imperfections in
the object detector, there is much potential uncertainty in the
original detection results, which increases the inefficiency of
the PHD update and birth prediction. In order to build a
robust measurement model, these noisy measurements must
be classified as three subsets: survival measurement set, birth
measurement set and background clutter. Firstly, we use
the detection confidence score 𝑐𝑘 ∈ [0, 1] associated with
each detection to categorize the spurious measurement set
Γ𝑘 = {z𝑘,𝑓 : 𝑐𝑘 < 𝑐𝑡ℎ} that will be discarded, where
𝑐𝑡ℎ is the confidence threshold, and its complementary set
Z𝑘,𝑟 = Z𝑘 ∖Γ𝑘 which will be retained as a real measurement
set. This score can be either provided from the detector or
computed via the intersection-over-union (IOU) [22]. As the
number of new-born targets is unknown, and any initialization



Fig. 2. A symbolic representation of updated weights [13]

or prior information is unavailable for predicting the new-born
targets, we adopt the approach in [19], where an adaptive
gating method is used to further extract the birth measurement
set Z𝑘,𝑏 from the real measurement set Z𝑘,𝑟 = Z𝑘,𝑏 ∪ Z𝑘,𝑠,
where Z𝑘,𝑠 is the survival measurement set. Therefore, each
measurement z𝑘,𝑏 in Z𝑘,𝑏 will be initialised as a new target
trajectory with a new identity, and it will be eventually infused
with the birth prediction in (3).

C. CNN-Based Weight Penalization

Ideally, multi-target tracking generally follows a one-to-one
matching scheme where one target can be only associated
with one unique measurement [13]. While this correspondence
in the existing GM-PHD based methods can be lost in the
closely spaced target tracking scenario. Suppose there are two
targets moving near each other, one of which is matched
with multiple effective measurements while the other suffers
from this special type of miss-detection [18]. In this case, the
method in [13] exploited two possible failure cases, including
multiple targets moving with the same identities or with
switched identities since some predicted targets are possible
to be associated with the measurements not originally owned
by them. However, there is another scenario which must be
addressed, which is that multiple targets will be tracked as a
single target, if they are associated with only one measurement
(merged measurements) within the occlusion region.

Therefore, we propose to incorporate a pre-trained CNN
[21] for appearance modelling to enhance the robustness
of weight penalization. Firstly, a weight matrix W𝑘 ∈
ℝ

𝐽𝑘∣𝑘−1×𝑁𝑘 as shown in Fig. 2 can be generated by the
updated weights from (7), where the 𝑗-th row denotes the
weights updated by all valid measurements obtained from
Section II-B, and 𝐽𝑘∣𝑘−1 and 𝑁𝑘 are the number of predicted
targets and measurements respectively. The high-level features
achieved by a pre-trained CNN from the target region are used
to penalize the updated weights in the weight matrix. This
CNN model is built with two convolutional layers followed
by a max pooling layer and six residual layers, see [21] for
details. We employ the Bhattacharyya distance to calculate the
following similarity score in terms of feature space between
the 𝑗-th predicted target and 𝑛-th measurement at time 𝑘,

𝜃𝑘(𝑗, 𝑛) =
1√
2𝜋𝜎2

𝜃

exp

(
− {𝑆𝑘(𝑗, 𝑛)}2

2𝜎2
𝜃

)
(9)

where
𝑆𝑘(𝑗, 𝑛) =

√
1− (f 𝑗𝑘)

𝑇d𝑛
𝑘 (10)

and f 𝑗𝑘 and d𝑛
𝑘 are the feature vectors of the 𝑗-th predicted

target and the 𝑛-th measurement respectively, and 𝜎2
𝜃 denotes

the variance of the similarity score. Therefore, all of the
updated weights in the weight matrix can be refined as,

𝑤
(𝑗,𝑛)
𝑘 = 𝑤

(𝑗,𝑛)
𝑘 × 𝜃𝑘(𝑗, 𝑛). (11)

D. Improved Track Management

Based on the penalization step, we integrate an improved
track management scheme with occlusion handling to enable
the tracker to correctly extract the confirmed tracks, and
discard false tracks that are least reliable. Firstly, we adapt the
method in [17] to select targets with the maximum weights as
a collection of possible tracks. The index of maximum weight
can be found from the 𝑗-th row of the penalized weight matrix,
where 𝑗 = 1, ..., 𝐽𝑘∣𝑘−1,

�̃� = argmax
𝑛=1:𝑁𝑘

(𝑤
(𝑗,𝑛)
𝑘 ). (12)

Algorithm 1: Improved Track Management (𝑘 > 1)

Input : Penalized weight Matrix W𝑘 ∈ ℝ
𝐽𝑘∣𝑘−1×𝑁𝑘

Output: Tracking Results X𝑘.
1 Initialization: 𝑊𝑐𝑜𝑛 = ∅ and 𝑊𝑡𝑒𝑛 = ∅
2 for 𝑗 = 1 : 𝐽𝑘∣𝑘−1 do
3 Compute the index of maximum weight �̃� with (12);

4 if 𝑤(𝑗,�̃�)
𝑘 ≥ 𝑤𝑡ℎ then

5 Compute the index set of confirmed tracks:
𝑊𝑐𝑜𝑛 = 𝑊𝑐𝑜𝑛 ∪ {𝑗, �̃�};

6 Merged Target Segmentation:
7 Search for the ambiguous weights in W𝑘 with

the same value of �̃�, and select the targets with
smaller weights among them as covered targets,
which will remain unchanged during the update
step.

8 end
9 else

10 Compute the index set of tentative tracks:
𝑊𝑡𝑒𝑛 = 𝑊𝑡𝑒𝑛 ∪ {𝑗, �̃�}

11 Delete the tracks using 𝑊𝑡𝑒𝑛 after missing 𝑇𝑚𝑖𝑠𝑠

frames;
12 Append tentative tracks which are not deleted to

the confirmed tracks.
13 end
14 Obtain X𝑘 from the confirmed tracks.
15 end

In this way, targets can be confirmed with 𝑤
(𝑗,�̃�)
𝑘 ≥ 𝑤𝑡ℎ

and labelled with the same identity as that in prediction,
where 𝑤𝑡ℎ denotes the threshold of a target confirmation. In
contrast, the rest of the targets which fail to reach 𝑤𝑡ℎ are
tentatively eliminated after a certain value of 𝑇𝑚𝑖𝑠𝑠 frames.
Nevertheless, when the occlusion occurs to confirmed targets,
their maximum weights are likely to share the same column



(a)

(b)

Fig. 3. Qualitative tracking results of our proposed tracking system on (a) PETS2009-S2L1, (b) TUD-Stadtmitte datasets.

index �̃� in W𝑘, resulting in targets with merged measurements
being tracked as a single target within the occlusion region.
To remedy this, we set up a detailed algorithm as summarized
in Algorithm 1 in order to segment the merged targets and
better manage the target tracks.

III. EXPERIMENTS

In this section, we validate the proposed tracking system
on two commonly used and challenging benchmark datasets:
PETS2009-View001-S2L1 (PETS2009) [23], TUD-Stadtmitte
[24]. For both datasets, we adopt the annotated ground truths
and detections originally provided by the website.1 The follow-
ing parameters are utilized to implement the tracker, including
the missed detection probability 𝑝𝑀 = 0.05, the survival
probability 𝑒 = 0.99, the clutter intensity 𝜅 = 0.0001, the
variance for the similarity score 𝜎2

𝜃 is empirically set to 25,
and the thresholds of confidence score and target confirmation
used are 𝑐𝑡ℎ = 0.3 and 𝑤𝑡ℎ = 0.5 respectively.

We employ the standard CLEAR MOT [25] which is
currently the most widely accepted evaluating tool in multi-
target tracking to examine the performance of our proposed
system. This performance measure mainly entails two metrics,
Multiple Object Tracking Precision (MOTP) as a precision
score, is designed to measure the average position errors in
2D image plane between estimated tracking results and ground
truth in percentage, and Multiple Object Tracking Accuracy
(MOTA) as an accuracy score, is comprised of false negatives
ratio (FNR), false positives ratio (FPR) and the number of
identity switches (IDS). Evaluation measures with (↑) indicate
that higher is better, and with (↓) denote lower is better.

1http://www.milanton.de/

TABLE I
QUANTITATIVE COMPARISON BETWEEN PROPOSED METHOD AND

DIFFERENT APPROACHES ON PETS2009 DATASET. THE BEST RESULTS

ARE SHOWN IN BOLD, THE SECOND BEST ARE UNDERLINED

Method
MOTP MOTA IDS FPR FNR
(↑) (↑) (↓) (↓) (↓)

Breitenstein [5] 56.0% 79.7% - - -
GAC [6] 58.3% 81.4% 19 - -
Gomez [26] 75.0% 51.1% 27 3.7% 45.2%
Yoon [27] 57.4% 66.6% 34 15.1% 18.0%
GSDL [19] 61.5% 80.3% 33 6.2% 13.3%
Proposed 68.7% 81.0% 46 8.2% 9.9%

TABLE II
QUANTITATIVE COMPARISON BETWEEN PROPOSED METHOD AND

DIFFERENT APPROACHES ON TUD-STADTMITTE DATASET.

Method
MOTP MOTA ID FPR FNR
(↑) (↑) (↓) (↓) (↓)

Andriyenko [7] 65.8% 60.5% 7 - -
DT-MTT [8] 61.6% 56.2% 15 - -
Riahi [9] 57.2% 67.0% 22 6.0% 26.0%
GSDL [19] 61.7% 62.0% 9 7.7% 30.1%
Proposed 62.0% 65.7% 22 3.5% 28.8%

Tables I and II show the quantitative comparisons with other
state-of-the-art tracking methods. Likewise, Fig. 3 depicts
some example qualitative tracking results produced by the
proposed method on both datasets. For the PETS2009 dataset,
the proposed method delivers a better performance by ranking
the second best in MOTP and MOTA among all methods
listed here. In addition, our method achieves the best FNR
when compared with the available trackers in Gomez [26],
GSDL [19] and Yoon [27]. The reason for the improved
performance is because the measurement classification step
gives the benefits of removing false detections, and also the



weight penalization can better deal with the occlusions and
missed detections. As can be seen from the first row of Fig.
3, the proposed method performs well in terms of closely
moving targets, particularly in resolving the ambiguities, as it
can maintain the target identity and avoid the merged targets
during occlusions.

For the TUD-Stadtmitte dataset, our tracker also reports
the second best performance regarding the precision score
MOTP. In addition, Table II illustrates that our tracker gen-
erates fewer missed detections and the fewest false positives,
which yields the second highest MOTA score compared to
the reported results in Riahi [9] and DT-MTT [8], GSDL [19]
and Andriyenko [7]. We can observe along the second row
in Fig. 3, some pedestrians with similar appearances that are
partially or even almost fully occluded are successfully tracked
through our tracker. However, the number of ID switches for
both datasets is relatively higher than other methods. This
can be attributed by the fact that when a target is missed
or out of scene and coming back later, it will be labelled
with a new identity. This is the re-identification problem, and
it will be further explored in future work to improve the
robustness. The tracker also achieves the runtime performance
of approximately 20Hz.

IV. CONCLUSIONS AND FUTURE WORK

This paper presents an enhanced GM-PHD filter using
CNN-based weight penalization for multiple target tracking
in video. By applying the measurement classification, the
amount of background clutter and false alarms has been
effectively reduced. In order to address the issue of ambiguous
targets, we exploited the deep learning method to extract
human features, which are used to penalize the weights in
the weight matrix. Moreover, an improved track management
with occlusion handling has been introduced to correctly
estimate target states and eliminate false tracks. The obtained
results demonstrate the proposed method achieves competitive
tracking performance compared with other approaches. Future
work will explore the recurrent neural networks (RNNs) and
integrate them to build a robust interaction model, as well
as improving the tracker to deal with the re-identification
problem.
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