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Abstract—This paper presents a high-performing auto-
matic target recognition system which can be used for long-
range surveillance scenarios. The main novelty of our system
is that it uses contextual information from RGB images to
help classify targets in long range real world LWIR images.
This contextual framework provides additional information
of an object’s surrounding environment, leading to a sig-
nificant increase in long-range target recognition accuracy.
This work will be of interest to the defence community as
a high-performing automatic recognition system is a highly
sought-after capability.

I. INTRODUCTION

Motivation: It is becoming increasingly familiar to
undertake surveillance operations using multiple sen-
sors [1], [2], where each additional sensor band observes
a different component of the Electro-magnetic (EM)
spectrum. Utilising additional spectral bands provides
increased knowledge of surrounding environments. In
doing so we can leverage the captured information
to enhance overall situational awareness, which is our
primary goal. However, in the defence surveillance set-
ting, multiple sensors must be effectively managed by
a human operator. Thus, incorporating more sensors
in a surveillance platform increases the load on the
human user. This could potentially lead to significant
negative repercussions in dangerous defence domains,
where overburdened operators are more likely to miss
mission-critical events [3].

Bearing our stated goal in mind, where we aim to
increase overall situational awareness of a target scene,
the issue of increasing processing load with additional
sensor modalities must be addressed. Towards this, we
develop and extend an existing Automatic Target De-
tection and Recognition (ATDR) method, where it could
remove some of the scene processing and comprehension
tasks from a human operator. In other words, the system
would be capable of intelligent and automatic signal pro-
cessing. Such a system could optimise the information

presented to a user but with enhanced scene perception,
ultimately providing an assisted decision framework via
ATDR methods. There are many examples to be found
in the prior art emphasising system development for the
capabilities described [1], [4], [5]. Our paper improves
upon prior work and advances the field. We achieve this
by enhancing a convolutional neural network [3], using
context.

Related work: Context is understood to be any extra
information that potentially improves overall under-
standing of a scene [6]. Humans possess this underlying
comprehension of real-world events due to experience,
which assists the human vision system on different tasks
such as salient region detection [7] or person detection
[8]. Machines, on the other hand, do not possess this
prior knowledge and would benefit if given this further
understanding to give machines a human-like capabil-
ity. Whether this additional context comes from new
sensor information altogether, such as inputting GPS
location data as geographic context, or is produced from
manipulating original pixel level data into a different
representation, the end goal is always to achieve a higher
level scene understanding.

Several attempts to add a semantic context into com-
putational models for a visual task are observed in the
literature. Oliva et al. [9] propose a method that takes the
original low-level pixel data and creates a new, global
representation of a scene that can be interpreted at a
glance without the need for segmentation or region pro-
cessing. This representation is named the spatial enve-
lope and may also be thought of as like scene gist, which
is also an abstract scene representation proposed by [10].
The model uses the spatial and spectral information to
show accurate information about object shape or identity
is not an absolute requirement to categorise a scene
overall. This idea is used in a follow-up piece of work
by Torralba, where a similar scheme for incorporating
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contextual information in object representations is used
for object detection purposes. Low-level pixel data along
with object-centric data, such as size and location, are
modelled using statistics for selecting task driven regions
(the focus of attention) in an image, as well as automat-
ically inferring image scales [11].

Context can also offer improvements to tracking tasks.
Recent work by [12] creates an adaptive tracking scheme
via learned models for background context. It adapts
the object descriptors as and when the scene back-
ground undergoes significant changes from, for example,
dynamic illumination. The method uses particle filters
and certain contrasting colour based components. The
result is a tracker capable of dealing with occlusions
and re-identifying objects after full occlusions. One of
the drawbacks of this method is that a user interaction
stage is required for every new video sequence during
the learning phase. This suggests it is not deployable for
real-world tasks that desire hard, real-time processing.
Another example of a context based tracker can be seen
in the work of [13]. This method learns scene context
with a Bayesian probabilistic approach and handles the
occlusion scenario in a rather novel way by modelling
target births after occlusion events and the spatial layout
of clutter. The result is a multi-object tracker improved
by using scene context.

In addition, context is beneficial in classification tasks.
A recent paper that exploits the use of context is [14],
where they propose a Markov Random Field model
called segDeepM. It allows each candidate box to choose
a segment and scores how well they match up. This
approach is notably more accurate than the context-free
RCNN (Regions with Convolutional Neural Networks)
baseline, making segDeepM at the top of the current
PASCALs leaderboard. A paper by [15] uses context
to find kerb ramps which are missing in images of
street scenes. The model works as follows, it takes input
images, masks the object (the kerb), to focus on learning
only contextual information. Then it uses this contextual
information to scan the images and generate a heat
map showing where kerb ramps are likely to be in the
image. The CNN can then be used to detect if kerb
ramps are present. This contextual information helps
the CNN localise kerbs and increases the likelihood of
detection and recognition. In the work of [16], a CNN is
trained to create contents of an image which are missing
using its surrounding information. The method produces
suitable results and shows another way context is vital
to produce successful outcomes.

From the wealth of evidence supporting context in
detection and recognition systems we will be using it
to enhance an ATDR system developed in [3]. Our ap-
proach provides semantic context to deep learning clas-
sification approaches by combining CNN with learned
probabilistic object location maps [17]. We use colour
band imagery to generate the spatial context for the

Fig. 1. Overview of the ATDR algorithm. When given multi-modal
input data, candidate detections can be generated via an ATD process.
These candidates are fed to the trained CNN, where the output class
and score vector decides the next step. If the maximum class score is
a false alarm, do nothing. If the target is a long-range class, remove
FA and long range scores from CNN vector. Re-weight using spatial
context. If real object class returned, re-weight CNN scores using
spatial context.

scene. A flow diagram of the set-up is shown in Figure
1.

Our contributions are:
1) Mobilisation of scene context via a Bayesian frame-

work incorporating CNN output.
2) A semantic scene segmentation process to gener-

ate region and object priors, utilising multi-modal
sensor information.

II. CLASSIFYING OBJECTS IN LWIR IMAGERY VIA
CNNS

In work [3], a CNN is trained to classify objects in long
wavelength infrared (LWIR) imagery. Please note the
following definitions: short wavelength infrared includes
wavelengths from 1.4 − 3µm, mid-wavelength infrared
is from 3 − 8µm and long wavelength infrared is from
8− 15µm. A long wavelength infrared camera, Catherine
MP, is used as it is ideal for working with the ob-
jects for detection in this research; person, land-vehicle,
helicopter, aeroplane, unmanned aerial vehicle (UAV),
false alarm and long-range target, i.e. objects near room
temperature. They classify objects at short, medium and
long-range which have the following distances respec-
tively: 0 − 200m, 200 − 750m and > 750m. The longest
targets were at 2.5 − 3km. This CNN achieves a test set
accuracy of 95.7%. The system was evaluated over short
to long-range surveillance sequences, which had been
manually ground-truthed. The long-range surveillance
video achieved an accuracy of 39.5%. The sequence of
events in [3] is depicted in the flow diagram illustrated
in Figure 2. Given LWIR input data, candidate detections
can be generated via an ATD process. In other words,
a bounding box is made around the suspected objects



Fig. 2. General overview of the ATDR algorithm stages in [3].

in an image. These candidates are fed to the trained
CNN (ATR), where the output score vector is temporally
aggregated (explained in Methodology section) and re-
weighted. The maximum probability returns the output
target class.

When analysing the ground truth tables of this work,
there is a high proportion of the results in the “long-
range class” instead of the more accurate label “land
vehicle class”. This means that if a sufficient mechanism
existed to switch the long-range class to the vehicle class,
the overall accuracy would increase. In our work, we
make use of scene context from RGB images to guide
the CNN results and thus improve the accuracy of the
system.

III. METHODOLOGY

As stated before, our aim is to develop an ATDR
system which uses RGB contextual information to help
classify long-range targets in LWIR imagery. We use a
Thales thermal imager named Catherine MP which is
sensitive to radiation at wavelengths 8µm-12µm. The
design of the systems has three key stages:

∙ The generation of targets via an ATD algorithm
∙ The passing of the detections into a trained classifier.
∙ The input of the probability scores from each detec-

tion into the contextual framework to affect the final
classification.

A. ATD algorithm

We use a proprietary Thales algorithm for the detec-
tion of objects in the LWIR imagery. This algorithm can
localise short-long range targets using hot spot detection.
This choice of algorithm is not important to this work,
as our main objective is to enhance object recognition.

B. ATR classifier

We use a trained CNN developed in [3] to classify
the targets. The network is a scaled down version of
Krizhevsky architecture [18], it preserves the overall
depth and sequential structure, but removes the width
as training used a much smaller dataset.

C. Incorporating spatial context

The following four components are needed to generate
spatial context information:

Fig. 3. A highway scene is shown in image (a) and is segmented
and labelled with region class information in (b). Image (c) shows the
sampling feature that is described in section...

(1) An algorithm for semantic segmentation
(2) A spatial sampling feature
(3) Prior scene knowledge for each object class
(4) The probability for each object to exist given its

surrounding context.
1) Semantic segmentation: We use efficient graph-based

segmentation to perform region segmentation. Colour
intensity, textural information and spatial context are
extracted from the different regions after segmentation.
This information is then passed through the SVM to be
assigned the correct label. In the following text, we will
explain how this information is obtained.
Colour Features: The average and standard deviations
of the HSV colour planes are used for the colour features
for each region.
Texture features: Texture information is gained by using
Gabor filters at 1 scale and 8 orientations and applying
them to greyscale image regions. This emphasises edges
and helps find region boundaries.
Spatial Context: Vertical position information is taken
from the segmented image regions. Assuming the (x, y)
image coordinate system is used, the vertical position
feature is simply the average value of y-pixels per region.

The Stanford dataset [19] is used to compute the
feature vectors which are used to train our SVM. The
SVM can label five regions: sky, bush/tree/grass(BTG),
road, water and building. An example of labelled seg-
mentation is illustrated in Figure 3.

2) Spatial sampling feature: A sampling function is
required to deduce what regions surround the candidate
target. We use a spatial context feature developed in [17].
When a detection is made, we sample above, below, to
the left and right of the centre of the bounding box at
pixel locations, [1, 20, 40, 100, 200]. If a target is at the
edge of an image then this sampling regime will fail. To
rectify this, we pad the image by cloning the boundary
pixels for a fixed length in each direction. This sampling
feature can be observed in part c) of Figure 3.

3) Prior scene knowledge: Using 20 images for each class
from ImageNet, a sampling scheme is used to learn the



prior probabilities Po(Rc∣lk). Rc is the expected region R
for class c and lk is the sample l at location k.

4) Probability given context: We use this prior scene
knowledge to predict the object class given its context
using the following equation:

P(O∣C) = 1
n ∑ Po(Rc∣lk) (1)

The prior probabilities of each of the 20 locations
are added up and divided by n, the total number of
locations. For example, if we have a candidate detection
with all location regions labelled sky, the equation for
P(aeroplane∣context) would be:

P(aeroplane∣context) =
1

20
(P(sky∣location(1)) + ...

+ P(sky∣location(20))
(2)

The same process is completed for the other
class objects and their values, P(areoplane∣context),
P(person∣context), P(helicopter∣context),
P(UAV∣context) and P(landvehicle∣context), make up
the five element array P(O∣C). Thus, the five element
array (P(O∣C) is populated by the probability for each
object to exist given the context. It is this array we will
eventually use to affect the CNN output scores.

D. Temporal aggregation

Even though we have built a robust system, classi-
fication errors still exist. A solution is to use temporal
aggregation. This method tracks the objects over a period
of time, removing the errors in the probabilities. As
we are classifying long-range targets, we can achieve
temporal aggregation without tracking as long-range
targets move very little on the plane. To implement
this, we create a circular buffer of detections and the
corresponding CNN scores of length N. When a new
detection is made, we find the closest previous detection
location and find the Euclidean distance Ed between
them. If this distance is below the threshold distance
of ThreshED , we aggregate the current CNN scores with
the matched CNN scores. This process then moves onto
the next detection and CNN score, moving the currently
aggregated CNN scores into the buffer and dropping the
last entry in the buffer, ensuring there are only N entries
to match for any new detection. If the detection has no
match below ThreshED , we do nothing. By propagating
through the detection sequence as so, the CNN scores
are temporally aggregated and the errors are removed.

E. Overall framework

The overall framework for our work is shown in
Figure 1. RGB and LWIR imagery is passed into an
Automatic target detector (ATD) system and then into
the trained CNN (labelled as ATR in Figure 1) created in
[3]. The CNN will produce an output class for each target

detected in the images. If this output class is a False
alarm, the CNN result remains unaffected. However, if
the output class is a long-range or specific target, spatial
context is used to guide the system to the correct class.
This stage is shown in Figure 1 as the block labelled
“Apply Spatial Context+/Temporal to CNN Scores”.

IV. EXPERIMENTS

The final ATDR system is assessed using challenging,
long-range multi-modal data sequences. The data is col-
lected using a Thales Catherine LWIR thermal imager in
a rural location on targets including; land-vehicle, heli-
copter and false alarms. All detections generated via the
ATD algorithm are human ground-truthed to provide
target classes. We evaluate over the same datasets as
described in [3], in order for comparisons to be made.

Although the CNN is trained over 7 classes, the
output probabilities after propagating through the con-
textual frame-work are a 5 element array. This is be-
cause the FA and long-range class are removed as de-
scribed in Figure 1. We evaluate the CNN+Context and
CNN+Context+Temporal Aggregation on a total of 8750
long range target candidates.

V. DISCUSSION OF RESULTS

Figure 4 shows the results. The performance using
context is significantly better. Although, the images have
only; helicopter, land-vehicles and false alarms present,
the CNN we use from [3] was trained to identify 7
classes, so our confusion matrices must show all seven
classes to highlight system error occurrence.

From Figure 4, we note the CNN and the CNN +
Temporal aggregation cannot distinguish between the
correct land vehicle classes due to the low signal over
long ranges. We can see by mobilising contextual in-
formation to affect the CNN output scores, we can
significantly improve the accuracy of our results. We
achieve classification scores of around 92%, with the
temporal function having slightly worse but negligible
performance. The improvement from 39.5% to 92% in
this system mainly comes from the switch from long
range target to land vehicle, with slight improvements
in the helicopter class as well. The results are used to
obtain an F1 − Score (visualised in Figure 5) using the
following equations:

F1 = 2.
precision.recall

precision + recall
(3)

precision =
TP

TP + FP
(4)

recall =
TP

TP + FN
(5)



Fig. 4. Confusion matrices and overall accuracy results are presented
for long range classification experiments. C1=person, C2=land vehicle,
C3=helicopter, C4=aeroplane, C5=UAV, C6=false alarm and C7=long
range target class. Matrix (a) is simply the trained CNN applied to ATD
output target candidates, which does not perform well. This result
is almost identical when the temporal aggregation is introduced in
matrix (b), with only a negligible gain on offer. However, context has
an overwhelmingly positive effect on the ATDR results as shown in
matrices (c) and (d).

VI. CONCLUSION

We have successfully created an ATDR system for
enhancing target recognition in long-range surveillance
scenarios using multi-modal data. We have achieved this
by using state of the art machine learning techniques in
the form of a highly accurate CNN LWIR classifier. When
used alone, this CNN is inadequate for challenging
long-range scenarios. But our system improves it by
adding context to infer accurate object classes.

Improvements could be made in the following aspects:

1) Inability to change incorrect false alarm cases, as
the CNN output for this class is not passed through
the contextual framework, as shown in Figure 1.

2) The system cannot change incorrect object class to
false alarm. If the CNN outputs helicopter/land-
vehicle/ aeroplane/person/UAV class then due to
the structure of the system as described in the
previous section, the false alarm class is removed
from the list of options the contextual framework
can choose from.

Overall, by incorporating a subtle amount of infor-
mation from semantic segmentation and object priors as

Fig. 5. The multi-axis plot shows mean F1 Scores for the different
variants of classification algorithm in our final experiment. The F1
Score is a useful summary statistic in machine learning as it provides
a weighted average of a classifier’s precision and recall across classes.
As we can see, there is a marked improvement gained from spatial
context incorporation. This is highlighted by the red line showing the
percentage increase in F1 Score relative to the raw CNN output

context, we have successfully classified challenging long-
range targets in multi-modal surveillance data.
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