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Abstract—This paper explores application of the Probability
Hypothesis Density (PHD) filter to the estimation of a threat
level pertaining to an object population. Specifically, it develops
explicit and compact expression for computation of its variance,
a second-order statistical moment that quantifies the dispersion
of the threat level around its mean value. The behaviour of the
statistic is demonstrated through simulation examples.

I. INTRODUCTION

Successful operation of many civil and military command
and control (C2) systems is defined by operator’s ability to act
in response to the results of automatic threat assessment based
on sensor observations. In practice, assessment corresponds to
computation of threat levels of objects in the surveillance area
with respect to (w.r.t.) negative effects of their estimated or
predicted behaviour [1], [2]. However, the operator’s ability
to act can be compromised in the following situations:

« when the number of objects in the surveillance area is too
high, exceeding human cognitive capacities or leading to
interferences in presentation of results [3];

o when threat level estimates are not equipped with a
measure of their quality, rendering results unreliable or
arguably meaningless [4, p. 150].

One way to address the first point above is to aggregate
individual object threats [5], [6], [7] into a scalar-valued
population threat that depends on the number and states of
individual targets — ideally preserving the collective effects of
underlying behaviours and interactions [8]. Building from his
early works on multi-object detection/tracking for population
of objects [9], Mahler proposed the expression of the first-
order statistic of the population threat for multi-object filtering
solutions derived from the Finite Set Statistics (FISST) fra-
mework, including the Probability Hypothesis Density (PHD)
filter [9].

In order to address the second point above, this paper in-
troduces the second-order statistic for a population threat, and
illustrates this concept in the context of the PHD filter. This
result builds upon the work of Delande et al. [10] on regional
statistics that provide first- and second-order information on
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the number of objects in an arbitrary region of the surveillance
area.

Section II covers the necessary background material on
multi-object Bayesian estimation with point processes, and
describes the PHD filter. Section III defines the aggregate
threat function and its statistics, and exploits them to extract
threat statistics from the output of the PHD filter. Numerical
examples are given in Section IV. Section V concludes the
paper. The proofs of the results in Section III are given in the
Appendix.

II. MULTI-OBJECT BAYESIAN FILTERING

This section presents background and notation used throug-
hout the article. Point processes are briefly described in
Section II-A and Section II-B provides a description of the
PHD filter.

A. Point Processes

In this article, the objects of interest have individual states x
in some d-dimensional state space X C R?, typically consis-
ting of position and velocity variables. A point process ¢ on
X is a random variable on the process space X = [J,~ X",
i.e. the space of all finite sequences of points in X, whose
number of elements and element states are unknown and
(possibly) time-varying. A realisation of ® is a sequence'
¢ = (x1.,) € X™, representing a population of n objects
with states x; € X. In the context of multi-object filtering,
this sequence depicts a specific multi-object configuration.

More formally, a point process & on X is a measurable
mapping

o (Q,F,P)— (X,B(X)) (1)

from some probability space (2, F, P) to the measurable space
(X,B(X)), where (2 is a sample space; F is a o-algebra on
Q; P is a probability measure on (2, F); B(X) is the Borel
o-algebra on X [11].

As for usual real-valued random variables, a point process
is described by its probability distribution Py on X. The
probability distribution is always defined as a symmetric
function, so that the order of points in a realisation is irrelevant
for statistical purposes and the permutations of ¢—such as
(z1,22) and (x9,x1)—are equally probable. In addition, a

'In this paper (z1:n) denotes the sequence (z1,...,ZTn).
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point process is called simple if the probability distribution is
such that realisations are sequences of points that are pairwise
distinct almost surely, i.e. ¢ does not contain repetitions. For
the rest of the paper, all the point processes are assumed
simple?.

Throughout the paper all random variables are defined on
(Q, F,P). E[] and var[-] denote, respectively, the expectation
and the variance w.r.t. P. In order to describe real-valued
random variables on RS‘ and random variables on X, these
spaces are equipped with their corresponding Borel o-algebras.

B. The Probability Hypothesis Density Filter

In the context of Bayesian multi-object filtering, ®; des-
cribes the information about the object population known by
the operator at time k. Multi-object Bayes’ filter, in its most
general form, cannot be implemented in a computationally
tractable manner even for a small number of objects [13].
Its most popular approximation is perhaps the PHD filter
[12]. The PHD filter propagates the density of the first-order
factorial moment of the point process Py, denoted by g,
and also called the Probability Hypothesis Density (PHD) or
intensity function. The PHD filter recursion at time step &
consists of a time prediction step and a data update steps given
by [12]

bt () = @) + [ s @lopen () (@),
2
o) =)+ 3 N
with
1 (x) = (1= pae(@)) i (@),
() = pa () g (21 g (2),

where /i1 (-) and p(-) are, respectively, the predicted and
updated intensity functions;

pP(-) and pf?(-) are, respectively, the intensity functions of
newborn objects and false alarms;

Z1.x is the sequence of multi-object observations collected
by time k, where 7, is a set of single-object measurements
collected at time k;

gx(+|") is the single-object measurement likelihood;

ps,i(+) and pq k() are, respectively, the probability of an
object survival and its probability of detection;

myk—1(:|-) is the single-object Markov transition kernel,
describing the time evolution of an object.

III. STATISTICS FOR THREAT ASSESSMENT

This section introduces the first- and second-order statistics
of the aggregated threat level for the updated point process ®y,

%In the literature originating from Mahler’s Finite Set Statistics (FISST)
framework [12], an alternative construction of simple point processes is a
random finite set (RFS), a random object whose realisations are sets of points
{x1,...,zn}, in which the elements are by construction unordered.

at some arbitrary time k£ > 0 using the information available
from the PHD filter.

The combined threat of a population of objects is modelled
through the aggregated threat level T : X — RI, ie. a
population of targets with states ¢ = (x1.,,) has a threat level
given by the scalar 7 (¢). As a consequence, the threat level
of a population described by a point process ® is described
by the real-valued random variable

To =T o0 ®, @)

where o denotes the function composition operator.

As for usual real-valued random variables, we can describe
Tg with its first moment or mean E[Tg] and its second central
moment or variance var [Tg], given by

E[To] & / T () Pa(di) and )

2E[T3] - (E[Ta])’ (©)

/72 )Po(dp) — (/T Pq)(dso)>2- ©)

The explicit expressions of these moments can be difficult
to obtain in the general case, so in the scope of this paper we
shall limit ourselves to the case of cumulative threat functions
[14], [15], [16], i.e., at time k

=> 7(), ®)

TEP

var[Tg] =

where 73, is a function 7, : X — [0, 1] evaluating the threat
level of an individual object with state = [5], [17], [7].

Theorem III.1 (Mean cumulative threat level [9]).

Under the assumptions of the PHD filter and considering
cumulative threat as in (8), the mean cumulative threat level
of the updated point process ®y, is given by

BT, = [ @+ Y - f (@) (@)da

2 () + [ ()
©))

This result was first obtained by Mahler in [9, Eq. 35], and
presented here for the sake of completeness.

Theorem III.2 (Variance in the cumulative threat level).
Under the assumptions of the PHD filter and considering
cumulative threat as in (8), the variance in the cumulative
threat level of the updated point process ®y, is given by

var(Ta,] = | T,Sumzfmdx
+ Z[ J 7 ()i () da J i (@)pi (@ )2]
(10)

vz +fﬁ% )da <Nk *fﬂk
This theorem is the main result of this paper. Its proof is
given in Appendix.
When interest lies in a specific region B C X the function
T, can be selected to be the indicator function 1g defined




such that 1p(z) = 1 if x € B, 1g(z) = 0 otherwise. The
cumulative threat level then reduces to the regional statistics
describing the number of objects in B [10, Eq. 34 and 35].

IV. NUMERICAL EXAMPLES

The computation of the threat statistics impose no constraint
on the implementation of the PHD filter. In this paper, an
SMC-PHD filter [18] was used. The details of implementation
are, however, omitted for the sake of brevity.

A. Simulation Setup

We consider a scenario where sensor is used to estimate
a cumulative threat level generated by objects evolving in a
specified surveillance area. In simulation we adopt the surveil-
lance area to be a disk centred at the origin with radius 2000 m
as depicted on Figure 1. The state of objects is described
by z = [x,y,%,y]T, where [x,y] is a location component
and [X,y] is a velocity component, and 7' denotes the matrix
transposition. The subset of R* that falls in the surveillance
area is the state space X. The state transitions follow a nearly
constant velocity motion model and (slight) additive zero mean
process noise after getting initiated uniformly on the edge of
the surveillance area, the initial velocities are chosen such
that the targets are oriented towards the sensor with speeds
uniformly distributed in [10,40] ms~'. The birth model is
Poisson with birth rate equal to 1. The probability of object
survival between time steps is ps = 0.99.

A radar-like sensor is static and located at the origin. The
sensor’s field of view covers the whole position subspace and
the interval of range-rates [—100,100] ms~—!. The standard
deviations in range, bearing and range-rate are selected as 5 m,
3°, and 4ms~! respectively. The false alarms are generated
from a Poisson process with rate equal to 20 and uniform
distribution over the field of view. The probability of detection
is uniform across the field of view pg = 0.98.

Figure 1 illustrates the particle representation of the inten-
sity u in the running SMC-PHD filter.

B. Threat Assessment Details

The threat level of x is evaluated w.r.t. to a point of interest
T, € X and a region of interest B C X by

)= 1o (_ d(zc,ya:o) B bz(;ﬁ,;’o))

a time-invariant function (hence the index k in 7 is dropped),
where 1p(z) evaluates whether x belongs to the region B;
d(z,20) = \/(x —X0)2 + (y — ¥,)? is the distance between
the object and the point which is related to the object’s
capability to inflict negative effect; the object’s direction
b(z, x,) = |atan2(y, X) —atan2(x, —x,y, —y)| w.r.t. the point
is related to object’s intention to act hostile, where atan2(y, x)
is the four-quadrant inverse tangent function; o and 3 are
positive-valued scaling parameters.

In preparation to a sensor management scenario [19], [2],
we wish to estimate the threat level in various regions in order
to be able to focus sensing resources in the region that needs
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Fig. 1. An example of the updated intensity pij, in the running PHD filter in
the simulated scenario. The particles (blue dots) are projected on the subspace
of X consisting of position variables only. The regions of interest (quadrants)
are depicted with red dashed lines and numbered counter-clockwise with the
first sector plotted with a thicker line. The sensor is located at the centre of
the surveillance area.

it the most. The four considered regions are the four quadrants
illustrated in Figure 1. The point of interest is selected to
coincide with the sensor location.

C. Simulation Results

We consider statistics of cumulative threat level in the
surveillance area divided into four regions as depicted on
Figure 1 for the duration of 45s. The threat level of individual
objects is calculated using (11) with sensitivity parameters
a =2000m and 5 = 0.5.

In Figure 2, we demonstrate the mean threat level for each
of the sectors (black plain line), together with the ground truth
(red plain line). The variance in threat level is used to quantify
the uncertainty in the estimated threat level. Specifically, we
demonstrate confidence intervals (black dashed lines) as +1
square root of the threat level variance which is a standard
deviation. We note that the ground truth falls within the confi-
dence interval during the course of scenario, this demonstrates
that results of threat assessment in this case are reliable.

V. CONCLUSION

This paper explores the estimation of the cumulative threat
level of a population of objects through its first- and second-
order statistics, in order to assess threat level uncertainty and
provide a measure of confidence in the estimated threat. It
provides a principled construction of the second-order central
moment or variance of the cumulative threat level, and an
explicit expression from the output of the data update step
of the PHD filter. The behaviour of the developed statistic is
illustrated on a simulated scenario, where the statistics of the
cumulative threat are computed in four quadrants (regions) of
the surveillance area.
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Fig. 2. Mean cumulative threat level and 1 standard deviation (square root
of the variance) in regions from 1 to 4. The ground truth value of the threat
level is plotted with plain red line. The results are averages over 60 Monte
Carlo runs.

APPENDIX: PROOF OF THEOREM II1.2

Proof. The variance in the estimated threat level T}, is defined
by

2
(E[Tx])".

Let us first focus on the expected value E[T}] of the threat
level T. From (5) and (8) we can write

var[Ty] = E[T7] — (12)

/ (Zm )Pq)k (de), (13a)
TEP
and then using Campbell’s theorem [11, p. 103] yields
BT = [ n(@hm(o)ds, (13b)

where py () is the updated intensity of the process (3), so
ey d
E[Ty] = / w(@)uf(@)dz + > f at )

e (2) + f i (x
This is the result in (9) that was obtained in [9].

(13c)

Next we focus on the expected value E[T?] of the squared
threat level T2. Once again, from (5) and (8) we have

el
:/X<T‘;W7k(xi)m(xj)>zﬂ¢k (dy) (14b)

/ <x€§;f’€ )P% (de)

" /X (xzx:;m (””)Tk(xj)> Py, (dg),  (l4c)

where Z;ﬁ stands for the summation over all pairs of distinct
points x in a sequence . Using Campbell’s theorem yields

E[T?] = / 2 (@)un()de

[ nim@n? e D

x, T) is the second-order factorial moment density

(14d)
where v,(f)(
of the point process @5 [11, p. 37]. The density y,(f)(x,f)
can be computed from the second-order non-factorial moment
density, available for the updated PHD from [10, Eq. 31], using
the expression [11, Eq. 4.3.4]. It yields

i (x,7)

=i ;Mff + fuk
Z;M%‘ )+ fuk _

’ Z;Z( )+ faik > (ui"‘(i) fﬁ;(x)dx)

15)

Substituting the expressions for V,i2) (z, ) from (15) and for
ux(x) from (3) into (14d), we can write

E[T%] (16)
[ TR (z da:
= [ 7(x)pf (z)dx +
/ ;Hk )+ f “Ic
2
+ </ Tk(x)uf(x)dx>
7k (Z) i, (w)da
+2 / )
o i
N Z ka dx) (f Tk (@7 :E)
oy Nk "‘fﬂk z2) + [ ui(x)
(17)
Finally, substituting (17) and (13c) into (12) yields the
result. O
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