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Abstract—Polynomial matrix eigenvalue decomposition
(PEVD) algorithms have been shown to enable a solution to
the broadband angle of arrival (AoA) estimation problem.
A parahermitian cross-spectral density (CSD) matrix can be
generated from samples gathered by multiple array elements.
The application of the PEVD to this CSD matrix leads to a
paraunitary matrix which can be used within the spatio-spectral
polynomial multiple signal classification (SSP-MUSIC) AoA
estimation algorithm. Here, we demonstrate that the recent low-
complexity divide-and-conquer sequential matrix diagonalisation
(DC-SMD) algorithm, when paired with SSP-MUSIC, is able
to provide superior AoA estimation versus traditional PEVD
methods for the same algorithm execution time. We also provide
results that quantify the performance trade-offs that DC-SMD
offers for various algorithm parameters, and show that algorithm
convergence speed can be increased at the expense of increased
decomposition error and poorer AoA estimation performance.

I. INTRODUCTION

For broadband angle of arrival (AoA) estimation, powerful
narrowband methods such as the multiple signal classification
(MUSIC) algorithm [1] are not directly applicable. In [2], the
polynomial matrix eigenvalue decomposition (PEVD) [3] is
used to generalise MUSIC to the case of polynomial space-
time covariance matrices, resulting in the development of the
spatio-spectral polynomial MUSIC (SSP-MUSIC) algorithm.
A comparison in [4] of SSP-MUSIC with an auto-focussing
coherent signal subspace AoA estimation approach [5] has
found that SSP-MUSIC provides lower AoA estimation perfor-
mance, but has the advantage of not relying on a-priori spectral
information of the sources. Further work in [6] has shown that
the accuracy of SSP-MUSIC depends strongly on the efficacy
of the PEVD algorithm used.

Existing PEVD algorithms include sequential matrix di-
agonalisation (SMD) [7], second-order sequential best rota-
tion (SBR2) [3], and various evolutions of the algorithm
families [8]–[10]. Work in [11], [12] describes a divide-
and-conquer approach for the PEVD. This algorithm — ti-
tled divide-and-conquer sequential matrix diagonalisation (DC-
SMD) — can be utilised to reduce algorithm complexity and
has a framework based on the SMD algorithm.

Here, we compare the AoA estimation performance that
DC-SMD offers when paired with SSP-MUSIC with the
performance that SBR2 and SMD provide in a broadband
AoA estimation scenario. For the same example, we investigate
the efficacy of DC-SMD for various algorithm parameters to
determine the algorithm’s performance trade-offs. Performance
of DC-SMD is measured in terms of AoA estimation accuracy
and with several metrics, including algorithm execution time,
decomposition mean-squared error, filter paraunitarity, and
paraunitary filter length.

A broadband array data model and the SSP-MUSIC broad-
band AoA algorithm of [2] are outlined in Sec. II. Subse-

quently, Sec. III will provide a brief overview of the DC-SMD
algorithm. Simulation results showing the broadband AoA
performance of DC-SMD for various algorithm parameters are
presented in Sec. IV, with conclusions drawn in Sec. V.

II. BROADBAND SUBSPACE DECOMPOSITION

Based on the signal model for a broadband array described
in Sec. II-A, Sec. II-B defines the spatio-spectral polynomial
MUSIC algorithm.

A. Broadband Array Data Model

An 𝑀 -element array of omnidirectional sensors located
at positions r𝑚, 𝑚 = 1 . . .𝑀 collects broadband data in a
vector x[𝑛] ∈ ℂ

𝑀 . For the 𝑙th far-field source 𝑠𝑙[𝑛], the array
experiences a planar wavefront with normal k𝑙. We are only
interested in the relative delay between signals at the sensors,
such that contributions to x[𝑛] in the absence of attenuation
due to propagation are

x[𝑛] =
∑

𝑙

∑∞
𝜈=0 a𝑙[𝜈]𝑠𝑙[𝑛− 𝜈] + v[𝑛] , (1)

with the broadband steering vector

a𝑙[𝑛] =
1√
𝑀

⎡
⎢⎣

𝑓 [𝑛− 𝜏𝑙,0]
...

𝑓 [𝑛− 𝜏𝑙,𝑀−1]

⎤
⎥⎦ (2)

containing fractional delay filters 𝑓 [𝑛− 𝜏𝑙,𝑚] with normalised

delays 𝜏𝑙,𝑚 =
kH
𝑙 r𝑚
𝑐𝑇𝑠

, whereby 𝑇𝑠 is the sampling period
and 𝑐 the propagation speed in the medium, such that k𝑙/𝑐
is the 𝑙th source’s slowness vector. The vector v[𝑛] adds
spatially and temporally uncorrelated noise with covariance
ℰ{v[𝑛]vH[𝑛]} = 𝜎2𝑣I𝑀 to the model in (1), with ℰ{⋅} the
expectation operator and I𝑀 an 𝑀×𝑀 identity matrix. Below,
a𝜗,𝜑[𝑛] refers to a broadband steering vector determined by k
with azimuth 𝜑 and elevation 𝜗.

Collected by an 𝑀 -element broadband array, the data
vector x[𝑛] ∈ ℂ

𝑀 has a space-time covariance matrix given by

R[𝜏 ] = ℰ{x[𝑛]xH[𝑛− 𝜏 ]} , (3)

which forms a transform pair with the cross power spectral
density (CSD) matrix 𝑹(𝑧) ∙—∘ R[𝜏 ],

𝑹(𝑧) =
∑

𝜏 R[𝜏 ]𝑧−𝜏 . (4)

The CSD matrix is parahermitian, i.e., 𝑹(𝑧) = 𝑹̃(𝑧) =
𝑹H(1/𝑧∗). A polynomial EVD [3] decouples the parahermi-
tian 𝑹(𝑧) by means of a paraunitary 𝑸(𝑧),

Λ(𝑧) ≈ 𝑸̃(𝑧)𝑹(𝑧)𝑸(𝑧) , (5)

such that Λ(𝑧) = diag{Λ1(𝑧) Λ2(𝑧) . . . Λ𝑀 (𝑧)} is
diagonalised and spectrally majorised with PSDs Λ𝑖(𝑒

𝑗Ω) ≥
Λ𝑖+1(𝑒

𝑗Ω) ∀ Ω, 𝑖 = 1 . . . (𝑀 − 1), with Λ𝑖(𝑒
𝑗Ω) =

Λ𝑖(𝑧)∣𝑧=𝑒𝑗Ω . Equation (5) has only approximate equality, as
the PEVD of a finite order polynomial matrix is generally not
of finite order.
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Thresholding the polynomial eigenvalues Λ𝑖(𝑧) — e.g.,
extracting eigenvalues with energy

∑
𝜏 ∥Λ𝑖[𝜏 ]∥2F > 𝜆 for some

𝜆, where ∥⋅∥F is the Frobenius norm — reveals the number of
independent broadband sources 𝑅 contributing to 𝑹(𝑧), and
permits a distinction between signal-plus-noise and noise only
subspaces 𝑸𝑠(𝑧) ∈ ℂ

𝑀×𝑅 and 𝑸𝑛(𝑧) ∈ ℂ
𝑀×(𝑀−𝑅),

𝑹(𝑧) = [ 𝑸𝑠(𝑧) 𝑸𝑛(𝑧) ]

[
Λ𝑠(𝑧) 0
0 Λ𝑛(𝑧)

] [
𝑸̃𝑠(𝑧)

𝑸̃𝑛(𝑧)

]
,

where 𝑅 < 𝑀 , Λ𝑠(𝑧) ∈ ℂ
𝑅×𝑅 and Λ𝑛(𝑧) ∈

ℂ
(𝑀−𝑅)×(𝑀−𝑅).

B. Spatio-Spectral Polynomial MUSIC

The spatio-spectral polynomial MUSIC (SSP-MUSIC) al-
gorithm [2] is an extension of narrowband MUSIC [1] to the
broadband case. The idea of the SSP-MUSIC algorithm is to
scan the noise-only subspace 𝑸𝑛(𝑧),

𝑸𝑛(𝑧) = [𝒒𝑅+1(𝑧) . . . 𝒒𝑀 (𝑧)] , (6)

which is spanned by eigenvectors corresponding to eigenvalues
close to the noise floor, Λ𝑛(𝑧) ≈ 𝜎2

𝑣I𝑀−𝑅. The steering
vectors of sources that contribute to 𝑹(𝑧) will define the
signal-plus-noise subspace 𝑸𝑠(𝑧) and therefore lie in the
nullspace of its complement 𝑸𝑛(𝑧). As a result, the vector
𝑸̃𝑛(𝑒

𝑗Ω)𝒂𝜗,𝜑(𝑒
𝑗Ω) has to be close to the origin for 𝒂𝜗,𝜑(𝑒

𝑗Ω)
to be a steering vector of a contributing source at fre-
quency Ω, where 𝑸̃𝑛(𝑒

𝑗Ω) = 𝑸̃𝑛(𝑧)∣𝑧=𝑒𝑗Ω and 𝒂𝜗,𝜑(𝑒
𝑗Ω) =

𝒂𝜗,𝜑(𝑧)∣𝑧=𝑒𝑗Ω . Thus, the SSP-MUSIC algorithm evaluates the
reciprocal of the norm of this vector,

𝑃SSP(𝜗, 𝜑, 𝑒
𝑗Ω) =

1
𝒂̃𝜗,𝜑(𝑧)𝑸𝑛(𝑧)𝑸̃𝑛(𝑧)𝒂𝜗,𝜑(𝑧)

∣𝑧=𝑒𝑗Ω ,

(7)
which is large when 𝒂𝜗,𝜑(𝑒

𝑗Ω) is a steering vector of a
contributing source. In addition to spatial location of sources in
terms of 𝜗 and 𝜑, 𝑃SSP(𝜗, 𝜑, 𝑒

𝑗Ω) can determine over which
frequency range sources in the direction defined by the steering
vector 𝒂𝜗,𝜑(𝑧) are active.

III. DIVIDE-AND-CONQUER SEQUENTIAL MATRIX
DIAGONALISATION

This section outlines the components of the divide-and-
conquer sequential matrix diagonalisation (DC-SMD) PEVD
algorithm [11]. Following an overview of DC-SMD in
Sec. III-A, Sec. III-B and Sec. III-C explain the key stages
of this algorithm by detailing the divide and conquer steps,
respectively.

A. Divide-and-Conquer Sequential Matrix Diagonalisation

The DC-SMD algorithm approximates the PEVD using
a series of elementary paraunitary operations to iteratively
diagonalise a parahermitian matrix 𝑹(𝑧) ∈ ℂ𝑀×𝑀 and its
associated coefficient matrix, R[𝜏 ]. Similarly to other PEVD
algorithms, DC-SMD generates an output diagonal matrix
Λ(𝑧) containing eigenvalues, and a paraunitary matrix 𝑸(𝑧)
containing eigenvectors, which satisfy (5).

While traditional PEVD algorithms — such as SMD [7] —
attempt to diagonalise an entire 𝑀 ×𝑀 parahermitian matrix
at once, the DC-SMD algorithm first divides the matrix into a
number of smaller, independent parahermitian matrices, before
diagonalising — or conquering — each matrix separately. For
example, a matrix 𝑹(𝑧) ∈ ℂ20×20 might be brought into
block-diagonal form comprising of four 5 × 5 parahermitian
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Fig. 1: (a) Original matrix R[𝜏 ] ∈ ℂ
20×20, (b) segmented

result R′[𝜏 ], and (c) diagonalised output Λ[𝜏 ]. 𝑁𝑅, 𝑁𝑅′ , and
𝑁Λ are the maximum lags for matrices R[𝜏 ], R′[𝜏 ], and Λ[𝜏 ],
respectively.

matrices, each of which can be diagonalised independently.
Fig. 1 shows the state of the parahermitian matrix at each
stage of the process for this example.

If matrix 𝑹(𝑧) is of spatial dimension greater than 𝑀̂×𝑀̂
— where 𝑀̂ is an arbitrary user-defined value — an algorithm
named sequential matrix segmentation (SMS) [11] is used
to recursively divide the matrix into multiple independent
parahermitian matrices. Each parahermitian matrix is then di-
agonalised in sequence through the use of the SMD algorithm.
If 𝑀 ≤ 𝑀̂ , the divide step is skipped, and the input matrix is
processed via SMD. A row-shift truncation scheme from [12],
[13] is used to shorten the paraunitary matrix output by DC-
SMD using a truncation parameter 𝜇RST.

The individual steps of DC-SMD are summarised in more
detail in [11].

B. Recursive Polynomial Matrix Segmentation

If 𝑹(𝑧) has spatial dimension 𝑀 > 𝑀̂ , the divide stage
of DC-SMD comes into effect. This stage applies sequential
matrix segmentation (SMS) [11] to recursively divide 𝑹(𝑧)
into multiple independent parahermitian matrices. SMS is a
novel variant of SMD designed to segment an input matrix
𝑹̂(𝑧) ∈ ℂ𝑀 ′×𝑀 ′

into two independent parahermitian matrices
𝑹̂11(𝑧) ∈ ℂ

(𝑀 ′−𝑃 )×(𝑀 ′−𝑃 ) and 𝑹̂22(𝑧) ∈ ℂ
𝑃×𝑃 , and two

matrices 𝑹̂12(𝑧) ∈ ℂ
(𝑀 ′−𝑃 )×𝑃 and 𝑹̂21(𝑧) ∈ ℂ

𝑃×(𝑀 ′−𝑃 ),

where 𝑹̂12(𝑧) =
˜̂𝑹21(𝑧) are approximately zero.

The divide step of DC-SMD operates recursively. In the
first recursion, the matrix 𝑹̂(𝑧) input to SMS is equal to
𝑹(𝑧) and 𝑀 ′ = 𝑀 . The output matrix 𝑹̂22(𝑧) is stored
and subsequently diagonalised during the conquer step. If the
second output matrix 𝑹̂11(𝑧) is of spatial dimension greater
than 𝑀̂ × 𝑀̂ , the second recursion of the divide step uses
𝑹̂11(𝑧) as the input to SMS, and 𝑀 ′ is set equal to 𝑀 − 𝑃 .
Recursions continue in this fashion until (𝑀 ′−𝑃 ) ≤ 𝑀̂ . The
dimensions of the smaller matrix produced during division, 𝑃 ,
is forced to satisfy 𝑃 ≤ 𝑀̂ .

SMS iteratively minimises the energy in select regions of
a parahermitian matrix in an attempt to segment the matrix.
Fig. 2 illustrates the segmentation process for 𝑀 ′ = 5 and
𝑃 = 2.

The SMS algorithm continues operating until 𝐼𝐷 iterations
have been executed, or when the energy in the targeted regions,
𝐸(𝑹̂12(𝑧))+𝐸(𝑹̂21(𝑧)), falls below a threshold 2𝛿𝐸(𝑹̂(𝑧)).
Here, 𝛿 is some arbitrary value, and 𝐸(⋅) computes the energy
in a polynomial matrix.

A parameter 𝜇 is used to truncate the parahermitian and
paraunitary matrices generated in SMS. More detail on the
implementation of this truncation can be found in [14].
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Fig. 2: (a) Original matrix R̂[𝜏 ] ∈ ℂ
5×5, (b) regions (red)

to be iteratively driven to zero in SMS for 𝑃 = 2, and (c)
segmented result. 𝑁𝑅̂ and 𝑁𝑅̂′ are the maximum lags for the
original and segmented matrices, respectively.

C. Independent Conquering of Divided Polynomial Matrices

At this stage of DC-SMD, 𝑹(𝑧) has been segmented
into multiple independent parahermitian matrices. Each matrix
can now be diagonalised individually through the use of
the SMD algorithm [7]. Each instance of SMD is provided
with a parameter 𝐼𝐶 (which defines the maximum possible
number of algorithm iterations), a truncation parameter 𝜇, and
a convergence parameter 𝜖.

IV. RESULTS

This section first defines the performance metrics for
evaluating the use of PEVD algorithms within SSP-MUSIC
in Sec. IV-A, before setting out two simulation scenarios in
Sec. IV-B, over which these metrics will be measured. The
first scenario is designed to compare the use of DC-SMD
versus SBR2 [3] and SMD [7] within SSP-MUSIC, and the
second is formulated to analyse the performance trade-offs of
the DC-SMD algorithm in this application. These scenarios are
investigated in Sec. IV-C and Sec. IV-D, respectively.

A. Performance Metrics

Since the PEVD algorithms discussed in this paper all iter-
atively minimise off-diagonal energy, a suitable metric 𝐸norm,
defined in [7], is used; this metric divides the off-diagonal
energy at each iteration of each algorithm by the total energy.
During computation of 𝐸norm, squared covariance terms are
used; therefore a logarithmic notation of 5 log10𝐸norm is
employed.

When truncation is employed, the eigenvectors and eigen-
values output from PEVD algorithms are only able to approx-
imately reconstruct the input matrix. DC-SMD also introduces
a segmentation error in its divide step, due to imperfect
segmentation in SMS, which is higher for a larger threshold
𝛿. A metric capable of measuring the difference between the
original and reconstructed matrices is the mean squared error

MSE = 1
𝑀2𝐿′

∑
𝜏 ∥E𝑅[𝜏 ]∥2F , (8)

where E𝑅[𝜏 ] = R̄[𝜏 ] − R[𝜏 ] ∀ 𝜏 , 𝑹̄(𝑧) = 𝑸(𝑧)Λ(𝑧)𝑸̃(𝑧),
and 𝐿′ is the length of 𝑬𝑅(𝑧). Note that the length of a
polynomial matrix 𝑹(𝑧) is given by the number of lags in
its corresponding space-time covariance matrix R[𝜏 ]. Define
the paraunitarity (PU) error as

𝜂 = 1
𝑀

∑
𝜏 ∥E𝑄[𝜏 ]− IM∥2F , (9)

where 𝑬𝑄(𝑧) = 𝑸(𝑧)𝑸̃(𝑧), and IM is an 𝑀 ×𝑀 identity
matrix. The paraunitary matrix 𝑸(𝑧) output by a PEVD
algorithm is used in SSP-MUSIC; a useful metric for gauging
the implementation cost of 𝑸(𝑧) is its length, 𝐿𝑄.

B. Simulation Scenarios

In the simulations below, an 𝑀 = 12 element array is
illuminated by six broadband sources active over a frequency
range Ω𝑖 ∈ [0.1𝜋, 0.9𝜋] with 𝜑𝑖 = 0, 𝑖 = 1 . . . 6 and different
angles of arrival 𝜗𝑖 ∈ {±22.5∘;±45∘;±63∘}. The array
signals are corrupted by uncorrelated independent and iden-
tically distributed complex Gaussian noise at 20 dB SNR. To
exclude error sources other than inaccuracies in the subspace
identification, the data is modelled as a sum of closely spaced
sinusoids, with randomised phases, of length 64000 samples,
for whom highly accurate narrowband steering vectors can
be used to simulate the data. Space-time covariance matrix
R[𝜏 ] is estimated for ∣𝜏 ∣ ≤ 20. Broadband steering vectors
𝒂𝜗,𝜑(𝑧) used to scan the noise-only subspace 𝑸𝑛(𝑧) are
based on fractional delay filters constructed from truncated sinc
functions, which can be substantially improved by applying a
tapered window [15].

At every iteration step of each PEVD algorithm in the
simulation scenarios below, the diagonalisation metric defined
in Sec. IV-A is recorded together with the elapsed execution
time. The MSE and paraunitarity metrics defined in (8) and (9),
and the length of the paraunitary matrix 𝑸(𝑧) are recorded
upon algorithm completion.

Simulations are performed within Matlab R2014a under
Ubuntu 16.04 on an MSI GE60-2OE with Intel® CoreTM i7-
4700MQ 2.40GHz× 8 cores and 8GB RAM.

1) Scenario 1 : Results in [6] demonstrate that the di-
agonalisation achieved by the PEVD algorithm paired with
SSP-MUSIC is critically important to the quality of AoA
estimation; i.e., a Λ(𝑧) that is closer to being diagonal results
in a better estimation. In [11], [12], it is shown that DC-
SMD is capable of outperforming SMD [7] — particularly
for parahermitian matrices of large spatial dimension 𝑀 —
in terms of execution time and complexity. This scenario
compares the performance of SSP-MUSIC when paired with
the SBR2 [3], SMD, and DC-SMD algorithms.

During iterations of each PEVD algorithm, a convergence
parameter of 𝜖 = 5× 10−3 and truncation parameters of 𝜇 =
10−6 and 𝜇RST = 10−3 are used. Information regarding the
specific implementation of these parameters within SBR2 and
SMD can be found in their respective papers. DC-SMD is
executed with input parameters 𝐼𝐷 = 250, 𝐼𝐶 = 100, 𝛿 =
10−4, 𝑃 = 4, and 𝑀̂ = 4. SMD and SBR2 are run until their
execution times match the time taken for the completion of
DC-SMD.

2) Scenario 2 : The DC-SMD algorithm has a number
of input parameters that impact convergence. This scenario
examines the effect that changing these parameters has on AoA
estimation accuracy, algorithm speed, MSE, 𝜂, and 𝐿𝑄.

DC-SMD is executed with input parameters 𝐼𝐷 = 250,
𝐼𝐶 = 100, 𝜖 = 5 × 10−3, 𝜇 = 10−6, and 𝜇RST = 10−3.
The DC-SMD threshold parameter is varied over the range
𝛿 ∈ [

10−5, 10−3
]

for 𝑃 = 4 and 𝑀̂ = 4, and the division
parameter is varied over 𝑃 = 2, 3, 4, 6 for 𝑀̂ = 𝑃 and
𝛿 = 5 × 10−4. Execution of DC-SMD is halted when the
diagonalisation level reaches 5log10𝐸norm = −15 dB, to allow
direct comparison of results.

C. Comparison with Existing Methods

Obtained for Scenario 1, the plot of Fig. 3 shows the SSP-
MUSIC performance at a frequency of Ω = 2𝜋/3; from this, it
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Fig. 3: Performance of SSP-MUSIC at Ω = 2𝜋/3 based on
DC-SMD, SBR2, and SMD for a scenario with six independent
broadband sources in simulation scenario 1.

TABLE I: Diagonalisation, 𝐿𝑄, MSE, and 𝜂 for DC-SMD,
SBR2, and SMD in simulation scenario 1.

Algorithm 5 log10 𝐸norm 𝐿𝑄 MSE 𝜂

DC-SMD −17.17 297 1.27× 10−5 1.83× 10−3

SBR2 −8.035 221 7.19× 10−9 4.91× 10−5

SMD −12.87 170 1.15× 10−7 1.94× 10−4

can be observed that DC-SMD offers superior localisation of
the sources. In addition, the results of Fig. 4(a–c) demonstrate
that the DC-SMD algorithm is capable of outperforming SBR2
and SMD at most frequencies when each is paired with SSP-
MUSIC. This is due to the higher diagonalisation that DC-
SMD is able to achieve during the time-limited simulation
scenario. Note that each PEVD algorithm was executed for
approximately 0.75 seconds.

Tab. I compares the metrics attributed to each decompo-
sition for this simulation scenario. It can be observed that
while DC-SMD obtains higher diagonalisation, it also results
in higher paraunitary filter length, MSE, and paraunitarity error
when compared with SBR2 and SMD.

D. Performance Trade-Offs of DC-SMD

For Scenario 2, Fig. 5 demonstrates the impact of varying
the threshold 𝛿 for constant 𝑃 and 𝑀̂ . For 𝛿 ≤ 0.25×10−3, all
metrics remain reasonably constant. For 𝛿 > 0.25×10−3, MSE
increases and 𝜂 decreases with increasing 𝛿, and execution time
decays exponentially with increasing 𝛿. No significant trend
can be seen between 𝛿 and 𝐿𝑄, though higher 𝛿 appears to
result in lower 𝐿𝑄. The plots of Fig. 4(d–f) demonstrate that
increasing 𝛿 results in poorer AoA estimation; this is likely
tied to the increase in MSE observed for large 𝛿. Through
an informed choice of 𝛿, a trade-off between MSE, execution
time, 𝜂, and AoA estimation performance can therefore be
reached.

The results of Fig. 4(g–i) show how AoA estimation
performance is impacted by varying division parameter 𝑃 for
𝑀̂ = 𝑃 and constant 𝛿. Clearly, better performance is observed
for larger 𝑃 . In Fig. 6, it can be seen that MSE decreases
with increasing 𝑃 , while execution time, 𝜂, and 𝐿𝑄 increase.
The lower MSE associated with large 𝑃 again corresponds
to increased AoA estimation performance. When choosing
a value of 𝑃 for implementation of DC-SMD, these results
indicate that a trade-off between MSE, execution time, 𝜂, 𝐿𝑄,
and AoA estimation performance exists. Note that the selection
𝑀̂ = 𝑃 is guaranteed to fulfil the condition of 𝑃 ≤ 𝑀̂
established in Sec. III-B.

V. CONCLUSION

In this paper, we have analysed the performance of a
recently developed PEVD algorithm, DC-SMD, in a broadband

AoA estimation scenario. Simulation results have demon-
strated that when paired with the SSP-MUSIC broadband AoA
estimation algorithm, DC-SMD offers significant performance
gains over traditional PEVD algorithms at the expense of
increased paraunitary filter length and decomposition error. In
addition, an investigation into the performance trade-offs of
DC-SMD has shown that through careful choice of algorithm
input parameters 𝛿, 𝑃 , and 𝑀̂ , a balance can be obtained
between decomposition MSE, algorithm execution time, filter
paraunitarity, paraunitary filter length, and AoA estimation per-
formance. The presence of these trade-offs is important for the
implementation of DC-SMD in other broadband multichannel
applications.
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Fig. 4: Performance of SSP-MUSIC based on (a) SBR2, (b) SMD, and (c) DC-SMD for a scenario with six
independent broadband sources in simulation scenario 1. Performance of SSP-MUSIC based on DC-SMD with (d)
𝛿 = 10−3, (e) 𝛿 = 5 × 10−4, (f) 𝛿 = 10−4, (g) 𝑃 = 2 and 𝑀̂ = 2, (h) 𝑃 = 4 and 𝑀̂ = 4, and (i) 𝑃 = 6 and
𝑀̂ = 6 for simulation scenario 2.
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Fig. 5: (a) MSE, (b) execution time, (c) 𝜂, and (d)
𝐿𝑄 versus 𝛿 for DC-SMD.
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Fig. 6: (a) MSE, (b) time, (c) 𝜂, and (d) 𝐿𝑄 versus
𝑃 for DC-SMD.


