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Abstract—Nonlinearity in Raman spectral mixtures caused by
wavenumber shifts, has been investigated in this paper. The
spectral shifts are mainly caused by the existence of multiple
chemicals in the mixtures, with complex molecular interactions,
which can change the spectral features of each constituent. While
such non-linear behaviour may be negligible in some mixtures,
it may lead to incorrect identification of chemicals in some
instances. We investigate some real spectra and demonstrate
the nature of such nonlinearity in Raman spectra. We then
mathematically formulate such spectral behaviour and present
an approach to compensate the nonlinearity artifacts. The
nonlinearity has been modelled as a smooth transition in a
parametric space, which can be locally modelled using first
order approximation. Such a first order approximation can
be translated to some augmented spectral libraries to be used
with a linear generative model. A convex sparse approximation
program, with nonlinearity considerations, has finally been intro-
duced to decompose the spectral mixtures. Such decomposition
has been used for chemical fingerprinting and quantification. The
effect of new approach has been demonstrated with some real
and synthetic spectra.

Index Terms—Raman Spectral Decomposition, Spectral
Wavenumber Shifts, Nonlinear Sparse Decomposition, First
Order Approximation and parametric modelling of functional
spaces.

I. INTRODUCTION

Spectral processing for chemical identification is a popu-
lar technique with numerous applications in Pharmaceutical,
Defence, Oil and Gas industries. The identification of an
unknown chemical in a mixture would be more challenging,
when its concentration is low and it has small signature
compared to other components of the mixture. Some decom-
position techniques have been proposed to separate the spectra
to the elementary components to be able to characterise the
mixture [1], [2]. The main idea is to use a given set of
reference spectra, as the building blocks. Such a collection
of reference spectra is called a library and it is usually
digitised. The library can be saved as the columns of a matrix
M ∈ ℝ

𝑑×𝑁 , where 𝑑 is the number of different wavenumbers
and 𝑁 is the number of spectra in the library. Let the measured
spectral mixture be y ∈ ℝ

𝑑. An approach to describe y with
the library elements is to use a generative model as follows1,

1Here, we assume that the library of spectra is complete and has all the
elementary spectra. If there is an unknown element, we need to consider
separating the non-representable residual [3], which is out of scope of this
paper.

y = 𝜙(M,𝜶) + b+ 𝝎 (1)

where function 𝜙 is generally a non-linear mixing model,
𝜶 = [𝛼𝑖]𝑖=1:𝑁 ∈ ℝ

𝑁
+ is a vector with nonnegative values,

presenting the contributions of the spectra, 𝒃 ∈ ℝ
𝑁
+ is the

deterministic artifact and 𝝎 ∈ ℝ
𝑁 is the measurement noise.

The non-linearity of 𝜙 may be reflected in deviating the
library elements from the original location in ℝ

𝑑 to some
neighbourhood, which causes the coefficients 𝜶 changing in
the actual representation. In this work, we only consider the
effect of nonlinearity on the library elements, which is due
to spectral shifts of Raman peaks. Such spectral wavenumber
shifts may cause incorrect selection of more library spectra to
compensate the shift, or quantification.

If the deterministic noise is morphologically different to the
spectra, it can be separated/subtracted using some correction
techniques [4]–[6]. In the most popular case, the generative
model is approximately linear in the form of [7]:

y = M𝜶+ 𝝎

=

𝑁∑
𝑖=1

𝛼𝑖m𝑖 + 𝝎.
(2)

The task is now how robustly decompose y, using elements
of M, and find an 𝜶 with only few elements. The sparsity
of the decomposition is related to the fact that most mixtures
of interests only have a few chemicals. A fast greedy sparse
approximation based algorithm has been proposed in [7] to
decompose the spectra with non-negative weighted-sum of
pure spectra in M.

Raman spectral mixtures are not always an exact weighted
sum of library spectra. With an example, it has been demon-
strated here that the spectra may have some wavenumber shifts
in the mixtures. We chose a mixture of simple chemicals where
one chemical has sharp Raman features and the other has broad
and weak Raman features, which would be cancelled using
baseline correction methods. The baseline corrected spectra of
the mixture has been shown in figure 1 with the blue line. The
spectra can be approximately represented using the constituent
spectra shown in figure 1 with the red line. The original peak
has been shifted for 12 𝑐𝑚−1, which is better demonstrated in
the zoomed area. This behaviour is a well-known behaviour
and the amount of shift is related to the concentration of each
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Fig. 1. The wavenumber shift artifact, a) spectral mixture and b)
approximated spectra with reference spectra.
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Fig. 2. The spectrum with wavenumber shift (blue) and the error after
projecting out the corresponding reference library element (red)

chemical in the mixture [8]. To understand the error due to
linear representations, such a representation has been plotted
in figure 2 in red. The oscillating behaviour of the error around
1500 𝑐𝑚−1 is directly related to the spectral shift.

The reduction of such an error can naturally helps us in the
complex mixtures deconvolution and provides better quantifi-
cation. [9] treats the shift alignment as a complex discrete
optimisation problem and proposes to solve the problem with
the genetic algorithm. While this may be useful in an offline
spectra processing, for large size problem and computationally
restricted spectroscopy, this method is not suitable. [10] has a
different approach and uses a local variational approximation
for the shifts and considers within the cell resolution shifts,
i.e. very small shifts in modern Raman spectroscopy. As this
approach does not incorporate a prior knowledge about the
spectra, e.g. sparsity, and only compensates small local shifts,
it has a limited application in Raman spectroscopy.

In this paper we introduce a parametric model for the
spectral peaks, which enables us to mathematically describe
the behaviour of local peak shifts using a modified first order
approximation. A robust sparse spectral decomposition is also
introduced to incorporate such parametric model, which will
be then solved using a simple convex program.

Fig. 3. Three dimensional representation of the shift in the tangent
space of a unit sphere at a reference spectral vector.

II. SPECTRAL SHIFTS AND NONLINEAR SIGNAL

MODELLING

Let the mixture spectrum y ∈ ℝ
𝑑
+ and the library spectra

m𝑖 ∈ ℝ
𝑑
+, ∀𝑖, 1 ≤ 𝑖 ≤ 𝑁 be baseline corrected and no

coefficient non-linearity be in the generative model (1). The
vectors y and m𝑖’s live in a single orthant out of 2𝑑 orthants.
m𝑖’s also locate on the surface of unit sphere, see figure 3.
As a result of spectral shift, each 𝑚𝑖 can rotate within a small
neighbourhood. Let the local admissible set around m𝑖 be
called ℳ𝑖 and each two ℳ𝑖 and ℳ𝑗 , for 𝑖 ∕= 𝑗, be disjoint,
i.e.ℳ𝑖∩ℳ𝑗 = ∅. We can then rewrite the baseline corrected
formulation of (1) as follows,

y = 𝜙(M,𝜶) + 𝝎

=
∑
𝑖

𝝁𝑖∈ℳ

𝛼𝑖𝝁𝑖 + 𝝎, (3)

where 𝝁𝑖 is a signal in ℳ𝑖 and ℳ = ∪𝑁𝑖=1ℳ𝑖. Let
𝒇 𝑖(Δ) : ℝ

𝑟 → ℳ𝑖 be the function mapping a Euclidean
space dimension 𝑟 to ℳ𝑖, with the following properties for
each 𝑖, 1 ≤ 𝑖 ≤ 𝑁 ,

𝝁𝑖 = 𝒇 𝑖(Δ),

m𝑖 = 𝒇 𝑖(0).
(4)

𝝁𝑖 can then be locally approximated using first order
Taylor’s expansion of continuous 𝑓𝑖(Δ) around a point Δ0

as follows,

𝝁𝑖 ≈ 𝒇 𝑖(Δ0) + (Δ−Δ0)
∂

∂Δ
𝒇 𝑖(Δ0). (5)

As we know 𝒇 𝑖(Δ0) = m𝑖 at Δ0 = 0, it is usually easier to
approximate 𝝁𝑖’s around zero as follows,

𝝁𝑖 ≈m𝑖 +Δ
∂

∂Δ
𝒇 𝑖(0). (6)

This approximation can be loose for large Δ. We later
show how we can have a better approximation of 𝝁𝑖 using
the expansion around Δ/2.



A. Spectral Mixtures with Wavenumber Shifts

Raman spectra generally consists of some large peaks and
noise type spectra, see for example the spectra in figure 1.
If we simplify the structure of peaks and represent each
peak, or the peak which mainly have spectral shifts, with
some (differentiable) kernel functions 𝒈𝜏 (𝜈), where 𝜈 is the
wavenumber and 𝜏 is the location of the peak. In this setting,
we can write a spectrum as follows,

𝒇 𝑖(Δ) = m𝑖 +
∑
𝜏∈𝑇𝑖

𝒈𝜏 (𝜈 −Δ𝜏 ), (7)

where 𝑚𝑖, 𝑇𝑖 and Δ = {Δ𝜏}𝜏∈𝑇𝑖
are respectively the

residual spectrum, i.e. spectrum without peaks, the locations
of peaks and the set of all shifts. While 𝑇𝑖 is normally a non-
empty set for Raman spectra, Δ is set to zero for the reference
spectra in the library. Δ is non-zero in the spectral mixtures
with wavenumber shifts.

Model (7) can be jointly used with the generative signal
model (3), subject to differentiability of the functions 𝒈𝜏

w.r.t. Δ𝜏 . When the Raman spectral peaks are approximately
symmetric, a Gaussian kernel can be a reasonable function
to model such peaks. Let a Gaussian kernel 𝒈𝜏 (𝜈) :=
𝛽𝜎 exp(−(𝜈 − 𝜏)2/2𝜎2) be fitted to the spectral peaks, where
𝛽𝜎 = 1/𝜎

√
2𝜋 is the normalisation factor and 𝜎 is the standard

deviation.
The traditional first order approximation (5) is accurate,

when the deviation Δ0 is small. We here introduce a new
approximation which is practically more accurate for linear
representation of y. The idea is to approximate 𝒇 𝑖(Δ0), where
Δ0 is the desired shift, around Δ0/2, to reduce the approxi-
mation error. Using the Taylor’s series (5) with Δ0 ←Δ0/2,
we find the following approximation for 𝝁𝑖 = 𝒇 𝑖(Δ),

𝒇 𝑖(Δ) ≈ 𝒇 𝑖(Δ0/2) + (Δ−Δ0/2)
∂

∂Δ
𝒇 𝑖(Δ0/2). (8)

For the spectral shift model, we can drive the following
expansion,

𝒇 𝑖(Δ) ≈ 𝒇 𝑖(
Δ0

2
)+

∑
𝜏∈𝑇𝑖

(Δ𝜏 −Δ0𝜏

2
)
∂

∂Δ
𝒈𝜏 (𝜈−Δ)∣Δ=Δ0𝜏/2

(9)
where Δ0𝜏 is the element of Δ0 relating to centre of 𝒈𝜏 , 𝜏 .
We now evaluate 𝒇 𝑖(Δ) on 0 and Δ0,

𝒇 𝑖(0) ≈ 𝒇 𝑖(
Δ0

2
)−

∑
𝜏∈𝑇𝑖

Δ0𝜏

2

∂

∂Δ
𝒈𝜏 (𝜈 −Δ)∣Δ=Δ0𝜏/2

𝒇 𝑖(Δ0) ≈ 𝒇 𝑖(
Δ0

2
) +

∑
𝜏∈𝑇𝑖

Δ0𝜏

2

∂

∂Δ
𝒈𝜏 (𝜈 −Δ)∣Δ=Δ0𝜏/2.

(10)

Replacing 𝒇 𝑖(
Δ0

2 ) in the second approximation with its value
found from the first and considering the Gaussian kernel, we
derive an explicit expression for 𝝁𝑖 as follows,

𝝁𝑖 = 𝒇 𝑖(Δ0)

≈ 𝒇 𝑖(0) +
∑
𝜏∈𝑇𝑖

Δ0𝜏
∂

∂Δ
𝒈𝜏 (𝜈 −Δ)∣Δ=Δ0𝜏/2

= m𝑖 −
∑
𝜏∈𝑇𝑖

𝛽𝜎𝜏

𝜎2
𝜏

Δ0𝜏
∂

∂Δ
𝒈𝜏 (𝜈 −Δ)∣Δ=Δ0𝜏/2.

(11)

For the Gaussian kernels, this approximation can be read as
the following,

𝝁𝑖 ≈m𝑖 −
∑
𝜏∈𝑇𝑖

Δ0𝜏𝒈
′(𝜈 − 𝜏 − Δ0𝜏

2
, 𝜎𝜏 ). (12)

By comparing (12) and traditional Taylor’s approximation
around zero, we realise the difference which is on the extra
shift of Δ0𝜏

2 in the new approximation. This term makes the
approximation significantly more accurate for large spectral
shifts Δ. This fact has been demonstrated in figure 4, where
the approximation based on (12) has been plotted with dash-
dotted green curves.

The spectral mixture y can now be represented as follows,

y ≈
∑
𝑖

𝛼𝑖m𝑖−
∑
𝑖

∑
𝜏∈𝑇𝑖

𝛼𝑖Δ0𝜏𝒈
′(𝜈−𝜏−Δ0𝜏

2
, 𝜎𝜏 )+𝝎. (13)

This approximation is ”not” a linear function of shift values
Δ0, which can be potentially a problem in linear sparse
approximations. The approximation can be discretised w.r.t.
Δ0 and the model becomes linear, considering possible shifts.
Let the possible shifts Δ0𝜏 , ∀𝜏 be noted by 𝒟 = {𝑗𝛿}𝑗∈𝒥 ,
where 𝒥 is a signed or unsigned set of integers including
0, e.g. 𝒥 = {−2,−1, 0, 1, 2}. We can then rewrite (13) as
follows,

y ≈
∑
𝑖

𝛼𝑖m𝑖−
∑
𝑖

∑
𝜏∈𝑇𝑖

𝛼𝑖

∑
𝑗∈𝒥

𝜃𝑖,𝑗𝑗𝛿𝒈
′(𝜈−𝜏− 𝑗𝛿

2
, 𝜎𝜏 )+𝝎,

(14)
where 𝜃𝑖,𝑗 = {0, 1} and ∀𝑖,∑𝑗∈𝒥 𝜃𝑖,𝑗 = 1. If the constraint
on 𝜃𝑖,𝑗 is ignored, we can write y as follows,

y ≈
∑
𝑖

𝛼𝑖m𝑖 −
∑
𝑖

∑
𝜏∈𝑇𝑖

∑
𝑗∈𝒥

𝛾𝑖,𝑗,𝜏𝒈
′(𝜈 − 𝜏 − 𝑗𝛿

2
, 𝜎𝜏 ) + 𝝎,

(15)
where 𝛾𝑖,𝑗,𝜏 = 𝑗𝛼𝑖𝜃𝑖,𝑗𝛿. The generative model for y is now
a linear model based on 𝛼𝑖 and 𝛾𝑖,𝑗,𝜏 . By relaxation of the
constraint on 𝜃𝑖,𝑗 , we may find some representations which
have non-vanishing 𝛾𝑖,𝑗,𝜏 ’s. To indirectly encourage 𝛾𝑖,𝑗,𝜏
become zero, we need some sparsity enforcing mechanism,
which is the subject of next section.

III. ROBUST SPARSE DECOMPOSITION WITH AUGMENTED

LIBRARY

Most mixture of interests are composed of few chemicals,
which justifies sparsity of the coefficient vector [3]. The
modified models for y in (15) have some extra terms to
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compensate the wavenumber shifts. As we briefly explained,
we also need to have sparse vectors 𝛾𝑖,𝑗,𝜏 at most with
the number of shiftable peaks for non-vanishing element 𝛼𝑖,
i.e.

∑
∀𝑖,𝛼𝑖 ∕=0 ∣𝑇𝑖∣, where ∣𝑇𝑖∣ is the cardinality of set 𝑇𝑖. It

would be easier to relax this strict sparsity condition on 𝛾𝑖,𝜏
and 𝛾𝑖,𝑗,𝜏 and apply a general sparsity penalty on the linear
representations. In this setting, the aim is to sparsely represent
y, with the following model,

y = M𝜶+A𝜸 + 𝝎

=
[
M A

]
︸ ︷︷ ︸

M+

[
𝜶
𝜸

]
︸ ︷︷ ︸

𝜶+

+ 𝝎 (16)

where A ∈ ℝ
𝑑×𝑀 is the matrix related to the discretised linear

functional𝒈′(𝜈 − 𝜏 − 𝑗𝛿
2 , 𝜎𝛿), and 𝜶+ ∈ ℝ

𝑁+𝑀
+ . M+ is the

augmented library with some extra functions modelling the
spectral shifts. Such a linear generative model can be used
by various sparse decomposition methods, including iterative
optimisation, greedy and iterative reweighting methods. The
convex formulation for finding sparse vectors is very popular
as we practically find the global solution in a polynomial
time. This formulation is based on using a sparsity promoting
penalty like ℓ1 and solve a program which assures the fidelity
of the representation, as follows:

𝜶+∗ = argmin𝜶+∈ℝ≥0
∥y −M+𝜶+∥22 + 𝜆∥𝜶+∥1, (17)

where 𝜆 is the Lagrange parameter which controls the noise
level of the representation. Various algorithms have been
presented to efficiently solve (17), including optimal first order
methods, also called Nesterov’s methods [11], and alternative
direction of multipliers methods (ADMM), see [12] for a
review.

IV. SIMULATIONS

The sparse decomposition of Raman spectra, with a li-
brary of 29 spectra, has been used to demonstrate the ca-
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pabilities of the proposed robust method in improving the
spectral fingerprinting performances. The maximum shift for
formulation (15) has set to be 30 wavenumbers (wn) and
𝛿 = 5. For a comprehensive comparison between the robust
and standard sparse spectral decomposition methods, we syn-
thetically generated spectra with local spectral shifts, using
real spectral measurements. A real spectral pair was selected
in our experiments, which are prone to spectral shifts. The
peak of one spectrum was separated from the smooth part,
shifted and added in a new wavenumber location. We can
then synthetically generate arbitrary shifts in mixtures with
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desired contributions of constituents. We generated a shifted
spectra with 7 and 17 wavenumber spectral shifts, and a
mixture by combining %85 / %15 ratio of the spectra. We
have demonstrated the effect of shift compensation methods
by showing the spectra and residual errors in figures 5 and 6.
The mixture and best fitted spectra, using original pure spectral
library, have been plotted in 5.a and, the zoomed version in,
5.b. The spectral shifts are clear and the fitted spectra using
augmented libraries are plotted in 5.c and 5.d for small shift
7, and 6.a and 6.b for large shift 17. While the advantage of
using latter technique, which is more reliable for large shifts,
is clear in these plots, we have shown the representation errors
in 5.e and 6.c.

The robust sparse spectral decomposition for spectral fin-
gerprinting has been challenged in the next experiment. We
altered spectral shifts and applied sparse decomposition with
original and two augmented libraries. The correct fingerprint-
ing has been indicated with value 1 in figure 7. It is clearly
demonstrated in this experiment that the approximation around
Δ0/2 gives a more robust fingerprinting, with the expense
of using a larger augmented library, which is caused by the
discretisation of the shift parameter.

V. CONCLUSION

We presented a new method for robust sparse spectral
decompositions, and the application to chemical fingerprinting.
The new approach is based on allowing the pure chemical
spectra in the reference library to slightly move on the surface
of some spheres and model the rotation with first order Tay-
lor’s series around a middle point. This technique has proposed
to increase the robustness of the sparse chemical fingerprinting
[7] to the local spectral shifts. Such a robustness to the local
spectral shifts can be crucial for fingerprinting of chemicals
with small trace, which is of interest in defence, security and
quality control. The simulation results demonstrate that the
proposed technique can be used for Raman spectroscopy with
a wide range of local spectral shifts nonlinearities.

We had access to a few spectral mixtures with nonlin-
ear artefacts. However, we synthetically generated spectral
mixtures to evaluate the algorithms. Our experiments with
real mixtures confirm the results presented here. A more
comprehensive study using a richer set of real mixtures has
been left for the future work. We also incorporated a small
library of spectra and allowed shifts in a single spectral pair.

Having a larger augmented library will affect fingerprinting
results, due to higher library coherence. Such a study was
also left for the future work.
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