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Abstract-In this work, we "ocus on the detection of ma­
noeuvring low signal to noise ratio (SNR) objects in multiple 
collaborating radars. Collaboration involves having the knowl­
edge of the locations 0" the transmitters and their transmission 
characteristics up to a synchronisation term which has to be 
estimated during the operation. We propose a local processing 
algorithm, which performs simultaneous trajectory estimation 
and long time integration 0" pulse returns in both the local 
channel and the remote channels. The synchronisation of the 
remote channels is achieved by simultaneously diverting beams 
towards both the tested point of detection and the transmitters. 
Detection is made by using a Neyman-Pearson test. Overall, this 
scheme enables us to exploit a statistical MIMO effect for the 
objects in the field of view and integrate multiple pulse returns 
while taking into account the object trajectory leading to the 
capability 0" detecting low SNR and manoeuvring objects. We 
demonstrate the efficacy of our approach through simulations. 

I. INTRODUCTlON 

In active sensing, detection of manoeuvring objects with 
low reflectivity is achallenging task and a highly desired ca­
pability. Radars emit modulated pulses towards a surveillance 
region, and, test the hypothesis that the received signal con­
tains reflected versions of the transmitted waveforms against 
the noise only signal hypothesis. The characteristics of these 
reflections are determined by the complex reflection coefficient 
and the object kinematics such as location (i.e., time of flight) 
and velocity (i.e., doppler shift). The decision on the presence 
of objects is made by searching the reflections in sampled 
versions of the received signal after matched filtering with the 
probing waveform [1, Chp.l]. Equivalently, the range-bearing­
doppler space is uniformly separated into bins. 

In order to achieve a plausible detection performance in the 
case of objects with low reflectivity, it is necessary to sum 
the reflected energy across many pulse returns because the 
SNR of each of these reflections within the received signal 
is low. This is often referred to as pulse integration, and, 
longer the integration time high er the probability of detection 
for a given false alarm rate, in principle. For a single radar, 
the best achievable result is obtained by coherent integration 
during a coherent processing interval (CPI) and non-coherent 
integration across consecutive CPIs (see, e.g., [1, Chp.6]). 
Conventionally, integration is performed across time in the 
same range-bearing-doppler bin without taking into account 
the possibility of object movements across the resolution bins. 
When the object is manoeuvring, long time integration is 
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Fig. 1: Illustration of the problem scenario: M radars with 
omni-directional transmitters, ULA receivers and a low SNR 
object located at [x, yV with velocity [x, y]T . 

possible only by taking into account the trajectory in the range­
bearing-doppler space. 

This can be done using matched filters that are tuned to 
aselection of trajectories [2], however, the number of filters 
required easily becomes excessive with increasing integration 
time. An alternative is to simultaneously estimate the object 
trajectory and select data sampies for pulse integration accord­
ingly. Trajectory estimation using the outputs of the matched 
filter tuned to the probing waveform is often referred to as 
track-before-detect (see, e.g., [3], [4]). 

These algorithms often use the modulus of the complex 
data sampled with a pulse-width period and assume that the 
statistics of the reflection coefficient is known. It is desirable 
to estimate this quantity, however, this requires more sampIes 
than one can collect at this sampling rate within a coherent 
processing interval (CPI) [5]. Moreover, in [6], it is argued 
that taking the phase of the complex reflection coefficient into 
account improves the detection performance. [7] proposes an 
algorithm, which uses both the modulus and the phase of the 
complex data, collected with a sampling rate much higher than 
the aforementioned rate. In [8], we use a phased array receiver 
structure which enables us to use the complex data sampled 
in a pulse-width period for simultaneous trajectory estimation 
and long time coherent integration. 

In this work, we consider multiple radars with phased 
array receivers and omni-directional transmitters which emit 
mutually orthogonal waveforms (Fig. 1). This structure is 
advantageous in that, first, it enables us to exploit multi­
ple reflection channels at each receiver wh ich is sometimes 
referred to as the statistical multiple-input multiple-output 
(MIMO) effect. Second, the phased array receivers enables 
us to estimate the complex reflection coefficient associated 
with each transmitter 's channel as weil as the time reference 
shift for synchronisation of the local receivers with the remote 
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Fig. 2: Geometry of the problem illustrated with 2 radars and 
a low SNR object. 

transmitters. 
In particular, we use a maximum likelihood approach for 

estimating the complex reftection coefficients of reftected sig­
nals emitted by co-located and distributed transmitters. Then, 
these values are used in the likelihood for trajectory estimation, 
which effectively captures the radar ambiguity function of the 
local and remote channels. The estimated trajectory allows 
us to continue integrating the pulse energy over a long time 
period where coherent processing for the co-located receiver 
takes pi ace within a CPI followed by non-coherent integration 
across consecutive CPIs. This approach results in an integrated 
value close to the best achievable using the true trajectory and 
the perfect synchronisation across radars. 

Section 11 gives details of the scenario and the problem 
definition. In Section III, we introduce the proposed algorithm 
which involves trajectory estimation, and, derive the maxi­
mum !ikelihood estimator for the reftection coefficient that 
is required for tracking. In Section IV, we demonstrate the 
proposed algorithm in an example scenario, and, conclude in 
Section V. 

11. PROBLEM STATEMENT 

We consider a scenario in which M radars are dispersed 
in the 2D Cartesian plane, and, emit N modulated pulses 
separated by a pulse repetition interval of T towards a surveil­
lance region. For simp!icity in exposition but without loss of 
generality, we focus on the case of M = 2 radars and illustrate 
the geometry of the problem in Fig 2. Here, radars A and B 
have omni-directional transmitters. The waveforms used are 
known at each receiver, however, there is an unknown time 
reference shift between receiver A and transmitter B, and, 
vice versa. The ULA receivers collect reftected versions of 
the transmitted pulses as weil as the direct signals emitted 
by the transmitters. For example, receiver A (red dots) co­
located with transmitter A (red triangle) has (i) a co-located 
(mono-static) channel (red !ine), (ii) aseparated (reftected 
bi-static) channel (green !ine), and, (iii) a direct (bi-static) 
channel (green dashed !ine). The reftections are characterised 
by the complex reftection coefficient and the reftector's (black 
dot) kinematic state X = [x,y , x , y]T, where [x , y]T signifies 
the location, [x , y]T signifies the velocity, and (.)T denotes 
vector transpose. Next, we give the signal models for these 
channels at receiver A. 

A. Signal models 

Given the reftector' s kinematic state X , the corresponding 
signal is characterised by combining a spatial steering vector 
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ss(B) and a temporal vector St("Wd), where B is the angle of 
arrival, 1 is the time of ftight, and Wd is the doppler angular 
frequency in rad/so In this scenario, the times of ftight for the 
aforementioned channels at receiver A are found as 

2Ra Ra + Rb D 
la = -- , Ib = , and 1 d = -. (1) 

c c c 
Note that these quantities are related to the range component 
of the reftector in local polar coordinate systems in Fig. 2. 

The values for the angle of arrival are also found as 

Ba = tan-1(~) and Bd = tan- 1(~:), (2) 

where Ba is the angle of arrival for the co-Iocated and the 
separated channels, and Bd is the angle of arrival for the direct 
channel. 

The doppler frequencies of the co-Iocated and the separated 
channels are given by 

47r 
Wda = Ac (x cos Ba + Y sin Ba) and 

27r 
Wdb = Ac (x(cosBa + cosBb) + y(sinBa + sinBb)) , 

(3) 

respectively. Here, Bb is the angle shown in Fig. 2 given by 

Bb = tan - 1 (Y-YI» , and, Ac is the carrier wavelength. 
X - X b 

The spatial steering vector Ss (B) is specified by the geom­
etry of the ULA, i.e., 

ss(B) = [1, exp (-jWc~sinB), ... , 

exp ( - jwc(L - 1)~ sinB) r, (4) 

where d is the internal element spacing, L is the number of 
elements in the array, and Wc = 27r Je is the carrier angular 
frequency. 

The temporal vector with N pulses is found as 

St (" Wd) = exp (- jwcl) x 

[1, exp (jwdT ) , ... , exp (jwd(N _ I)T) ] T, 
(5) 

where T is the pulse repetition interval (PRI), i.e., the time 
period between N pulses. 

The forward signal models, hence, are given by combining 
these spatial and temporal vectors as 

Sa (Ba"a,WdJ = ss(Ba) ® St ('a,WdJ, 

Sb (Ba ,'b ,Wd l> ,l:,.t) = ss(Ba) ® Sd'b + l:,.t,Wd b ) , and (6) 

sd(Bd, Id, l:,.t) = ss(Bd) ® St ('d + l:,.t, 0) , 

where sa(.) E rcLNx1 and Sb(.) E rcLNx1 are received 
in the co-located and the separated channels respectively, 
and, Sd(') E rcLN x1 is the signal model for the direct 
channel. Here, l:,.t denotes the unknown time shift (i.e., the 
synchronisation term), and ® denotes the Kronecker product 
operator. 

The reftections in the received signal are searched by 
matched filtering. In particular, we use a bank of two orthogo­
nal filters which match the waveforms used by two transmitters 
(wh ich, in general, would be M filters [9, Chp.3]). This filter 

0201 



output is sampled in fast time which uniformly divides range 
space into range bins of width flr. Doppler space is discretised 
with flw steps. Bearing space is also sampled by flB steps. As 
a result, the data vectors in a CPI under the object existence 
hypothesis at i = [i 1 , i 2 , i3Fh and j = [j1 , j2 , j3 ]th bearing­
range and doppler bins of the co-Iocated and the separated 
channels are found as 

[ Z(i) ] _ [ aaSa(i1flB,i2flr , i3flwd) ] 
Y(j , flt) - absb(j1flB , j2flr , j3flwd, flt) 

[nz (i 1flB, i2flr, i3flWd)] 
+ ny (j1 flB , j2flr, j3flwd) 

(7) 

where Z(.) and Y(.) are the measurements for the co-Iocated 
and the separated channels, respectively, and, aa and ab are 
unknown complex reftection coefficients for these channels. 
Here, n z and n y are independent complex Gaussian noise 
variables with all zero mean and covariances of ~z and ~y, 
respectiveli· 

Now, we evaluate the sufficient statistics in the separated 
channel by time shifting the measurement Y(j, flt) in (7). 
This version of the data vector is given by 

Y(j) = Y(j, flt) 8 Sb (- Ba, - rb , -Wd b , flt = 0) 
(8) 

= abSb(flt) + ny(j), 

where j = [j1 , j2, j3 ] corresponds to the bearing-range and 
doppler bin associated with (Ba,rb ,wdb ) of X, sb(flt) ~ 
Sb(O , 0, 0, flt) with the Sb on the right hand side given in (6), 
and 8 denotes the Hadamard product operator. 

The data vector for the separated channel is related to the 
signal in the direct channel. To see this, let us consider the 
data vector for the direct channel, wh ich is given by 

D(l , flt) = VESd(hflB , 12flr, flt) + nd(llflB, 12flr), (9) 

where I = [h, 12 ] corresponds to the bearing-range bin 
associated with (Bd , rd) as the location of transmitter B, E 
is a known factor representing the energy of the signal at 
the receiver front-end, and nd is a complex Gaussian noise 
variable with zero mean and covariance ~d. 

Similarly, we use a time shif'ted version of this data vector 
for evaluating the sufficient statistics in the direct channel. An 
amount of time shifting the measurement in (9) is specified 
by the location of transmitter B, i.e., 

D(l) = D(l, flt) 8 Sd( - Bd, - rd, flt = 0) 

= VESd(flt) + nd(l), 

where sd(flt) ~ Sd(O, 0, flt) in (6). 

(10) 

Hence, the combined data vectors to be processed at the k th 

CPI are defined as 

[Zk(i)] = { [a~,:,::~~~(~~)] + [~:::g~~~], H1, 

Yk(j) [n Z' k(iflX)] 
ny ,k(jflX) , Ho , 

(11) 

I For properties of general complex Gaussian covariances, see [10, Chp.7]. 
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where flX = (flB , flr, flWd) corresponds to the bearing­
range and doppler bin width, H 1 is the hypothesis that an 
object exists in the it h and lh bin, and Ho is the noise only 
signal hypothesis. 

B. Problem definition 

Our aim is to detect an object moving along the trajectory 
X 1:K . We use a Neyman-Pearson test [11, Chp.3] for this 
purpose. The inputs to this test are the set of complex mea­

surement vectors {Zk(ik) , Yk(jk)} :=1 in (11), where ik and 
jk correspond to the range-bearing and doppler bins associated 
with the object state X 1:K . 

Given the object state X l: K , the likelihood ratio test is found 
as 

L(Zl:K(il:K), Yl:K(jl:K) IXl :K , aa ,l:K , ab,l:K , flt) = 

rrK l(Zk(ik),Yk(jk) IXk,aa ,k, ab,k,flt,H = Hd I:§; Ti 
k= l I(Zk(ik) , Yk(jk) IH = Ho) lio K, 

(12) 

where the ratio L(.) is used for the detection test, the Iike­
lihood 1(. IH = Hd is for the object existence hypothesis 
H = Hl , the Iikelihood l(. IH = Ho) is for the noise only 
signal hypothesis H = Ho, and TK denotes the detection 
threshold for K steps of integration. 

The numerator and the denominator at the k th CPI in (12) 
-considering (11) - are found as 

I(Zk(ik) , Yk(jk) IX k, aa ,k, ab,k , flt , H = Hl ) = 

7r2LN det(~z )det(~y) exp (- Z~(ik)H~;l Z~(ik)) 
x exp (-Y~(jk)H~;lY~(jk)) ' (13) 

1 
I(Zk( ik) , Yk(jk) IH = Ho) = 7r2LN det(~ z ) det(~y) x 

exp ( -Zk(ik)H~; l Zk(ik) - Yk(jk)H~;lYk(jk))' (14) 

Here, Z~(ik) = Zk(ik) - aa,kSa,k(Xk), Y~(jk) = Yk(jk) -
ab,ksb ,k(flt), and H denotes the Hermitian transpose. 

Now, the problem we consider is simuItaneous estimation 
of the object trajectory X l:K and evaluation of the likelihood 
ratio test in (12) by evaluating (13}-(14) for k = 1,2, ... , K. 
This also requires the estimation of the complex reftection 
coefficients and flt wh ich is explained in the rest of this 
article. 

III. SIMULTANEOUS TRACKING AND LONG TIME 

INTEGRATION 

A. Trajectory estimation using coherent returns 

Let us consider estimation of the object trajectory Xl: K 

using coherent returns (i.e., returns during a CPI). We use 
a Markov state space model and perform Bayesian recursive 
filtering given by the prediction and the update recursion: 

p(Xk IZ 1:k- l , Y1:k - d = 

/ p(Xk IX k- dp(Xk - l IZ 1:k- l , Y1:k - d dXk- l 

P(Xk IZ 1:k, Y1:k) cx. 

P(Zk, Yk lXk, aa ,k, ab,k, flt)P(Xk IZ 1:k- l , Y1:k - d , 
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where p(Xk IZu, YU) is the posterior probability density 
function of the object state, p(Xk IXk- I) is the Markov 
transition density of Xk, and P(Zk,Yk IXk,CXa ,k,CXb,k,t:,.t) is 
the measurement likelihood. 

The measurement Iikelihood in (15) can be factorised as 

P(Zk, Yk lXk, CXa,k, CXb,k, t:,.t) 

= l(Zk(ik), Yk(jk) IXk , CXa ,k, CXb,k , t:,.t , H = H1 ) 

rr l(Zk(nI), Yk(n2) IH = Ho) (16) 
nl#ik ,n2#jk 

cx: L(Zk(ik) , Yk(jk) IXk , CXa ,k, CXb ,k, t:,.t) , 

where the last line follows after multiplying both sides of the 
equation with l(Zk(ik), Yk(jk) IH = Ho). As a result, (15) 
can be rewritten as 

P(Xk IZu (iu) , Yu(ju)) 

cx: L(Zk(ik), Yk(jk) IXk, CXa ,k, CXb,k, t:,.t) (17) 

X p(Xk IZU- l (iu- I), YU- l (ju- I)). 

The Markov transition density is selected as 

p(Xk IXk - I) = N(Xk ; FXk- l,~) 

Xk = FXk- 1 + bk- 1, F = [gb~%] , 
00 0 1 

(18) 

where bk - 1 is process noise (modelling unknown manoeu­
vres), which is zero-mean Gaussian with a known covariance 
~, F is the object dynamic matrix, and t:,. denotes the time 
interval between two consecutive CPIs. 

We use a sequential Monte Carlo (SMC) realisation of 
Bayesian recursive filtering known as the particIe filter [12]. 
In particular, we use the bootstrap filtering approach. Given 

a set of particles {XL l ' (L 1 } representing the poste-
p= l 

rior density at k - 1 state in (15), we obtain P particIes 

{Xf,(Ll}~=l with Xf rv p(- IXLl) sampled from the 

Markov transition in (18) realising the prediction stage in (15). 
Next, the posterior density is obtained by Xf with a weight 

(f. The weight (f is updated by the likelihood ratio at the k th 

CPI in (12), i.e., 

(19) 

where (f is the updated weight of the particIe Xf and Cf is 
its un-normalised version. 

by 
Given {Xf, (0 :=1' the state Xk at the k th CPI is estimated 

P 

Xk ~ "L,(fXf. (20) 
p = l 

After normalising the weights, we check the weighted 
particIes for degeneracy. The degeneracy test is performed by 
first finding the number of effective particIes given by 

1 
N e!! = 'L:=1 ((02' (21) 

and, testing whether it falls below a threshold ß. We perform 
re-sampling (see, e.g., [12]) if N e!! < ß. 
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B. Maximum likelihood estimation of the reflection coefficients 
and the time reference shift 

Let us consider estimation of the complex reflection coeffi­
cients for evaluating the likelihood ratio test in (12). 

Given the object state Xf, the maximum Iikelihood (ML) 
estimation for the reflection coefficients is given by solving 
( AP ' P) cxa ,k' cxb ,k = 
argmax 10gl(Zk(iD , Yk(jf) IXf , cx~ , k' cx~, k' t:,.t, H = H1), 
a: ,k ,ar ,k 

(22) 

where the likelihood l(.) is given in (13), and (a~ , k' a~, k) 
denotes the ML estimate of (cx~ k' cx~ k)' 

In order to estimate the refle~tion 'coefficients in (22), we 
estimate t:,.t using a ML approach, as weil: 

t:,.i = argmaxlog l(Vu(l) lt:,.t), (23) 
D.t 

where l(Vu(l) lt:,.t) is the likelihood of the direct channel as 
suggested by (10), i.e., 

l(Vu(l) lt:,.t) = 

(, LN d~(~J k exp (; - D~ (1)" E,j 'D~ (l) ) (24) 

where V~(l) = Vn(l) - VESd(t:,.t). 
After taking the partial derivative of the log-Iikelihood in 

(22) with respect to (cx~ k' cx~ k)' the ML solutions for the 
reflection coefficients are 'found as 

a P _ sa ,k(Xf)H~-; l Zk(if) 
a,k - Sa,k(Xf)H~ -; l Sa,k(Xf) , 

' P Sb , k(t:,.t)H~;;lYk(jf) 
cxb,k = Sb,k(t:,.t)H~;;l Sb,k(t:,.t) , 

(25) 

where Sa ,k(Xf) E CLN x 1 is the nose free spatial-temporal 
vector in (6) and Sb,k(t:,.t) E C LN x1 is given in (8). 

The ML solution to (23) is found using a similar method 
as k 

t:,. A = ~ ""' Vn(l) 
t k ~ VE ' 

n=l 
where t:,.i is the estimated synchronisation term. 

C. Long time integration for detection 

(26) 

Now, we consider long time integration in our scheme. 
For this integration, we first estimate Xk by using the SMC 
recursions and (20). We then substitute Xk and t:,.i in (25) in 
order to find the complex reflection coefficients (aa,k, ab,k). 
Afterwards, we substitute Xk, aa ,k, ab,k, and t:,.i in the natural 
logarithm of the Iikelihood ratio in (12) at k = 1,'" , K. 
Detection is then performed by using (27) (see the top of next 
page). Here, i1:K and )l:K correspond to the bearing-range 
and doppler bins associated with the estimated object state 
X l:K, and E is the energy of the probing waveform at the 
receiver through the direct channel (see (9)). 

The proposed integration in (27) provides coherent integra­
tion of L x N sampIes within a CPI at each channel. Non­
coherent integration is performed across the co-Iocated and 
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the separated channels as weH as consecutive CPIs. log TK is 
the detection threshold for a given constant false alarm rate 
(CFAR) for K steps of integration. 

D. Constant jalse alarm rate threshold jor detection test 

The CFAR detection threshold TK can be calculated as a 
function of a selected probability of false alarm rate Pja. The 
likelihood of noise only hypothesis across the channels can 
be evaluated by the sum of the co-Iocated and the separated 
channels for K steps of integration using (11) for ~z = 0'; 1, 
and, ~y = O'~I, i.e., 

p(ZK IH = Ho) = CN(. ;O, KLN(O'; + 0';)) , 

IE{ZK} = IE{2K + YK} = 0, (28) 

IE{Zk} = IE{(2K + Y K)2} = KLNO'; + KLNO';, 

where p(ZK IH = Ho) is the measurement Iikelihood obtained 
by the sum of both channels, and IE{· } denotes the expectation 
of the input argument. Next, the Pja of a threshold test is 
given by integration of p(ZK IH = Ho) when ZK exceeds the 
detection threshold TK. This can be found as 

Pja = r+oo 
p(ZK IH = Ho)dZK = ~ X JTK 7r K0'2 

/
+00 1 ( Ti ) (29) 

exp (-ltI2) dt = ~erfc ~, 
~ 2 7rK0'2 V K0'2 
"fK""7i 

where 0'2 = LN (0'; + O'~) and erfc(.) is the complementary 
error function (see, e.g, [I , Chp.6]). The detection threshold 
TK for K steps of integration using (29) is found as 

TK = VK0'2erfc- 1 (2V7rK0'2Pja) , (30) 

where erfc- 1 (.) is the inverse complementary error function. 
Given a probability of false alarm rate, we can now calculate 

TK using (30) for the Iikelihood ratio test in (27) for K steps 
of integration. 

IV. EXAMPLE 

In this section, we demonstrate our proposed approach 
through an example. We consider a scenario in which radar A 
is at the origin of the 2D Cartesian plane and radar B is at 
the location [1000m,20mV . Each of them emits N = 20 
chirp waveforms within a CPI (see Fig. 2) towards a surveil­
lance region. A low SNR object at an initial state X o = 
[1000m, 1000m, lOm/s, 50m/sV moves along an unknown 

TABLE I: Transmitted signal parameters 
Parameter Value 

Carrier frequency Je lOGHz 
Bandwidth B I M Hz 

Pulse repetition interval (PRI) T lOOus 
Coherent processing interval (CPI) ~ O.ls 

Number of pulses during a CPI N 20 
Number of elements in ULA L 20 

Number of transmitters M 2 

978-1-4673-8823-8/17/$31 .00 ©2017 IEEE 

1600 _ TrucTrajeclory 
...... Estimated Trajcclory .... __ ~ _ .. _ .... .11-. 

~ 1400 
~ .. '" .. -.. -_ .... ---.. -.. 

J 1200 ............ _ .. _ .. _~_-_ .. _- .. 
.. -.. -

H, 
~ 10gTK, 
H o 

E 100 

ur 
C/> 

~ 
0::: 50 

(27) 

1000 ____ -_- __ -_ -_-_-_-__ _ 

o L..=::::::::::::::~ 
950 1000 1050 1100 0 10 

Distance(m) Tuue(s) 

(a) Typical scenario (b) RMSE 

Fig. 3: Example scenario: (a) A low SNR (-6dB) object follows 
the trajectory depicted by the red line across range-bearing 
bins. The proposed algorithm estimates this trajectory for 
detection (blue line). (b) RMSE of the trajectory estimation 
found in (a). 

trajectory across consecutive CPIs in accordance with the 
manoeuvring object dynamic model in (18). 

Table I shows the parameters of the transmitted pulses used 
in this example. Based on these parameters, we determine 
the bearing and the range resolutions. The corresponding 
resolution bins are illustrated in Fig. 3(a), where the blue 
and the red dashed lines indicate the bearing bins of width 
D.B = 5.1 0 and the range bins of width D.r = 150m, 
respectively (see, e.g., [l3]). We also calculate the velocity 
resolution as D. V = 7.5m/s given by 2>;;7' (or, equivalently, 
the doppler resolution D.w = 47r f c'::"cv T as 0.314deg/s). 

We apply the proposed algorithm at receiver A in Fig. 2, 
and, test object existence on range-bearing and velocity bins 
with P = 400 particIes. These particles are initially selected 
as a 20 x 20 element uniform grid within the bin under test. 
We also use the proposed algorithm for long time integration 
spanning lOs with a CPI interval of O.ls. The reflection 
coefficient for each channel is generated with a complex 
Gaussian density leading to an expected SNR of - 6dB. The 
direct signal is generated at OdB SNR with an unknown D.t 
selected in the range of 0 < D.t < T , where T is the pulse 
repetition interval. 

For detection, when the bin under test contains an object, 
the particles converge to the underlying state of the object, 
and the integrated value increases. When this value exceeds 

- CFAR Threshold 
50 _ - Integration with (TUe trajec.tol)' 

- Proposcd integration with ± 0" 

@40 - Integration in the c.olocated ch<lnncl 
:;; - Integration in the scp<lnltcd ch<lnnel 
5 _ Coherem integration w ithout 

] 30 c.onsidering an ob:iect m anoeuvring 

~ 20 -...::;...,.,"=~ 
c 

T ime(s) 
10 

Fig. 4: Long time integration: The proposed integration (blue 
solid line) versus the best achievable integration (red dashed 
line), and the CFAR threshold (magenta solid line). 
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Fig. 5: Probability of detection (Pd) in 100 MC simulation: Pd 
for the average proposed integration (blue solid line) with ±a 
(blue dotted line) versus time in comparison with Pd using true 
trajectory (red dashed line) and Pd for the proposed integration 
with perfect synchronisation (green solid line). 

the detection threshold, the proposed algorithm decides on the 
presence of an object. On the other hand, if there is no object in 
the bin under test, the partides start to get spread in space due 
to very small and similar likelihood values. A typical trajectory 
estimate (blue crossed line) is illustrated in Fig. 3(a). It is 
shown that the estimated trajectory is reasonably dose to the 
true trajectory (red line). The root me an square error (RMSE) 
of this estimate is also given in Fig. 3(b), wh ich indicates that 
the RMSE provides a reasonably low value after only a few 
steps (i.e., each step is a CPI). 

Now, we consider long time integration using the proposed 
method. For this purpose, we generate 100 measurement sets 
using (11) with unknown object trajectories. Fig. 4 illustrates 
the average integrated value (blue solid line) with ± 1 standard 
deviation bounds (blue dotted lines) obtained by using the 
proposed algorithm. It is observed that the proposed integrated 
value reaches 42.7 at t = lOs, wh ich is reasonably dose to 
the best achievable value 51.78 (red dashed line) obtained 
by using the ground truth values of the trajectory and the 
synchronisation term of the separated channel. We calculate 
the detection threshold (magenta solid line) using (30) for the 
CFAR value Pja = 10- 8 and compare the integrated values 
against it. It can be seen that the integrated value using the 
proposed algorithm is capable of gathering evidence jointly in 
both the co-located and the separated channels and exceeds 
the CFAR threshold after t = 6.5s, whereas when these 
channels are used separately (brown and grey solid lines for 
the co-located and separated channels, respectively), they fail 
to decide on the object existence due to the inferior tracking 
performance. The integrated value (black solid line) using 
conventional coherent integration also selects the noise only 
signal hypothesis. 

Next, we consider the probability of detection Pd as a 
function of the length of the integration interval. We calculate 
this probability for the proposed algorithm empirically, and, 
Fig. 5 illustrates the Pd for the average integrated value (blue 
solid line) with ± 1 standard deviation (blue dotted lines). The 
Pd using the proposed integration increases over time and 
reaches 0.91 at t = lOs, while PdS for the co-located (brown 
line) and the separated (grey line) integration stay dose to zero 
and fail to detect this object in an overwhelming majority of 
the experiments. Note that the Pd using the proposed algorithm 
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is also reasonably dose to the Pd using the true trajectory (red 
dashed line) and the Pd using the proposed algorithm with 
perfect synchronisation across the radars (green solid line). 

The benefits of our approach come with so me additive 
cost of computations compared to conventional integration 
methods. The computational cost of the bin under test for 
detection using the proposed algorithm at the k th CPI requires 
P(NJc + 2M(LN)2) multiplications and P(l + 2M(LN - 1)) 
additions, whereas conventional coherent integration requires 
M multiplications and M(LN - 1) additions. Here, N x = 4 
and denotes the dimensionality of the object state. 

V. CONCLUSION 

In this work, we have proposed a simultaneous tracking 
and long time integration algorithm for detection of low 
SNR objects in collaborative array radars. We demonstrate 
that the resulting integration value which is a hypothesis test 
statistics is dose to the best achievable by using ground 
truth information and in the case of perfectly synchronised 
radars. Future works indude further experimentation for the 
characterisation of this algorithm under different SNR working 
conditions. 
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