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Abstract—Parahermitian matrices in almost all cases admit an
eigenvalue decomposition (EVD) with analytic eigenvalues. This
decomposition is key in order to extend the utility of the EVD
from narrowband multichannel signal processing problems to the
broadband case, where the EVD factors are frequency dependent.
In the frequency domain, the ground truth analytic eigenvalues
may intersect, in this paper we discuss why with estimated space-
time covariance matrices such algebraic multiplicities are lost,
resulting with probability one in analytic, spectrally majorised
eigenvalues that no longer intersect. We characterise this phe-
nomenon and some of its profound consequences for broadband
multichannel array signal processing.

Index Terms—Space-time covariance, polynomial eigenvalue
decomposition, analytic eigenvalue decomposition, estimation.

I. INTRODUCTION

Broadband array processing problems can be conveniently

formulated via the space-time covariance matrix R[τ ] =
E
{

x[n]xH[n− τ ]
}

∈ C
M×M , where the data vector x[n] ∈

C
M holds the signals received by M sensors in discrete time n,

E{·} is the expectation operator, and {·}H applies a Hermitian

transposition. To solve broadband array problems ranging

from multiple-input multiple-output systems [7], [16], [22],

broadband beamforming [30], angle of arrival estimation [1],

[29], coding [23], [38], subspace detection [19], [20], [31],

speech processing [18], and others [32] often requires the diag-

onalisation of R[τ ] for all lags τ , also known as strong decor-

relation [26], or equivalently the diagonalisation of the cross-

spectral density (CSD) matrix R(z) =
∑

τ R[τ ]z−τ [27]. The

symmetries of the space-time covariance, R[τ ] = RH[−τ ]
mean that R(z) is a parahermitian matrix, i.e. it is equal to

its parahermitian transpose such that RP(z) = RH(1/z∗) =
R(z).

For the diagonalisation of R(z), in almost all cases a

decomposition R(z) = Q(z)Λ(z)QP(z) exists with ana-

lytic paraunitary Q(z) and analytic diagonal and paraher-

mitian Λ(z) [33]. This parahermitian matrix EVD (PhEVD)

with its analytic eigenvalues differs from a polynomial EVD

(PEVD) [13], which has been shown to converge to a solution

where, in the frequency domain, eigenvalues are spectrally

majorised [14]. Since the former are non-differentiable, they
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require significantly higher approximation orders compared to

algorithms that target the PhEVD [36].

In this paper, we will investigate the case where the space-

time covariance matrix is estimated from finite data [5],

leading to an estimate R̂[τ ]. Any difference between R[τ ]
and R̂[τ ] results in a perturbation of the eigenvalues and

eigenspaces compared to those of R[τ ]. When evaluated at

isolated points on the unit circle, R(ejΩ0) = R(z)|z=ejΩ0 ,

these perturbations have been linked to the true space-time

covariance, the sample size N , and the distance between eigen-

values at Ω0 [4], [5]. However, the impact of the estimation

process on the overall factors of R̂(ejΩ) for continuous Ω has

not been previously investigated and will be the focus of this

paper.

Our analysis is organised as follows: we commence with

the space-time covariance matrix in Sec. II, for which we

define ground truth model that ties the data vector to spatially

and temporally uncorrelated source signals via deterministic

system components. We also show how the space-time co-

variance can be estimated from data, and comment on the

variance of the estimation error, and its impact on the bin-

wise perturbation of the eigenvalues and eigenspaces. The

analytic eigenvalue decomposition of the ground truth space-

time covariance is outline in Sec. III, while Sec. IV addressed

the decomposition of the estimated space-time covariance, and

the loss of algebraic multiplicities. Both beneficial and detri-

mental consequences are outlined in Sec. V, and conclusions

are drawn in Sec. VI.

II. SPACE-TIME COVARIANCE MATRIX

A. Source Model

We first derive how the space-time covariance can be for-

mulated based on a model of system components that generate

the sensor data x[n]. For this we utilise the model in Fig. 1,

where L sources illuminate an M -element measurement vector

x[n] ∈ C
M . By tying this model to L spatially and temporally

uncorrelated zero-mean unit variance signals sℓ[n], ℓ = 1, . . . ,,
the filters gℓ[n] describe the source power spectral densities.

The system H(z) : C → C
M×L then performs convolutive

mixing of these spectrally shaped contributions. Hence for



s1[n]

sL[n]

x1[n]

xM [n]

g1[n]

gL[n]

H[n]
...

...
...

Fig. 1. Source model for space-time covariance matrix.

R(z) •—◦ R[τ ] = E
{

x[n]xH[n− τ ]
}

, we obtain

R(z) = H(z)







g1(z)g
P
1 (z)

. . .

gL(z)g
P
L(z)






HP(z) , (1)

where gℓ(z) •—◦ gℓ[n].

B. Estimation

In practise, the model in (1) is not available to determine the

space-time covariance R(z). Instead, R(z) has to be estimated

from a finite number of samples, say N , such that x[n] is only

available for 0 ≤ n < N . The entry on the mth row and µ
column of R[τ ] is the cross-correlation between the mth and

the µ signal; as an unbiased estimator, [5] suggests to compute

r̂mµ[τ ] =















1
N−τ

N−τ−1
∑

n=0

xm[n+ τ ]x∗
µ[n] τ ≥ 0 ;

1
N+τ

N+τ−1
∑

n=0

xm[n]x∗
µ[n− τ ] τ < 0 .

(2)

Provided that the source signals sℓ[n], and therefore the mea-

surements xm[n], are Gaussian, the variance of this estimate

according to [5] is

var{r̂mµ[τ ]} =
1

(N − |τ |)2
N−|τ |−1
∑

t=−N+|τ |+1

(N − |τ | − |t|)·

·
(

rmm[t]r∗µµ[t]− r̄mµ[τ + t]r̄∗mµ[τ − t]
)

, (3)

with r̄mµ[τ ] = E{xm[n]xµ[n− τ ]} the complementary cross-

correlation sequence. Note that due to the bias-free nature of

the estimate in (2), the variance in (3) therefore equals the

power of the estimation error. It depends on both the sample

size, N , as well as the auto- and cross-correlation sequences

of the sensor signals.

III. PARAHERMITIAN MATRIX EIGENVALUE

DECOMPOSITION

If the data vector x[n] is generated by a model as in

Fig. 1 with stable and causal filters, and is not connected to

a multiplexing operation, then R(z) is analytic in z within a

region that contains at the very least the unit circle. Therefore,

R(z) admits a parahermitian matrix or analytic EVD [33],

[34],

R(z) = Q(z)Λ(z)QP(z) , (4)

where all factors can be analytic. The diagonal matrix Λ(z) =
diag{λ1(z), . . . , λM (z)} contains the M eigenvalues, λm(z),
m = 1, . . . ,M . The matrix Q(z) = [q1(z), . . . ,QM (z)]

0 /4 /2 3 /4 5 /4 3 /2 7 /4 2

1

2

3

4

5

(a)

0 /4 /2 3 /4 5 /4 3 /2 7 /4 2
0

/8

/4

3 /8

/2

(b)

Fig. 2. Example for (a) analytic eigenvalues and (b) Hermitian angles of their
corresponding analytic eigenvectors.

holds the corresponding eigenvectors in its columns and is

paraunitary, such that Q(z)QP(z) = QP(z)Q(z) = I. While

the analytic eigenvalues are unique, the eigenvectors can be

modified by an arbitrary allpass function [33].

Example 1: Consider the parahermitian matrix

R(z) =

[

1−j
2
z + 3 + 1+j

2
z−1 1+j

2
z2 + 1−j

2
1+j
2

+ 1−j
2
z−2 1−j

2
z + 3 + 1+j

2
z−1

]

(5)

from [33]. This matrix possesses the analytic eigenvalues

λ1(z) = z + 3 + z−1, and λ2(z) = jz + 3− jz−1, which are

shown, evaluated on the unit circle, in Fig. 2(a). The analytic

eigenvectors can be selected as qm(z) = [1,±z−1]T/
√
2,

m = 1, 2. The evolution of the eigenvectors along the unit

circle is visualised in Fig. 2(b) via the Hermitian angle αm(Ω),
with cosαm(Ω) = |qH

1 (e
j0)qm(ejΩ)|, whereby the DC value

for the first eigenvalue, qH
1 (e

j0), is chosen as an arbitrary

reference point. This angle is insensitive to the ambiguity of

the eigenvectors with respect to arbitary allpass functions. Note

that due to analyticity, both eigenvalues and the angles of the

eigenvectors evolve smoothly. △

IV. EIGENVALUES OF AN ESTIMATED SPACE-TIME

COVARIANCE MATRIX

A. Eigenvalues at an Algebraic Multiplicity

Because in practice, R[τ ] needs to be estimated from N
snapshots of data, x[n], n = 0, . . . , (N−1), we generally will

perform an EVD factorisation of R̂[τ ] rather than of R[τ ]. As

outlined in Sec. II-B, the variance of the unbiased estimator

depends on both the ground truth R[τ ] and the sample size

N . Thus, the eigenvalues of R̂[τ ] are perturbed, and now are

random variables [4]; this is well-known from random matrix

theory, see e.g. [8], [15], [21].

This is particularly noticeable where the eigenvalues of

R(z) possess an algebraic multiplicity greater than one,

i.e. where at least two eigenvalues are identical. When now

inspecting the eigenvalues of R̂(z) instead, we find that these

eigenvalue are drawn from probability distributions, and that

we thus obtain distinct eigenvalues with probability one, unless

for the sample size we have N → ∞.
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Fig. 3. Normalised approximate probability density functions p(λ̂) for

eigenvalues λ̂ of R̂(ejπ/4), estimated for a number of different sample sizes
N , from each 105 instances.

Example 2: Based on Example 1, we utilise the source

model in Fig. 1 with H(z) = Q(z), and gm(z) =
√

λm(z),
m = 1, 2 to generate an ensemble of 105 data sequences with

various sample sizes N , from which the distribution of the

eigenvalues λ̂m(ejΩ) of R̂(ejΩ) at Ω = π
4

is estimated. Note

from Fig. 2(a) that for Ω = π
4

, the ground truth eigenvalues

λ1(e
jπ/4) = λ2(e

jπ/4) = 3 +
√
2 ≈ 4.41. The approximated

distribution of the eigenvalues of R̂(ejπ/4) is shown in Fig. 3;

note that only for the transition N → ∞ will we obtain two

identical eigenvalues, i.e. an algebraic multiplicity of two. △
B. Impact on Analytic Eigenvalues

Sec. IV-A has argued how at a given frequency Ω0 with an

algebraic multiplicity of the eigenvalues of R(ejΩ0) greater

than one, the eigenvalues λ̂ of R̂(ejΩ0) must be distinct with

probability one. Since the eigenvalues λ̂(ejΩ) are random vari-

able for all Ω, R̂(ejΩ) has distinct eigenvalues with probability

one for all frequencies Ω.

Since R̂(z) is analytic, e.g. because it is estimated with

only finite support |τ | ≤ τmax, its eigenvalues λ̂m(z), m =
1, . . . ,M must also be analytic. However, since the eigenval-

ues are distinct at all frequencies, if ordered in descending

values, they must now be strictly spectrally majorised, such

that on the unit circle

λ̂m(ejΩ) > λ̂m+1(e
jΩ) ∀Ω, m = 1, . . . , (M − 1) . (6)

Spectral majorisation has been a feature of two families of

polynomial EVD algorithms [13], [14], [23]–[25], but here it

is not an algorithmic detail but expresses the nature of the

estimated space-time covariance matrix.

C. Impact of Sample Size

It is interesting to note that the loss of algebraic mul-

tiplicities or the strict spectral majorisation of eigenvalues

cannot be alleviated by enhancing estimates. This includes,

for example, limiting the perturbation of eigenvalues through

optimum support estimation [6], [10]. Bypassing some esti-

mation errors through performing a system identification of

the source model [11] generally still retains some finite error,

for example due to observation noise. Simply increasing the

sample size N on which the estimate is based will also bypass

this challenge unless the transition N → ∞ is made [5].

A detrimental effect occurs for the analytic EVD as N
increases. Let λ′

m(ejΩ) and q′
m(ejΩ) be permuted versions of

the EVD factors λm(ejΩ) and qm(ejΩ) of R(ejΩ), such that

the modified eigenvalues λ′
m(ejΩ) are spectrally majorised,

λ′
m(ejΩ) ≥ λ′

m+1(e
jΩ) ∀Ω, m = 1, . . . , (M − 1) . (7)

If the analytic eigenvalues λm(ejΩ) are not spectrally ma-

jorised, then λ′
m(ejΩ) will only piece-wise analytic: at fre-

quencies where permutations occur, they will be continuous

but not infinitely differentiable. Further the corresponding

eigenvectors q′
m(ejΩ) will be discontinuous at permutation

frequencies [33]. Thus, as N increases, we find that

λ̂m(ejΩ) −→ λ′
m(ejΩ) . (8)

Therefore, with increasing sample size N , λ̂m(ejΩ) tends

towards a function that is not infinitely differentiable. Worse,

the eigenvectors of R̂(z), q̂m(ejΩ), converge towards non-

differentiable functions, even though they do not reach these

for finite N . Thus, while with increasing N both eigenvalues

and eigenvectors remain analytic, they become more and more

difficult to approximate by polynomials or Laurent polynomi-

als [33], requiring them to be of higher orders than for a lower

value of N .

Example 3: Taking the setup of Example 2, we inspect

the analytic eigenvalues λ̂m(ejΩ) and eigenvectors q̂m(ejΩ)
across the range Ω = (0; 2π), These are extracted by taking

sufficiently long discrete Fourier transforms (DFTs) of R̂[τ ],
and performing an EVD in each DFT bin. Due to (6), it

is straightforward to associate the eigenvalues across the

DFT bins [36]. The eigenvectors in individual frequency bins

will not be phase-aligned; this however does not affect the

subspaces in which these analytic eigenvectors exist [35], and

the Hermitian angle evaluated in Example 1 will measure the

smoothness of these subspaces.

Fig. 4 shows the case of a sample size N = 102. Due

to this small size, the estimation error can be significant,

particularly if the support of R[τ ] is overestimates [5]. Here

and in the following examples, the support is optimised to

yield the smallest possible estimation error [6]. Nonetheless,

the eigenvalues and eigenspaces are perturbed and significantly

deviate from the eigenvalues and eigenvector angles of the

ground truth space-time covariance R[τ ].
For N = 104 in Fig. 5, the eigenvalues λ̂m(ejΩ) are

strictly spectrally majorised according to (6) and now follow

λm(ejΩ) closely on a bin-wise basis. However, permutations

w.r.t. λm(ejΩ) occur at Ω = π
4

and Ω = 5π
4

. The angles αm(Ω)
of the associated eigenvectors q̂(ejΩ) closely follow those of

qm(ejΩ) on a bin-wise basis, but are also permuted at Ω = π
4

and Ω = 5π
4

. Since q′
m(ejΩ) would be discontinuous at those

points, but q̂(ejΩ) has to be analytic, some sharp transitions

occur around the permutation frequencies.

The results for a further increase to N = 106 are shown in

Fig. 6. The approximation of a discontinuity of the Hermitian

angles αm(ejΩ) in Fig. 6(b) indicates that the eigenvalues

λ̂m(ejΩ) in Fig. 6(a) remain strictly spectrally majorised.



0 /4 /2 3 /4 5 /4 3 /2 7 /4 2

1

2

3

4

5

6

(a)

0 /4 /2 3 /4 5 /4 3 /2 7 /4 2
0

/4

/2

(b)

Fig. 4. (a) eigenvalues λ̂m(ejΩ) for N = 100 (coloured curves) and
ground truth λm(ejΩ) (in grey, underlaid); Hermitian angles αm(Ω) for the
corresponding eigenvectors q̂(ejΩ) and q(ejΩ).
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Fig. 5. (a) eigenvalues λ̂m(ejΩ) for N = 104 (coloured curves) and
ground truth λm(ejΩ) (in grey, underlaid); Hermitian angles αm(Ω) for the
corresponding eigenvectors q̂(ejΩ) and q(ejΩ).

Compared to Fig. 5(b), the transition at the permutation

frequencies Ω = π
4

and Ω = 5π
4

is now sharped, and show

behaviour similar to Gibbs phenomena when approximating

discontinuities. As a consequence, the eigenvalues q̂m(z) need

a high approximation order or than those obtainable for a

smaller sample size N . △

V. IMPACT ON APPLICATIONS

The strict spectral majorisation of eigenvalues of an esti-

mated space-time covariance matrix can have both positive and

negative consequences, which this section briefly highlights.

A. Subspace Methods

For subspace-based methods such as the polynomial multi-

ple signal classification (P-MUSIC) approach [1], [9], [29] or

transient signal detection in the noise-only subspace [19], [20],

[31], an accurate estimation of the signal-plus-noise and noise-

only subspaces is required. The effect caused by permutations

of the ground truth analytic EVD factors causes an increase in

the approximation orders for the eigenvectors, and hence for
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Fig. 6. (a) eigenvalues λ̂m(ejΩ) for N = 106 (coloured curves) and
ground truth λm(ejΩ) (in grey, underlaid); Hermitian angles αm(Ω) for the
corresponding eigenvectors q̂(ejΩ) and q(ejΩ).

computational complexity that the paraunitary matrices incur

when implemented.

Additionally, since the permutations at algebraic multi-

plicities greater than one of the eigenvalues of R(z) cause

switching between subspaces in R̂(z), the switching itself and

the associated Gibbs-type phenomena that could be observed

in Example 3 — see Fig. 6(b) — may cause challenges when

performing projections.

B. Spectral Majorisation

Applications such as subband coding are optimal in terms

of the coding gain if the space-time covariance matrix of the

subband signals is strongly decorrelated, i.e. if R[τ ] is diago-

nalised, and if its eigenvalues are spectrally majorised [26].

Methods such as in [23], [25] and signal compaction ap-

proaches [17] rely on this, and are supported by a number

of numerical techniques to calculate the decomposition in (4).

This includes the class of second order sequential best ro-

tation (SBR2) and sequential matrix diagonalisation (SMD)

algorithms and their variants [2], [13], [23]–[25], [28], which

tend — or in some cases are guaranteed [14] — to converge

to the spectrally majorised solution. This is a requirement for

maximising the coding gain.

C. Analytic EVD of Multiplexed Systems

If the data vector x[n] emerges from a multiplexing op-

eration, such as for subband coding [23], then the analytic

EVD of the ground truth space-time covariance R(z) does

not exist [34]. This is due to the eigenvalues possessing a

longer periodicity of 2πF , with F representing the multiplex-

ing factor. However, spectral majorisation will enforce a 2π
periodicity, such that an analytic EVD becomes feasible. This

has been noted in [34] but without realising that the estimation

error when estimating the space-time covariance from finite

data, and the associated loss of algebraic multiplicities greater

than one, is responsible for this beneficial effect.



VI. CONCLUSIONS

In this paper, we have investigated a fundamental effect that

results in the loss of algebraic multiplicities greater than one

in the eigenvalues of a space-time covariance matrix that is

estimated from finite data. This effect cannot be alleviated by

increasing the sample size; rather, such an increase will result

in the analytic EVD factors requiring an increasing order if the

ground-truth eigenvalues intersect, as non-differentiabilities

and discontinuities have to be approximated when extracting

the eigenvalues and eigenvectors of such an estimated space-

time covariance matrix.

In terms of applications, the effect can be both beneficial

or detrimental, and favours a revival of algorithms that target

spectrally majorised eigenvalues for polynomial matrix factori-

sations, which are supported by substantial algorithmic devel-

opments and implementations [3], [12]. Alternatively, analytic

eigenvalue and eigenvector extraction algorithms [35]–[37],

[39] can also yield such solutions with guaranteed spectral

majorisation where current time domain methods may fail due

to a large dynamic range in the eigenvalues.
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