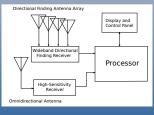
SubNyquist Electronic Surveillance

Mehrdad Yaghoobi, Mike E. Davies


Edinburgh Research Partnership in Signal and Image Processing Institute for Digital Communications The University of Edinburgh

Source Separation and Sparsity Theme Meeting, 31 October, 2013

Electronic Support Measures (ESM)

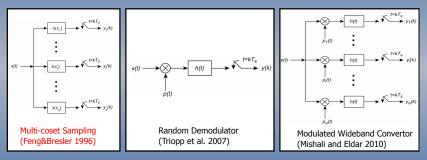
- The task is to detect all RF emitters, for identifying presence of threats.
- It has a passive monitoring system.
- While ESM signals are very dense, *e.g.* can be of millions of pulses per second, they have very sparse TF representations.
- ESM systems can be noise limited, rather than sparsity limited.

Techniques for ESM receivers

- Instantaneous Frequency Measurements: limited spectral sensitivity.
- Rapid Frequency Swapping A/D's: limited temporal sensitivity.
- \bullet Wideband Analog to Digital Convertors: multi GHz A/D's.
- Proposal: Sub-Nyquist Analog to Information Convertor.

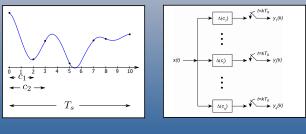
SubNyquist Sampling

- Why?
 - Sampling at the rate of Nyquist is difficult or costly for some applications, *e.g.* Wideband A/D's and Wideband Digital Receivers.
 - It is waste of resources, if we sample at a rate, much higher than the information rate.
 - Allows us to have an application specific sampling strategy, *i.e.* exploring signal structures.
- How?
 - Using underlying signal structures, e.g. sparsity.
 - Incorporating non-uniform sampling (random?) in the sensing framework.
 - Non-linear reconstruction of signals.

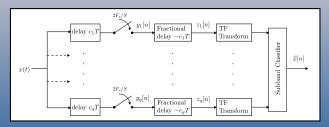


SubNyquist Sampling

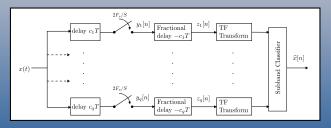
- What would be the challenges?
 - Analog Hardware: How efficiently can we design the analog part?
 - Computational Complexity: How efficient can we implement the non-linear recovery algorithm?
 - Noise Sensitivity: Sensitivity to the input noise?
 - *Robustness*: How much the sub-Nyquist algorithm is sensitive to the signal model mismatch and circuit design tolerances.

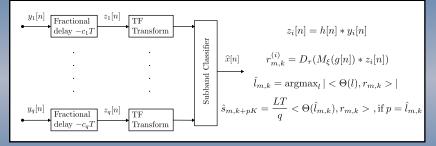

SubNyquist Sampling Techniques

Multi-coset Sampling Framework


- Non-uniform sampling technique [Feng and Bresler, 1996].
- Sparse multiband signal model.
- A subspace method for reconstruction by Feng et al.
- A convex optimisation problem for reconstruction by [Mishali and Eldar 2009].

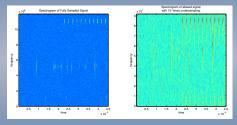
Proposed SubNyquist Sampling Framework


- A Multicoset sampling strategy.
- Avoiding any complicated operations *e.g.* SVD, ℓ_1 minimisation.
- The signal model have to fit into the ESM.


Components of Proposed Framework

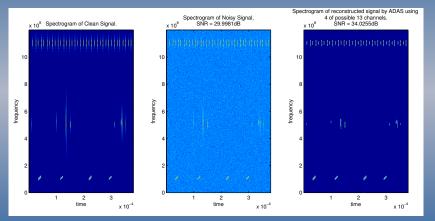
- A bank of multicoset channels: it has distinguished delays.
- Digital Fractional Delay (DFD) filters.
- Time-Frequency transform: STFT surrently has been used.
- *Subband Classifier:* Composed of a linear operator (Harmonic Frame), followed by a simple maximum-absolute value operator.

Low-Complexity MC Reconstruction Algorithm

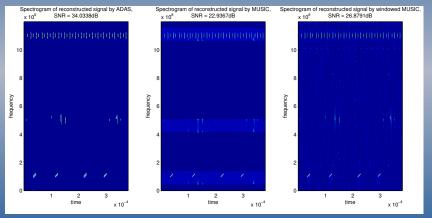


- Θ : Harmonic Frame
- $\hat{x}[n]$ can be reconstructed using inverse TF transform.

Assumptions and Properties of Proposed Framework

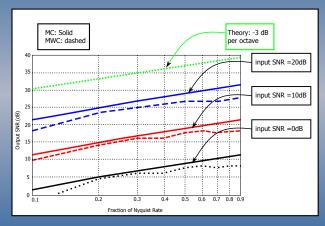

• Approximate Disjoint Aliased Support (ADAS): it is different to the sparsity.

- Does not require random sampling: optimal delay parameters can be yielded using Harmonic Grassmannian Frames (HGF).
- Practical Issues with DFD filters: finite length filters introduce distortion \rightarrow Combining TF and DFD filters.



Evaluation with Radar ESM signals

Comparison with MUSIC type recoveries [Feng and Bresler, 1996]



Advantages of the Proposed Method:

- Non-iterative: it may be pipelined.
- Can use only a few Multi-coset channels, e.g. as few as q = 2.
- Uses a different signal model, *i.e.* ADAS, which matches well to some classes of signals, *e.g.* ESM.
- Simple analog hardware (digitiser): periodic non-uniform sampling pattern: easier to implement than a random sampling pattern.
- Large Dynamic Range, *e.g.* 70 dB, which makes it suitable for the low probability of intercept signals.
- **Continuously monitoring** wideband RF signals, in a contrast with the rapid frequency swapping technique.

Noise Folding in Sub-Nyquist Sampling

Conclusions

- A low SWAP subNyquist algorithm was presented for ESM application.
- The proposed technique uses parsimonious signal structures.
- When ESM signals are structrally sparse in some TF domains, we can assure signal recovery, by selecting a moderate undersampling factor.
- The proposed algorithm out performs the canonical MUSIC based recovery algorithms for the given ESM signals.

Future Work

- An optimal TF selection to maximise coherent processing gain.
- Sensitivity and robustness analysis.
- More simulations around about comparisons with canonical methods.
- Further optimisation of implementation of DFD filters.

Thanks for your attention.