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Abstract—Ground Penetrating Radar (GPR) is often used for
detecting non-intrusively buried targets, in road engineering,
manufacturing, and in military fields. Based on transmitting
high frequency electromagnetic waves, GPR generates 3D
data of the underground structure enabling accurate and fast
target detection. However, after inverse Fourier Transform,
the 3D GPR images are often out-of-focus and contain high
measurement noise. This calls for advanced signal and image
processing methods to improve signal-to-noise ratio, isolate
the most discriminative features, and perform target detection
and localisation. Using a vehicle-mounted GPR array data
provided in the 2020 UDRC GPR data challenge, we show that
morphological image analysis and semi-supervised learning via
graph Laplacian regularisation can detect different types of
targets buried at various depths with very low false alarm rate.

I. INTRODUCTION

Ground Penetrating Radar (GPR) uses high frequency
radio waves for detection of the structure of underground
objects, based on the difference in electrical properties be-
tween the target object and surrounding medium. GPR has
been widely used for detection of metallic and non-metallic
objects [1] in road engineering, manufacturing, archaeology,
and has also become popular for detection of buried targets in
military fields, such as land mines and Improvised Explosive
Devices (IEDs) [2], [3]. Indeed, the GPR array [2], [3] has
shown significant advantages over competing technologies
as a non-destructive, remote sensing technique that provides
high resolution 3-D data, which helps to make the detection
and recognition of targets accurate and fast.

GPR is a non-invasive geophysical technique used for
detecting objects underground or analysing the structure in
visually opaque materials, based on measuring propagation
of emitted high-frequency electromagnetic waves. Though
the research and application of GPRs have long history [4],
[5], some of the major challenges of using GPR data to
detect underground objects are still present. This is due
to low-resolution features and out-of-focus GPR images,
high measurement noise, and interference, leading to very
low signal to noise ratio (SNR). This calls for advanced
signal processing techniques to improve SNR and construct
discriminative features.

Since a typical output of a GPR system is a spatio-
temporal GPR image, various signal and image processing
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methods can be used for extracting useful information. Tradi-
tional popular approaches are based detection of hyperbolas
in GPR images, e.g., using Hough transform [6], template
matching [7], or Viola-Jones learning algorithm with Haar-
like features [8]. However, these approach suffer from false
alarms or are complex and require a high number of pa-
rameters [2]. In this paper, we propose a low-complexity
system, by transforming the time slices of the original
dataset acquired by a GPR system into a binary image
by performing morphological image analysis to construct
distinct features of potential targets, and then classify the
constructed features into target/non-target classes using semi-
supervised learning based on label propagation over graphs.
Morphological image processing [9] is a collection of non-
linear operations used to analyse geometrical structures.
Morphological operations rely only on the relative ordering
of pixel values, and not on their numerical values, and
therefore are especially suited to processing binary images.

Classification via Graph Laplacian Regularisation (GLR)
has been widely used to classify image and time-series
signals, especially when the number of labelled signals that
can be used for training is small [10], [11]. In this paper, we
use normalised GLR (identified in [12] as the best performing
semi-supervised classification method for seismic signals
among several tested methods based on regularisation-on-
graphs), to identify the time slices which contain information
about the real targets in order to reduce the false alarm rate
and locate the real targets.

In particular, this paper presents a novel post-processing
detection method for a stepped frequency continuous wave
(SFCW) GPR system. After signal pre-processing, normal-
isation, and inverse Fourier Transform, the detection of
potential targets is performed by carrying out morphological
analysis on each time slice. Afterwards, target recognition
is performed via GLR-based semi-supervised learning on all
potential targets.

The advantage of the proposed method over recent al-
ternatives, such as [2] and [3], is its semi-supervised na-
ture that requires a very small labelled dataset for training
(namely, 3.5% in our simulations), while deep-learning based
approaches [2], [3] report results with about two thirds or
more of available data used for training. Furthermore, the
proposed approach automatically learns system parameters
from the data and thus, in contrast to prior work [7], [6], does
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not have many parameters to tune the model. Our simulation
results show that the proposed method has a very low false
alarm rate. Its low reliance on labelled data, low complexity,
and the fact that it can be implemented in real time, make
the algorithm a practical solution for future GPR array target
detection systems.

This paper is organized as follows: In Section II we de-
scribe pre-processing of the GPR data and the method of gen-
erating features. In Section III we provide brief background
on the morphological image processing and graph signal
processing, present the proposed detection and recognition
algorithm, including data normalisation and morphology
detection method for the constructed features. Section IV
presents the simulation results, and Section V contains our
conclusions.

II. DATASET USED AND SIGNAL PRE-PROCESSING

In this work, we use the data captured by a vehicle-
mounted SFCW GPR array, which contains 41 transmit-
receive channels. The GPR channels were evenly spaced 7.5
cm apart, covering 3m width in total. The GPR system was
mounted on a vehicle, driven along test lanes collecting data
at 5 cm intervals. Therefore, a 3D dataset was collected as
the GPR array was driven along the lanes. The data was
made available as part of a UDRC challenge on automatic
target detection for 3D GPR data1.

The test lanes included a variety of targets buried at
different depths. Multiple test fields were used, and in this
paper we focus on a test field that was 100 meters long
and shares the same width with the radar antenna array,
facilitating for the vehicle to travel through the whole test
field and collect a comprehensive dataset. The test field
contains 54 targets, randomly located across the whole field.

Fig. 1. A part of the plan view of the test lane.

The plan view of the test lane, which displayed the
layout for targets and markers distribution in the test lane,
is shown in Fig. 1. The test lane is a rectangular field with
10 landmarks marking its boundary. Blue circles represent
the positions of the landmarks of the test lane. The vehicle
with the mounted radar was moving within the marked
field from one side to another. The cross marks represent

1https://udrc.eng.ed.ac.uk/sites/udrc.eng.ed.ac.uk/files/attachments/Automatic
%20Target%20Detection%20for%203D%20Ground-
Penetrating%20Radar%20Data%20Challenge.pdf.

the target locations, which are considered as ground-truth
target positions. The labels such as ‘FF’ and ‘EE’ near
the corresponding cross marks indicate the target types; all
targets of the same type were buried at a common depth.

As described above, the GPR array collected the data along
the test lane at the 5 cm interval, thus, the data in the original
format contains 2000 time slices. To facilitate analysis, we
first reshaped the dataset, into a 34 × 41 × 2000 matrix, so
that each column represents one radar Transmitter/receiver
channel (41 in total). Since the data was collected in the
frequency domain due to the characteristic of the SFCW
system, to perform analysis in the spatial domain, an inverse
fast Fourier transform (IFFT) was carried out along the
columns of the dataset, i.e., along the data returned by every
array channel, to retain the channel-specific information.
Then we process data time slice by time slice, i.e., frame
by frame, where each frame is of size 34× 41 pixels.

Fig. 2. The magnitude data of the 254th time slice (i.e., frame) of the
dataset.

A typical time slice, after IFFT is shown in Fig. 2.
Each column corresponds to one channel and the vertical
axis shows the depth derived from the propagation time,
increasing from the top down. The figure shows a section
view of the test lane where the vertical direction can be
regarded as the depth under the surface. Significantly high
values can be observed in the red rectangular box indicating
the presence of a target. However, in practice, the targets are
often not visible due to measurement noise and clutter. It can
also be seen that the targets are pixelated due to the out-of-
focus problem common to GPR images [4]. Thus, feature
construction methods that are robust to noise and blur are
required to construct discriminative features necessary for
accurate target detection.

III. METHODOLOGY

This section describes the proposed methodology. In par-
ticular, given a 2-D GPR image (e.g., Fig. 2), we use mor-
phological image analysis to construct features and Graph
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Laplacian Regularisation (GLR)-based label propagation, as
advanced semi-supervised classifier. This has been shown to
perform well when the number of labelled samples is low
and dataset is noisy [11], [12].

All matrices will be denoted by capital bold letters, such
as X, whose entry in the i-th row and j-th column will
be xi,j . Vectors will be denoted by lower-case bold letters,
e.g., x, with the i-th element being xi. Sets are denoted by
calligraphic font, e.g., S, and |S| denotes cardinally of S.

A. Morphological Detection

As shown in the example in Fig. 2, the targets are charac-
terised by high pixel intensity and the shape. Morphological
image analysis is often used to identify the shape or mor-
phology of an object in the image. Thus, in order to extract
the shape of the objects, we introduce a morphological probe
[15]. This method requires defining a small shape or template
called structuring element, which is slid along the image and
compared with the corresponding neighbourhood of pixels
[15], [9].

Morphological operations rely only on the relative or-
dering of the pixel values, and not on their numerical
values [15]. Thus, we need to generate a binary image from
the original GPR image time slice to extract the features
and increase the SNR, which is done using the following
equation:

P = G− w ·G, (1)

where, G is the original 2D time slice data matrix (i.e., the
GPR image whose example is shown in Fig. 2), G is its
mean, w is a scaling parameter set to 6 in our simulations,
and P is the resulting normalised matrix. Let pi,j be the
element (i.e., pixel) of the normalized matrix P in the i-th
row and jth column. Then, we feed pi,j into Heaviside step
function, that is:

bi,j = H (pi,j), (2)

where bi,j is the element of the binary matrix, i.e., the
morphological detection result, B in the i-th row and j-th
column.

Based on the target shapes in the training datasets, we
experimented with different structuring element shapes and
finally adopted a “line” structure element, i.e., 3 pixels in a
line as a template. The detection is performed by sliding
this 3-pixel line template along the image. The detection
result will return a positive detection only if the structuring
element “fits” the target, which means if all the 3 pixels in
the structuring element calculated by Eq. (2) are larger than
0. This process would generate a binary image B, as shown
in Fig. 3 for the example GPR image from Fig. 2. In B,
the pixels with value 1 are identified as potential targets. In
the meantime, since the relative location of the time slice and
the radar channel is known, the coordinate of potential targets
can be calculated. However, as it will be shown in the next
section, our simulation results show that this detection result
is not reliable enough, as the false alarm rate is very high,
that is, due to high measurement noise many false targets

Fig. 3. Morphological detection result for a time slice.

are returned. Therefore, a classifier based on GLR is used to
increase the accuracy as described next.

B. GLR-based classification

The potential targets isolated using morphological image
analysis as described in the previous subsection, are fed into
a GLR-based classifier.

Semi-supervised learning via label propagation on graphs
is widely used for time-series signal classification when the
number of labelled signals available for training is very small
and hence insufficient to develop good statistical models of
the data [10], [11]. The main idea is to represent the classi-
fication labels as a graph signal [16] where highly correlated
samples are connected with high-weight edges, and then
restoring the unknown graph signal samples (corresponding
to the test data) using label propagation [10], e.g., via GLR.

Specifically, first, the features extracted from the original
time slice data using morphological analysis are embedded
into an undirected, connected graph, G = (V,A), where V
is the set of vertices and A is the graph adjacency matrix
[16]. Each vertex in G, ν ∈ V corresponds to one column
in the GPR image and is characterised by the corresponding
feature vector, e.g., intensity of the corresponding column in
the GPR binary image after morphological image processing.

The graph needs to capture well the correlation between
the constructed features. Let fk(i) represent the k-th feature
assigned to Node νi, that is, the intensity of k-th pixel in
Column i in the processed GPR image. Then, we set the
(i, j) entry in A, ai,j , i.e., the weight of the edge between
vertices i and j, as:

ai,j = exp

{
−

K∑
k=1

(fk(i)− fk(j))2

2σ2
k

}
, (3)

where σk represents the graph kernel bandwidth associated
to the k-th feature, and K is the feature vector dimension,
which is the length of the GPR image B column (in pixels).
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We assign to each vertex, νi a discrete graph signal si that
carries the class label of the corresponding event. That is, for
Vertex νi

si =


+1, if νi belongs to Target Class and i ≤ n
−1, if νi does not belong to Target Class and i ≤ n
0, for n+ 1 < i ≤ N,

(4)
where n and N , respectively, represent the number of

training samples (i.e., labelled columns) and the total number
of image columns in the dataset.

If graph G captures well the correlation between the
constructed features, then the vertices with the same label
will be connected by high-weight edges, that is, the graph
signal s will be smooth with respect to G and we can
apply “label propagation” [10], for example, via GLR or
normalised GLR, to extrapolate the missing labels (that are
initialised to zero in (4)). GLR extrapolates the missing labels
by finding the smoothest graph signal under constraints given
in the first two lines of Eq. (4) [16].

The combinatorial graph Laplacian matrix is given by L =
D − A, where D is the diagonal matrix, given by di,i =
Σjai,j , and its normalised form is L = D(−1/2)LD(−1/2).
To perform GLR we define the objective function as:

s̃ = arg min
s∈RN

(sTLs)

s.t. s̃1:n = s1:n,
(5)

which has the close-form solution given by [17]:

s̃n+1:N = L†n+1:N,n+1:N

(
−sT1:nL1:n,n+1:N

)T
, (6)

where † denotes matrix pseudo-inverse.

IV. RESULT AND EVALUATION

In this section we present and analyse our simulation
results. In all our simulations, we use the dataset described in
Section II. After detection via morphological image analysis,
1162 potential targets are identified. 40 column vectors with
potential targets are used for training the semi-supervised
classifier, and the remaining column vectors are used to form
the test set.

We evaluate the performance of the proposed system using
the probability of detection and probability of false alarm
as performance measures. These criteria are widely used
in the similar detection problems [18]. We also used the
Receiver Operating Characteristic (ROC) curves to evaluate
the classifier performance.

Fig. 4. Detection result before classification.

As part of our study, first we test the performance after
morphological analysis only (without semi-supervised learn-
ing). The plan view of the test lane showing morphological
detection result is shown in Fig. 4. The red asterisks represent
the predicted positions and the cross marks represent the
actual target locations, i.e., the ground-truth. One can see
many correct “hits” (where the red asterisk and the cross
marks overlap), but also many false positives (the red asterisk
is far from the target real position), and missed targets.

Aiming to reduce the false positive rate, we use semi-
supervised graph classifier to distinguish the true targets. We
use the adjacency matrix as given in Eq. (3) and learn the
optimal σk’s from the training data as in [11]. That is, using
the training labels, we find the optimal σk’s that maximise
the difference between the weights of the edges that connect
nodes that belong to the same class and the weights of the
edges connecting nodes that belong to the opposite class.

Fig. 5. Detection result after classification.

The plan view of the test lane showing morphological
detection result after classification is shown in Fig. 5.
Compared to Fig. 4, one can see that most of the false
positives are removed while the correct “hits” are kept. High
false negative rates are mainly due to very low SNRs in
the original dataset, resulting in the absence of prominent
features; therefore those targets were unable to be detected
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Fig. 6. ROC curve for the proposed GLR classifier.

by the morphological analysis. Since the semi-supervised
classifier takes morphological analysis results as input, it
cannot reduce the false negatives. Note that, these targets
are mainly shallow targets, most likely due to low resolution
(the out-of-focus problem), high level of interference, and
echo of radio waves when they hit the surface [4].

TABLE I
RATING CRITERIA FOR THE TEST .

After classification Before classification
Target detection reports 144 1162
False reports 20 965
Probability of detection 86.1% 17%
Probability of false alarm 13.9% 83%

Table I shows the quantitative performance of the overall
proposed system. The results are reported based on the fact
that if the predicted position falls within a 0.3m radius circle
whose center is the real target position, then the predicted
result would be counted as true, otherwise it would be
counted as false. In Table I, the target detection reports
represent how many true positive results have been returned
by the classifier. The false report represents the number of
positive predictions that are in fact false (false positives).
Probability of detection and probability of false alarm show
the proportion of true reports and false reports, respectively.

Fig. 6 shows the ROC curve of the GLR classifier for the
true target class, which gives the true positive rate against
the false positive rate. The larger the area under the ROC
curve the better the performance of the classifier.

Semi-supervised classification has significantly reduced
the false alarm rate and in turn largely improved the per-
formance. This performance additionally shows the mor-
phological detection and GLR classification method have a
satisfactory detection rate and a relatively low false positive
rate.

V. CONCLUSION

We presented a novel target detection method for data
collected by ground penetrating radar. We showed that
by performing morphological feature detection and graph-
based semi-supervised classification, we can recognise sev-
eral types of targets buried in the soil, at various depths with

a very low false positive rate. Future work will focus on
further improving the results, especially for targets at lower
depths via de-blurring and further optimising the classifier
performance.
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