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An (brief) introduction to Mine and Counter Measures

What is MCM?
The ability to detect, identify and neutralise mines. Mines can be floating,
mid-water (moored) or on the bottom.

Why does it matter?
Mines are cheap and can cause damage to large assets (asymetric threat).
Modern warfare has recently focused on external intervention. 90% of the
world’s trade is carried by sea, including oil...
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A paradigm shift in MCM

Traditional MCM is done using dedicated ships with hull mounted
sonars.
These are expensive to run and maintain and need to be able to run over
minefields for sweeping.
New doctrine based around multi-purpose metallic ships with unmanned
systems to support the MCM function
renewed emphasis on automatic target recognition to support in-stride
detection, identification and neutralisation
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Typical Conops for autonomous systems based MCM

Vehicle is doing a Search / Classify / Map mission
Sensor of choice is Sonar
It is a signal and image processing problem
Typical sonar image with targets:
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Object Recognition - Definition

Aim
Object Recognition aims at associating a semantic label to a subset of an
image.

Can be based on:
Appearance (Shape, 3D, Color, Texture)
Structural analysis (Physical Components, Interactions with probing
signals)
However, despite the vast literature, performances of most of the
algorithms still fall far behind human perception!
Validation and Comparison of algorithms remains a real issue in
underwater.
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Object Recognition - Methods

Techniques Based on Appearance:
Require high resolution data (Side Scan, SAS)
3D information (Bathymetry, Interferometry)
Is it sufficient for identification?

Techniques Based on Structural Analysis or acoustic color
Require low frequency wideband sonar to penetrate inside targets
Require very good acoustic models and understanding of acoustic
propagation
Can it also be used for detection?
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Object Recognition - Steps to Identification

Generally 3 Steps but can be combined:
Detection: Is this a possible Mine Like Contact?
Classification: Is this a Mine?
Identification: Which Type of Mine is this?
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Detection & Classification of Possible Targets

This is a rare event detection problem (unbalanced classes).

Yet Pd must be very high.
And Pfa very low (of the order of 10�8 to be useful), especially for
on-board systems.

Saliency [14, 21, 3]
Aims at detecting gobal rarity or local contrast. Requires a good modelling of
the background. See day 3 of the summer school

Model Based Approach [23, 2, 13, 15, 4, 27, 30, 31, 10]
Uses model of Targets and / or simulation to perform detection. Requires a
good modelling of the imaging system.

Supervised Learning Approach [5, 25, 16, 17, 32, 8, 7]
Learns classification rules from example . Requires large representative
datasets. This is very often problematic underwater.
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What is clutter?

Local Perturbation disturbing algorithms results. These can be modelled
by statistics. Examples are sand ripples.

Objects Similar to real targets for given sensor / view. Class Overlaps.
Example is rock fields.

Example of textured seabed (Left) and flat seabed cluttered with small rocks (Right)

We now start to have good models of clutter and can use context to drive
algorithms behaviours [26]
But estimation of model parameters is difficult.
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Simulation Tools - Objectives [18, 20, 26]

Aim:
To simulate seabed or targets for algorithms development, validation and
prediction of performances.

Classical approaches:
Ray Tracing: simulate propagation of sound by rays [18]. Can model
multipath. Slow.
Energy based approach: Uses Sonar equation [26]. Can handle complex
noises. Very Fast.
PSTD based approach: Solves the full wave equation [20]. Can handle
resonances and complex interfaces. Very Very Slow.
Augmented Reality: Places simulated objects into real scenes [9]. No
need to simulate complex seabeds. Fast but not very accurate.
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Simulation Tools - Examples

Ray Tracing Simulation (top) and PSTD simulation (bottom)
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Simulation Tools - Energy Based Approach [26]

SL: Source Level for the projector, DI : Directivity Index, TL :Transmission Loss, NL :Noise Level, RL : Reverberation Level, TS : Target

Strength and DT : Detection Threshold.
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Augmented Reality [9]

Idea:
Insert simulated targets in real data from real environments.
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Route to systematic evaluation
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Route to optimised mission planning

Optimal Planning for ATR
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Route to optimised mission planning

Performance Prediction Tool
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Route to optimised mission planning

Optimal Planning Examples

Context Map Generated Trajectories for Pd >= 0.9
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Model Based Approaches

Markov Random Field Based Detection / Mathematical
morphology [23, 2, 31]

Segmentation of images based on priors (highlight / shadow pairs).
Works well on easy seabed types

Original Image Segmented Image using Target Priors
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Model Based Approaches

Snake Based Detection [10, 30]
Extracts shadow shape for classification.
Works well on lowly textured seabed
Can be extended to use both echo and shadow
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Model Based Approaches

Simulation Based Classification [19]
Use simulation of compare highlights and shadows of potential targets
Generally poor results on side-scan sonar (resolution is too low)
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Model Based Approaches

This can be extended to Synthetic Aperture Sonar
Issue is the definition of a robust image to image distance function in

presence of noise

SAS Real Target Image (Courtesy NATO CMRE) [24] Simulated Target using a Lambertian Model (3cm)
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Learning Based Approaches [9, 5, 25, 16, 17, 32, 8, 7]

Use large datasets (simulated or real).

In our Case Simulated.
Extract features (Central filters, Haar) and Train.

Results on Simulated and Real Data:

Error(simulation) : 9% Error(real) : 18%
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MultiView Fusion [29]

Dempster-Shafer Fusion Example
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Context Analysis [28]

Use texture features to segment / classify seabed (Flat, Ripples,
Complex)
Use Clutter Density to Clean Maps and extract difficult areas.

Texture Based Classification Clutter Density Fused Map

Courtesy of SeeByte Ltd and NATO CMRE
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Context Dependent Classifiers Fusion [22, 34, 33, 12]

Probabilistic Fusion Architecture

Context Aware Fusion Architecture
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High Resolution - What do we need? [26]

Idea
Study the minimum resolution required to perform detection and
classification.
Performance estimation using eigen-spaces methods for object classification.

Consider a set of k images for an object of class L:
Each images Mi of size m⇥ n is first rasterized in a vector M

0
i of size mn

For each class, the mean and standard deviation of the class is calculated.

Normalise each training vector: Ti =
M

0
i �Mmean

std(M0
i )

Compute the covariance matrix of {Ti} and extract the first p
eigenvectors. This generates a subspace ⇥L

For each new target In, project it onto each subspace ⇥L and allocate the
class as: Targ = minLkIn � P⇥L(In)k, where P⇥L(In) is the projection of
In on subspace ⇥.
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High Resolution - What do we need? [26]

Influence of Resolution

Subset of training images Influence of Resolution on classification
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High Resolution - What do we need? [26]

Influence of Noise

Images for various SNRs Influence of Noise on classification
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High Resolution - What do we need? [26]

Highlights or Shadows?

Classification Performances for Highlight Classification Performances for Shadow
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High Resolution - What do we need? [26]

Summary
Highlights should be used for very high resolution imagery (SAS, VHF
Sonar 1MHz+)
Shadows are better (and easier) for mid resolution imagery
In practice, noise level is not an issue but clutter is
Target is Pfa of 10�8 or less!
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SAS for ATR. Do we Need anything else?

Image quality of latest SAS sensors is extraordinary.
Little difference between HF SAS and Lambertian Based Simulation.

SAS Real Target Image [1] Simulated Target using a Lambertian Model (3cm) Circular SAS Image [11]

But not widely available
Requires expensive platforms and sensors
Still does not provide sufficient performances in complex environments
Coherence is necessary for image formation. This can be destroyed by
multipath in shallow water.
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New Video-Rate Acoustic Sensors for Identification

Image quality ever improving

Various DIDSON Images, Courtesy of Sound Metrics

Target Tracking and Bayesian Filtering now possible.
Multiple angles on targets. MultiView, 3D reconstruction.
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Examples

(Manta.avi)

Tracking and Identification of objects in Blueview Data
Video Courtesy of SeeByte Ltd
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Cascade Classifiers for High Resolution Sensors

Cascade Classifier
Proposed by Viola and Jones for video processing [35].
Coarse to fine approach.
Explicit use of sequences of classifiers with increasing complexity.

Key features
Feature extraction: use of Haar features and integral images. Very Fast.
Efficient Feature Selection Algorithms. Adaboost.
Ability to process large amount of data in real time. Cascades.
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Cascade Framework
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Conclusions

What’s available?
Current ATR algorithms have probably reached their limits.
High resolution is there (and needed!): SAS, Acoustic Cameras. We
need to use it!
Simulation tools can be useful for training, prediction, classification and
validation.
Multi-aspect / Multiple classifier fusion should be used.
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Conclusions

What’s missing - Algorithms & Data
New ATR techniques using high resolution(SAS) and video
rate(Acoustic cameras).
Much to learn from recent developments in machine vision.
Use of Low-Frequency Wideband for classification [6] must be fully
explored
Context must be taken into account in algorithm on-line tuning
Operators’ feedback (implicit or explicit) must be used in an incremental
/transfer learning framework.
Performance evaluation (assigning a confidence to the classification
outputs is critical for autonomous deployment. Recent developments
using Gaussian Processes are encouraging.
Large datasets are required to train algorithms if machine learning is to
be of used.
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Conclusions

What’s missing - Concepts of Operations and & Data acquisition
Clear CONOPS to use all the possible modalities optimally.
Reactive data gathering to optimise Pd and Pfa online (See [36]).
Goal Based Planning to move towards more autonomy.
Open Standards to enable easy multiple-vehicle operations (resources
are sparse).
Open Platforms to test algorithm and autonomy solutions.
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