Towards Robust ATR in Sonar Imagery

Yvan Petillot

Joint Research Institute in Signal and Image Processing Heriot-Watt University Scotland

June 23rd 2014

Introduction 00000000	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
Outline					

- The future of Mine Counter Measures (MCM) in the UK
- Object Recognition
- The Detection /Classification Problem
- The Clutter Issue

Introduction 00000000	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
Outline					

- The future of Mine Counter Measures (MCM) in the UK
- Object Recognition
- The Detection /Classification Problem
- The Clutter Issue

2 Simulation Tools

- Introduction
- Fast Simulation
- Augmented Reality

Introduction 00000000	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
Outline					

- The future of Mine Counter Measures (MCM) in the UK
- Object Recognition
- The Detection /Classification Problem
- The Clutter Issue

Simulation Tools

- Introduction
- Fast Simulation
- Augmented Reality

Classical Approaches

- Classical Approaches
- Fusion Techniques
- High Resolution Imaging What do we need?

Introduction 00000000	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
Outline					

- The future of Mine Counter Measures (MCM) in the UK
- Object Recognition
- The Detection /Classification Problem
- The Clutter Issue

Simulation Tools

- Introduction
- Fast Simulation
- Augmented Reality

Classical Approaches

- Classical Approaches
- Fusion Techniques
- High Resolution Imaging What do we need?

Recent Developments

- SAS
- Acoustic Cameras
- New Algorithms

Introduction 00000000	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
Outline					

- The future of Mine Counter Measures (MCM) in the UK
- Object Recognition
- The Detection /Classification Problem
- The Clutter Issue

Simulation Tools

- Introduction
- Fast Simulation
- Augmented Reality

Classical Approaches

- Classical Approaches
- Fusion Techniques
- High Resolution Imaging What do we need?

Recent Developments

- SAS
- Acoustic Cameras
- New Algorithms

Conclusions

 Introduction
 Simulation Tools
 Classical Approaches
 Recent Developments
 Conclusions
 References

 • 000000
 00000
 00000
 00000
 00000
 00000
 References

 An (brief) introduction to Mine and Counter Measures
 Introduction to Mine and Counter Measures
 Introduction to Mine and Counter Measures
 Introduction to Mine and Counter Measures

What is MCM?

The ability to detect, identify and neutralise mines. Mines can be floating, mid-water (moored) or on the bottom.

 Introduction
 Simulation Tools
 Classical Approaches
 Recent Developments
 Conclusions
 References

 ••••••••••
 ••••••
 •••••
 •••••
 ••••
 ••••
 ••••
 ••••
 ••••

 •••••
 ••••
 •••
 •••
 •••
 •••
 •••
 •••
 •••

 •••
 ••
 ••
 ••
 ••
 ••
 ••
 ••

 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••
 ••</

What is MCM?

The ability to detect, identify and neutralise mines. Mines can be floating, mid-water (moored) or on the bottom.

Why does it matter?

Mines are cheap and can cause damage to large assets (asymetric threat). Modern warfare has recently focused on external intervention. 90% of the world's trade is carried by sea, including oil...

ATR in Sonar Imagery

Introduction 0000000	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
	110 1 1 10	2.6			

- A paradigm shift in MCM
 - Traditional MCM is done using dedicated ships with hull mounted sonars.
 - These are expensive to run and maintain and need to be able to run over minefields for sweeping.
 - New doctrine based around multi-purpose metallic ships with unmanned systems to support the MCM function
 - renewed emphasis on automatic target recognition to support in-stride detection, identification and neutralisation

ATR in Sonar Imagery

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	Reference
Thursday 1 C	an an a fan ar ta		hand MCM		

Typical Conops for autonomous systems based MCM

- Vehicle is doing a Search / Classify / Map mission
- Sensor of choice is Sonar
- It is a signal and image processing problem
- Typical sonar image with targets:

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References		
Object Re	ecognition - De	efinition					
Aim							
Object Recognition aims at associating a semantic label to a subset of an							
image.							

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References			
Object Recognition - Definition								

Object Recognition aims at associating a semantic label to a subset of an image.

Can be based on:

• Appearance (Shape, 3D, Color, Texture)

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References		
Object Recognition - Definition							

Object Recognition aims at associating a semantic label to a subset of an image.

Can be based on:

- Appearance (Shape, 3D, Color, Texture)
- **Structural analysis** (Physical Components, Interactions with probing signals)

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
Object Re	cognition - De	efinition			

Object Recognition aims at associating a semantic label to a subset of an image.

Can be based on:

- Appearance (Shape, 3D, Color, Texture)
- **Structural analysis** (Physical Components, Interactions with probing signals)
- However, despite the vast literature, performances of most of the algorithms still fall far behind human perception!

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
Object Re	cognition - De	finition			

Object Recognition aims at associating a semantic label to a subset of an image.

Can be based on:

- Appearance (Shape, 3D, Color, Texture)
- **Structural analysis** (Physical Components, Interactions with probing signals)
- However, despite the vast literature, performances of most of the algorithms still fall far behind human perception!
- Validation and Comparison of algorithms remains a real issue in underwater.

Introduction	Simulation Tools	Classical Approaches 000000	Recent Developments	Conclusions	References	
Object Recognition - Methods						
Techniqu	es Based on A	ppearance:				
• Requ	uire high resolu	ution data (Side S	Scan, SAS)			

- 3D information (Bathymetry, Interferometry)
- Is it sufficient for identification?

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
Object Re	cognition - M	ethods			

Techniques Based on Appearance:

- Require high resolution data (Side Scan, SAS)
- 3D information (Bathymetry, Interferometry)
- Is it sufficient for identification?

Techniques Based on Structural Analysis or acoustic color

- Require low frequency wideband sonar to penetrate inside targets
- Require very good acoustic models and understanding of acoustic propagation
- Can it also be used for detection?

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
Object Re	cognition - M	ethods			

Techniques Based on Appearance:

- Require high resolution data (Side Scan, SAS)
- 3D information (Bathymetry, Interferometry)
- Is it sufficient for identification?

Techniques Based on Structural Analysis or acoustic color

- Require low frequency wideband sonar to penetrate inside targets
- Require very good acoustic models and understanding of acoustic propagation
- Can it also be used for detection?

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
Object Re	cognition - Ste	eps to Identificati	on		

Generally 3 Steps but can be combined:

- Detection: Is this a possible Mine Like Contact?
- Classification: Is this a Mine?
- Identification: Which Type of Mine is this?

Introduction ○○○○○●○	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
Detection	& Classificati	on of Possible Ta	iraets		

• This is a rare event detection problem (unbalanced classes).

Introduction ○○○○○●○	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	Reference
Detection	& Classificati	on of Possible Ta	urgets		

- This is a rare event detection problem (unbalanced classes).
- Yet **P**_d must be very high.

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
D ()	0 01	CD 11 T			

- This is a rare event detection problem (unbalanced classes).
- Yet **P**_d must be very high.
- And P_{fa} very low (of the order of 10^{-8} to be useful), especially for on-board systems.

Introduction ○○○○○●○	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References

- This is a rare event detection problem (unbalanced classes).
- Yet **P**_d must be very high.
- And P_{fa} very low (of the order of 10^{-8} to be useful), especially for on-board systems.

Saliency [14, 21, 3]

Aims at detecting gobal rarity or local contrast.

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
~ ·	a an 1.a 1				

- This is a rare event detection problem (unbalanced classes).
- Yet **P**_d must be very high.
- And P_{fa} very low (of the order of 10^{-8} to be useful), especially for on-board systems.

Saliency [14, 21, 3]

Aims at detecting gobal rarity or local contrast. Requires a good modelling of the background. See day 3 of the summer school

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
~ ·	a an 1.a 1				

- This is a rare event detection problem (unbalanced classes).
- Yet **P**_d must be very high.
- And P_{fa} very low (of the order of 10^{-8} to be useful), especially for on-board systems.

Saliency [14, 21, 3]

Aims at detecting gobal rarity or local contrast. Requires a good modelling of the background. See day 3 of the summer school

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References

- This is a rare event detection problem (unbalanced classes).
- Yet **P**_d must be very high.
- And P_{fa} very low (of the order of 10^{-8} to be useful), especially for on-board systems.

Saliency [14, 21, 3]

Aims at detecting gobal rarity or local contrast. Requires a good modelling of the background. See day 3 of the summer school

Model Based Approach [23, 2, 13, 15, 4, 27, 30, 31, 10]

Uses model of Targets and / or simulation to perform detection.

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References

- This is a rare event detection problem (unbalanced classes).
- Yet **P**_d must be very high.
- And P_{fa} very low (of the order of 10^{-8} to be useful), especially for on-board systems.

Saliency [14, 21, 3]

Aims at detecting gobal rarity or local contrast. Requires a good modelling of the background. See day 3 of the summer school

Model Based Approach [23, 2, 13, 15, 4, 27, 30, 31, 10]

Uses model of Targets and / or simulation to perform detection. Requires a good modelling of the imaging system.

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References

- This is a rare event detection problem (unbalanced classes).
- Yet **P**_d must be very high.
- And P_{fa} very low (of the order of 10^{-8} to be useful), especially for on-board systems.

Saliency [14, 21, 3]

Aims at detecting gobal rarity or local contrast. Requires a good modelling of the background. See day 3 of the summer school

Model Based Approach [23, 2, 13, 15, 4, 27, 30, 31, 10]

Uses model of Targets and / or simulation to perform detection. Requires a good modelling of the imaging system.

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References

- This is a rare event detection problem (unbalanced classes).
- Yet **P**_d must be very high.
- And P_{fa} very low (of the order of 10^{-8} to be useful), especially for on-board systems.

Saliency [14, 21, 3]

Aims at detecting gobal rarity or local contrast. Requires a good modelling of the background. See day 3 of the summer school

Model Based Approach [23, 2, 13, 15, 4, 27, 30, 31, 10]

Uses model of Targets and / or simulation to perform detection. Requires a good modelling of the imaging system.

Supervised Learning Approach [5, 25, 16, 17, 32, 8, 7]

Learns classification rules from example.

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References

- This is a rare event detection problem (unbalanced classes).
- Yet **P**_d must be very high.
- And P_{fa} very low (of the order of 10^{-8} to be useful), especially for on-board systems.

Saliency [14, 21, 3]

Aims at detecting gobal rarity or local contrast. Requires a good modelling of the background. See day 3 of the summer school

Model Based Approach [23, 2, 13, 15, 4, 27, 30, 31, 10]

Uses model of Targets and / or simulation to perform detection. Requires a good modelling of the imaging system.

Supervised Learning Approach [5, 25, 16, 17, 32, 8, 7]

Learns classification rules from example. Requires large representative datasets. This is very often problematic underwater.

ATR in Sonar Imagery

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References

- This is a rare event detection problem (unbalanced classes).
- Yet **P**_d must be very high.
- And P_{fa} very low (of the order of 10^{-8} to be useful), especially for on-board systems.

Saliency [14, 21, 3]

Aims at detecting gobal rarity or local contrast. Requires a good modelling of the background. See day 3 of the summer school

Model Based Approach [23, 2, 13, 15, 4, 27, 30, 31, 10]

Uses model of Targets and / or simulation to perform detection. Requires a good modelling of the imaging system.

Supervised Learning Approach [5, 25, 16, 17, 32, 8, 7]

Learns classification rules from example. Requires large representative datasets. This is very often problematic underwater.

ATR in Sonar Imagery

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
What is clu	itter?				

• Local Perturbation disturbing algorithms results. These can be modelled by statistics. Examples are sand ripples.

Introduction ○○○○○○●	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
What is clu	tter?				

- Local Perturbation disturbing algorithms results. These can be modelled by statistics. Examples are sand ripples.
- Objects Similar to real targets for given sensor / view. Class Overlaps. Example is rock fields.

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
XX 71	1 0	000000	00000		
What is c	lutter?				

- Local Perturbation disturbing algorithms results. These can be modelled by statistics. Examples are sand ripples.
- Objects Similar to real targets for given sensor / view. Class Overlaps. Example is rock fields.

Example of textured seabed (Left) and flat seabed cluttered with small rocks (Right)

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
What is c	lutter?				

- Local Perturbation disturbing algorithms results. These can be modelled by statistics. Examples are sand ripples.
- Objects Similar to real targets for given sensor / view. Class Overlaps. Example is rock fields.

Example of textured seabed (Left) and flat seabed cluttered with small rocks (Right)

- We now start to have good models of clutter and can use context to drive algorithms behaviours [26]
- But estimation of model parameters is difficult.

Introduction 0000000	Simulation Tools ●○○○○○	Classical Approaches	Recent Developments	Conclusions	References				
Simulation	Simulation Tools - Objectives [18, 20, 26]								

Aim:

To simulate seabed or targets for algorithms development, validation and prediction of performances.

Introduction 00000000	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
Simulatio	n Tools - Obie	ctives [18, 20, 26	1		

To simulate seabed or targets for algorithms development, validation and prediction of performances.

Classical approaches:

• Ray Tracing: simulate propagation of sound by rays [18].

Introduction 00000000	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
Simulatio	n Tools - Obie	ctives [18 20 26	1		

To simulate seabed or targets for algorithms development, validation and prediction of performances.

Classical approaches:

• Ray Tracing: simulate propagation of sound by rays [18]. Can model multipath. Slow.

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
	00000				
Cimulatio	n Taala Ohia	atives [10 20 26	1		
Similario	n Tools - Unie	CHVESTIX ZU ZO			

To simulate seabed or targets for algorithms development, validation and prediction of performances.

- Ray Tracing: simulate propagation of sound by rays [18]. Can model multipath. Slow.
- Energy based approach: Uses Sonar equation [26].

Introduction 00000000	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
Simulatio	n Tools - Obie	ctives [18-20-26	1		

To simulate seabed or targets for algorithms development, validation and prediction of performances.

- Ray Tracing: simulate propagation of sound by rays [18]. Can model multipath. Slow.
- Energy based approach: Uses Sonar equation [26]. Can handle complex noises. Very Fast.

Aim:

To simulate seabed or targets for algorithms development, validation and prediction of performances.

- Ray Tracing: simulate propagation of sound by rays [18]. Can model multipath. Slow.
- Energy based approach: Uses Sonar equation [26]. Can handle complex noises. Very Fast.
- PSTD based approach: Solves the full wave equation [20].

Introduction Simulation Tools Classical Approaches conclusions References conclusions Conclusions References conclusions Concl

Aim:

To simulate seabed or targets for algorithms development, validation and prediction of performances.

- Ray Tracing: simulate propagation of sound by rays [18]. Can model multipath. Slow.
- Energy based approach: Uses Sonar equation [26]. Can handle complex noises. Very Fast.
- PSTD based approach: Solves the full wave equation [20]. Can handle resonances and complex interfaces. Very Very Slow.

Introduction Simulation Tools Classical Approaches Ococo Conclusions References Ococo Simulation Tools - Objectives [18, 20, 26]

Aim:

To simulate seabed or targets for algorithms development, validation and prediction of performances.

- Ray Tracing: simulate propagation of sound by rays [18]. Can model multipath. Slow.
- Energy based approach: Uses Sonar equation [26]. Can handle complex noises. Very Fast.
- PSTD based approach: Solves the full wave equation [20]. Can handle resonances and complex interfaces. Very Very Slow.
- Augmented Reality: Places simulated objects into real scenes [9].

Introduction Simulation Tools Classical Approaches Recent Developments Conclusions References

Aim:

To simulate seabed or targets for algorithms development, validation and prediction of performances.

- Ray Tracing: simulate propagation of sound by rays [18]. Can model multipath. Slow.
- Energy based approach: Uses Sonar equation [26]. Can handle complex noises. Very Fast.
- PSTD based approach: Solves the full wave equation [20]. Can handle resonances and complex interfaces. Very Very Slow.
- Augmented Reality: Places simulated objects into real scenes [9]. No need to simulate complex seabeds. Fast but not very accurate.

Introduction Simulation Tools Classical Approaches Recent Developments Conclusions References

Aim:

To simulate seabed or targets for algorithms development, validation and prediction of performances.

- Ray Tracing: simulate propagation of sound by rays [18]. Can model multipath. Slow.
- Energy based approach: Uses Sonar equation [26]. Can handle complex noises. Very Fast.
- PSTD based approach: Solves the full wave equation [20]. Can handle resonances and complex interfaces. Very Very Slow.
- Augmented Reality: Places simulated objects into real scenes [9]. No need to simulate complex seabeds. Fast but not very accurate.

Simulation Tools

Classical Approaches 000000 Recent Developments

onclusions

References

Simulation Tools - Examples

Ray Tracing Simulation (top) and PSTD simulation (bottom)

Yvan Petillot

oduction Simulation Tools Classical Approaches

Recent Developments

Conclusions

References

Simulation Tools - Energy Based Approach [26]

SL: Source Level for the projector, DI : Directivity Index, TL :Transmission Loss, NL :Noise Level, RL : Reverberation Level, TS : Target

Strength and DT : Detection Threshold.

ATR in Sonar Imagery Yva

Yvan Petillot

MAL

Joint Research Institute in Signal and Image Processing

Introduction

Simulation Tools

Classical Approaches

Recent Developments

onclusions

References

Augmented Reality [9]

Idea:

Insert simulated targets in real data from real environments.

Simulation Tools

Classical Approaches

Recent Developments

nclusions

References

Route to systematic evaluation

ATR in Sonar Imagery

Yvan Petillot

WERDOT

Introduction Simulation Tools Classical Approaches Recent Developments Conclusions References

Optimal Planning for ATR

Yvan Petillot

Introduction 00000000	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
Route to c	optimised miss	ion planning			

Performance Prediction Tool

ATR in Sonar Imagery

Yvan Petillot

HERIOT MALTI

Simulation Tools

Classical Approaches

Recent Developments

onclusions

References

Route to optimised mission planning

Optimal Planning Examples

16/29

Introduction 00000000	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
Model Bas	ed Approache	es			

Markov Random Field Based Detection / Mathematical morphology [23, 2, 31]

- Segmentation of images based on priors (highlight / shadow pairs).
- Works well on easy seabed types

Original Image

Segmented Image using Target Priors

Simulation Tools

Classical Approaches

Recent Developments

nclusions

References

Model Based Approaches

Snake Based Detection [10, 30]

- Extracts shadow shape for classification.
- Works well on lowly textured seabed
- Can be extended to use both echo and shadow

Introduction 00000000	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
Model Ba	sed Approache	es			

Simulation Based Classification [19]

- Use simulation of compare highlights and shadows of potential targets
- Generally poor results on side-scan sonar (resolution is too low)

Simulation Tools

Classical Approaches

Recent Developments

onclusions

References

Model Based Approaches

This can be extended to Synthetic Aperture Sonar Issue is the definition of a robust image to image distance function in presence of noise

SAS Real Target Image (Courtesy NATO CMRE) [24]

Simulated Target using a Lambertian Model (3cm)

ATR in Sonar Imagery

Yvan Petillot

Introduction 00000000	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
Learning	Based Approa	ches [9, 5, 25, 16	. 17. 32. 8. 71		

• Use large datasets (simulated or real).

Introduction 00000000	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
Learning B	ased Approach	es [9, 5, 25, 16, 1	7, 32, 8, 7]		

- Use large datasets (simulated or real). In our Case Simulated.
- Extract features (Central filters, Haar) and Train.

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
		00000			
Learning	Based Approa	ches [9 5 25 16	17 32 8 71		

- Use large datasets (simulated or real). In our Case Simulated.
- Extract features (Central filters, Haar) and Train.
- Results on Simulated and Real Data:

%	Non-t.	Cyl.	Manta	Rockan
Non-t.	92	4	4	0
Cyl.	11	80	9	0
Manta	1	2	97	0
Rockan	0	0	6	94

%	Non-t.	Cyl.	Manta	Rockan
Non-t.	96	4	0	0
Cyl.	0	19	81	0
Manta	0	12	88	0
Rockan	0	0	20	80

Error(simulation): 9%

Error(real): 18%

Simulation Tools

Classical Approaches

Recent Developments

Conclusions

References

MultiView Fusion [29]

Mono-Image Belief			Fused Belief						
Obj	Cyl	Sph	Cone	Clutt	Objs Fused	Cyl	Sph	Cone	Clutt
1	0.70	0.00	0.00	0.21	1	0.70	0.00	0.00	0.21
2	0.83	0.00	0.00	0.08	1,2	0.93	0.00	0.00	0.05
3	0.83	0.00	0.00	0.08	1,2,3	0.98	0.00	0.00	0.01
4	0.17	0.00	0.00	0.67	1,2,3,4	0.96	0.00	0.00	0.03

Dempster-Shafer Fusion Example

Introduction 00000000	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
Context A	analysis [28]				

- Use texture features to segment / classify seabed (Flat, Ripples, Complex)
- Use Clutter Density to Clean Maps and extract difficult areas.

Courtesy of SeeByte Ltd and NATO CMRE

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	Referei
		000000			

Context Dependent Classifiers Fusion [22, 34, 33, 12]

Probabilistic Fusion Architecture

Context Aware Fusion Architecture

The second

Introduction 00000000	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References		
High Possibilition What do we need? [26]							

Idea

Study the minimum resolution required to perform detection and classification.

Performance estimation using eigen-spaces methods for object classification.

Consider a set of k images for an object of class L:

- Each images M_i of size $m \times n$ is first rasterized in a vector M'_i of size mn
- For each class, the mean and standard deviation of the class is calculated.
- Normalise each training vector: $T_i = \frac{M'_i M_{mean}}{std(M'_i)}$
- Compute the covariance matrix of $\{T_i\}$ and extract the first p eigenvectors. This generates a subspace Θ_L
- For each new target I_n , project it onto each subspace Θ_L and allocate the class as: $Targ = min_L ||I_n - P_{\Theta_I}(I_n)||$, where $P_{\Theta_I}(I_n)$ is the projection of I_n on subspace Θ .

Introduction

Simulation Tools

Classical Approaches

Recent Developments

onclusions

References

High Resolution - What do we need? [26]

Influence of Resolution

Yvan Petillot

Simulation Tools

Classical Approaches

Recent Developments

nclusions

References

High Resolution - What do we need? [26]

Influence of Noise

Yvan Petillot

Introduction 00000000	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References		
High Resolution - What do we need? [26]							

Highlights or Shadows?

Yvan Petillot

HERIOT

Introduction 00000000	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
High Res	olution - What	do we need? [26	ן		

Summary

- Highlights should be used for very high resolution imagery (SAS, VHF Sonar 1MHz+)
- Shadows are better (and easier) for mid resolution imagery
- In practice, noise level is not an issue but clutter is
- Target is P_{fa} of 10^{-8} or less!

Introduction 00000000	Simulation Tools	Classical Approaches	● ● ○ ○ ○	Conclusions	References
CAS for	TD Do wo M				

SAS for ATR. Do we Need anything else?

- Image quality of latest SAS sensors is extraordinary.
- Little difference between HF SAS and Lambertian Based Simulation.

SAS Real Target Image [1]

Circular SAS Image [11]

Yvan Petillot

Introduction 0000000	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	Reference
SAS for	TD Do wo M	and envithing also	ົງ		

SAS for ATR. Do we Need anything else?

- Image quality of latest SAS sensors is extraordinary.
- Little difference between HF SAS and Lambertian Based Simulation.

SAS Real Target Image [1]

• But not widely available

Simulated Target using a Lambertian Model (3cm)

Circular SAS Image [11]

Introduction 00000000	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
SAS for A	ATR. Do we No	?			

- Image quality of latest SAS sensors is extraordinary.
- Little difference between HF SAS and Lambertian Based Simulation.

SAS Real Target Image [1]

Simulated Target using a Lambertian Model (3cm)

Circular SAS Image [11]

- But not widely available
- Requires expensive platforms and sensors

Introduction 00000000	Simulation Tools	Classical Approaches	Recent Developments ●○○○○	Conclusions	References
CAS for	TD Do wo M	and anything also	้า		

SAS for ATR. Do we Need anything else?

- Image quality of latest SAS sensors is extraordinary.
- Little difference between HF SAS and Lambertian Based Simulation.

SAS Real Target Image [1]

Simulated Target using a Lambertian Model (3cm)

Circular SAS Image [11]

- But not widely available
- Requires expensive platforms and sensors
- Still does not provide sufficient performances in complex environments

Introduction 00000000	Simulation Tools	Classical Approaches	Recent Developments ●○○○○	Conclusions	References
SAS for ATP. Do we Need anything also?					

SAS for ATR. Do we Need anything else?

- Image quality of latest SAS sensors is extraordinary.
- Little difference between HF SAS and Lambertian Based Simulation.

SAS Real Target Image [1]

Simulated Target using a Lambertian Model (3cm)

Circular SAS Image [11]

- But not widely available
- Requires expensive platforms and sensors
- Still does not provide sufficient performances in complex environments
- Coherence is necessary for image formation. This can be destroyed by multipath in shallow water.

New Video-Rate Acoustic Sensors for Identification

• Image quality ever improving

Various DIDSON Images, Courtesy of Sound Metrics

- Target Tracking and Bayesian Filtering now possible.
- Multiple angles on targets. MultiView, 3D reconstruction.

References

Introduction 00000000	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
Examples					

(Manta.avi)

Tracking and Identification of objects in Blueview Data

Video Courtesy of SeeByte Ltd

Introduction 00000000	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
Cascade (Classifiers for 1	High Resolution S	Sensors		

Cascade Classifier

- Proposed by Viola and Jones for video processing [35].
- Coarse to fine approach.
- Explicit use of sequences of classifiers with increasing complexity.

Key features

- Feature extraction: use of Haar features and integral images. Very Fast.
- Efficient Feature Selection Algorithms. Adaboost.
- Ability to process large amount of data in real time. Cascades.

Introduction 00000000	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
Cascade Fr	amework				

Introduction 00000000 Simulation Tools

Classical Approaches

Recent Developments

Conclusions

References

Conclusions

What's available?

- Current ATR algorithms have probably reached their limits.
- High resolution is there (and needed!): SAS, Acoustic Cameras. We need to use it!
- Simulation tools can be useful for training, prediction, classification and validation.
- Multi-aspect / Multiple classifier fusion should be used.

Introduction 00000000	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	Reference
a 1 .					

Conclusions

What's missing - Algorithms & Data

- New ATR techniques using high resolution(SAS) and video rate(Acoustic cameras).
- Much to learn from recent developments in machine vision.
- Use of Low-Frequency Wideband for classification [6] must be fully explored
- Context must be taken into account in algorithm on-line tuning
- Operators' feedback (implicit or explicit) must be used in an incremental /transfer learning framework.
- Performance evaluation (assigning a confidence to the classification outputs is critical for autonomous deployment. Recent developments using Gaussian Processes are encouraging.
- Large datasets are required to train algorithms if machine learning is to be of used.

Introduction 00000000	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
Conclusio	ons				

What's missing - Concepts of Operations and & Data acquisition

- Clear CONOPS to use all the possible modalities optimally.
- **Reactive data gathering** to optimise P_d and P_{fa} online (See [36]).
- Goal Based Planning to move towards more autonomy.
- **Open Standards** to enable easy multiple-vehicle operations (resources are sparse).
- Open Platforms to test algorithm and autonomy solutions.

Introduction 00000000	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
Acknowle	dgments				

- Oceans Systems Laboratory: Yan Pailhas, Judith Bell, Scott Reed, P.Y. Mignotte, Chris Capus, Jamil Sawas, Enrique Coiras, Keith Brown, David Lane.
- SeeByte Ltd: Scott Reed, Pierre Yves Mignotte, Jose Vasquez, Francois Chataignier.
- NATO Undersea Research Centre.
- DSTL & ONR for supporting us over the years.

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References

- [1] Belletini A. and M. Pinto. Design and experimental results of a 300 khz synthetic aperture sonar optimized for shallow water operations. *IEEE* journal of Oceanic Engineering, 2009.
- [2] B.Calder. Bayesian Spatial Models for SONAR Image Interpretation. PhD thesis, Heriot-Watt University, September 1997.
- [3] B.R.Calder, L.M.Linnett, and D.R.Carmichael. Spatial stochastic models for seabed object detection. Proc. SPIE-Int Soc. Opt. Eng., 3079, 1997.
- [4] B.R.Calder, L.M.Linnett, and D.R.Carmichael. Bayesian approach to object detection in sidescan sonar. IEE Proc-Vis. Image Signal Proc., 45(3), 1998.
- [5] B.Zerr, E.Bovio, and B.Stage. Automatic mine classification approach based on AUV manoeuverability and the COTS side scan sonar. In Autonomous Underwater Vehicle and Ocean Modelling Networks: GOATS 2000 Conf. Proc. CP-46, pages 315–322. NATO Saclant Undersea Research Centre, 2001.

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References
					2

[6] C Capus, Y Pailhas, and K Brown. Classification of bottom-set targets from wideband echo responses to bio-inspired sonar pulses. In Proc. Inst. Acoust., Bioacoustics '07.

- [7] C.M.Ciany and J.Huang. Computer aided detection/computer aided classification and data fusion algorithms for automated detection and classification of underwater mines. Proc. MTS/IEEE Oceans Conf. and Exhibition, 1:277–284, 2000.
- [8] C.M.Ciany and W.Zurawski. Performance of Computer Aided Detection/Computer Aided Classification and data fusion algorithms for automated detection and classification of underwater mines. Presented at CAD/CAC Conf., Halifax, Novia Scotia, Canada, Nov. 2001.
- [9] E. Coiras, P.-Y. Mignotte, Y. Petillot, J. Bell, and K Lebart. Supervised target detection and classification by training on augmented reality data. IET RADAR SONAR AND NAVIGATION, 2007.
- [10] E.Dura, J.Bell, and D.Lane. Superellipse fitting for the classification of mine-like shapes in side-scan sonar images. In Proc. MTS/IEEE Oceans Conf. and Exibition, pages 23–28, 2002.

ATR in Sonar Imagery

Yvan Petillot

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References

- [11] B. Ferguson and R. Wyber. Generalized framework for teal aperture, synthetic aperture and tomographic sonar imaging. *IEEE journal of* Oceanic Engineering, 2009.
- [12] G.J.Dobeck. Algorithm fusion for automated sea mine detection and classification. Proc. MTS/IEEE Oceans Conf. and Exhibition, 1:130–134, 2001.
- [13] G.J.Dobeck, J.C.Hyland, and L.Smedley. Automated detection/classification of sea mines in sonar imagery. Proc. SPIE-Int. Soc. Optics, 3079:90-110, 1997.
- [14] A. Goldman and I. Cohen. Anomaly subspace detection based on a multi-scale markov random field model. Signal Processing, 2004.
- [15] I.Quidu, Ph.Malkasse, G.Burel, and P.Vilbe. Mine classification based on raw sonar data: An approach combining Fourier descriptors, statistical models and genetic algorithms. OCEANS MTS/IEEE Conf. and Exhibition, 1:285-290, 2000.

[16] I.Quidu, Ph.Malkasse, G.Burel, and P.Vilbe. Mine classification using a

Simulation Tools Recent Developments References Introduction hybrid set of descriptors. OCEANS MTS/IEEE Conf. and Exhibition,

1:291-297, 2000.

- [17] J.A.Fawcett. Image-based classification of side-scan sonar detections. presented at CAD/CAC Conf., Halifax, Novia Scotia, Canada, Nov. 2001.
- [18] J.Bell. A Model for the Simulation of Sidescan Sonar. PhD thesis, Heriot-Watt University, August 1995.
- [19] J.Bell, G.Elston, and S.Reed. Sonar image synthesis techniques and applications. Acoustic Bulletin - Institute of Acoustics, 28(4):24–29, July/August 2003.
- [20] J.Bell, G.Elston, and S.Reed. Sonar image synthesis techniques and applications. Acoustic Bulletin, Institute of Acoustics, 28(4), July/August 2003.
- [21] F Maussang, A. Hetet, and M Amate. Higher-order statistics for the detection of small objects in a noisy background application on sonar imaging. EURASIP Journal on Applied Signal Processing, 2007.

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References

[22] P. Y. Mignotte, E. Coiras, H. Rohou, Y. Petillot, J. Bell, and K Lebart. Adaptive fusion framework based on augmented reality training. *IET RADAR SONAR AND NAVIGATION*, 2008.

- [23] M.Mignotte, C.Collet, P.Perez, and P.Bouthemy. Hybrid genetic optimization and statistical model-based approach for the classification of shadow shapes in sonar imagery. *IEEE Trans. Pattern Anal. Machine Intell.*, 22(2):129–141, Feb. 2000.
- [24] M.Pinto, A.Bellettini, R.Hollett, and A.Tesei. High resolution imaging of buried targets. In GOATS 2000 Conf. Proceedings: Autonomous Underwater Vehicle and Ocean Modelling Networks, SaclantCen, La Spezia, Italy, 2000.
- [25] M.R.Azimi-Sadjadi, A.Jamshidi, and G.J.Dobeck. Adaptive underwater target classification with multi-aspect decision feedback. Presented at CAD/CAC Conf., Halifax, Novia Scotia, Canada, Nov. 2001.
- [26] Y. Pailhas, Y. Petillot, C Capus, and K Brown. Real-time sidescan simulator and applications. In *IEEE Oceans 2009 Europe Conferences*.

- [27] R.Balasubramanian and M.Stevenson. Pattern recognition for underwater mine detection. Presented at CAD/CAC Conf., Halifax, Novia Scotia, Canada, Nov. 2001.
- [28] S. Reed, I. Tena-Ruiz, C Capus, and Y. Petillot. The fusion of large scale classified side-scan sonar image mosaics. *IEEE Transactions on Image* Processing, 2006.
- [29] S.Reed, Y.Petillot, and J.Bell. Unsupervised mine detection and analysis in side-scan sonar: A comparison of Markov Random Fields and statistical snakes. Presented at CAD/CAC Conf., Halifax, Novia Scotia, Canada, Nov. 2001.
- S.Reed, Y.Petillot, and J.Bell. An automated approach to the [30] classification of mine-like objects in sidescan sonar using highlight and shadow information. Accepted for publication in IEE Radar, Sonar and Navigation, 2003.
- [31] S.Reed, Y.Petillot, and J.Bell. A model based approach to the detection and classification of mines in sidescan sonar. Accepted for publication in JOSA, Applied Optics, 2003.

ATR in Sonar Imagery

Yvan Petillot

Introduction	Simulation Tools	Classical Approaches	Recent Developments	Conclusions	References

- [32] S.W.Perry and L.Guan. Detection of small man-made objects in multiple range sector scan imagery using neural networks. Presented at CAD/CAC Conf., Halifax, Novia Scotia, Canada, Nov. 2001.
- [33] T.Aridgides, M.Ferdandez, and G.Dobeck. Fusion of adaptive algorithms for the classification of sea mines using high resolution side scan sonar in very shallow water. *Proc. MTS/IEEE Oceans Conf. and Exhibition*, 1:135–142, 2001.
- [34] T.Aridgides, M.Frenandez, and G.Dobeck. Adaptive 3-Dimensional range-crossrange-frequency filter processing string for sea mine classification in side-scan sonar imagery. *SPIE Proc.*, 3079:111–122, 1997.
- [35] Paul Viola and Michael Jones. Robust real-time object detection. In *International Journal of Computer Vision*, 2001.
- [36] M Williams and C Lloyd. Reactive data gathering for non-analytic automatic target recognition. In *Proceedings of the SEAS DTC Conference, Edinburgh, 2008.*

