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| Abstract I

Multi-sensor exploitation is a key capability for developing and enhancing situation
awareness. Networks of sensors, however, pose signal and information processing
challenges such as maintaining a scalable, robust operation and a flexible structure in
a changing environment while complying with their resource limitations.

The main theme of this workpackage is distributed processing which overcome
these difficulties by removing the need for a single designated processing centre and
taking resource constraints such as the availability of communication links, limited
communication bandwidth and energy into account in designing strategies.

Objectives

1. We introduce node-wise separable calibration likelihoods for a pair of sensors
which are recursively updated using only the (multi-object) filtering distribu-
tions exchanged by the neighbouring nodes for distributed fusion and local
measurements.

2. We approximate the centralised parameter posterior p(9|Z11:k, ey Z{Vk) with
a pairwise Markov Random Field (MRF) p which is Markov with respect to
G = (V,€) and has our separable likelihoods as edge potentials. p enables
cooperative estimation through (Loopy) Belief Propagation [4]:
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— Our likelihoods use the first-order moments of the filtering distributions which
can be provided by, for example, the filtering algorithms in [5]. This enables us
to handle a wide range of uncertainties related to target measurements (e.g., as-
sociation uncertainties and false alarms) and benefit from the rich source of
multi-target information.
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Technical Challenges

Figure 1 (a) Networked buoys equipped with sonars. (b) A hierarchical network
structure facilitating robust in-network processing: The first tier forms sensor
clusters with processing centres. Decentralised in-network processing among cluster
heads takes place in the second tier.

#26: Sparse, low BW, heterogeneous networks.

#15: (Detection, classification and localisation in) spatially dense sensors with par-
tially correlated acoustic signals.

Sono-buoy challenge: Passive sonar network for tracking underwater targets ( Il-
lustrations by Mike Ralph, DSTL).

Research Themes

Theoretical frameworks useful in addressing such challenges:

— Approximate statistical inference on probabilistic models including point pro-
cess and graphical models facilitating distributed operation.

— Distributed maximum likelihood & optimisation methods.

— Accelerated consensus algorithms, diffusion learning.
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Figure 2 Snapshots from a typical run
of the proposed scheme demonstrating
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Scalable localisation for sensor clusters [7]:

— We consider bearings-only sensor clusters and locating the peripherals with
respect to the fusion centre using only the target measurements.

— We propose a solution that scales with the number of sensors, relaxing the
computational demand at the fusion centre.

Figure 3 (a) A sensor cluster
which consists of a fusion centre
and peripheral sensors.

(b) A triangulated Markov
Random Field model for the
in-cluster localisation problem.
(c) Corresponding Junction
Tree (JT) over which the
individual results for the
3—cliques are combined using the
() JT estimation algorithm.
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Recent Progress

Problem (WP2.1): Estimation of sensor

registration parameters, e.g., sensor loca- Zi

tions and orientations, in distributed fusion

networks by exploiting non-cooperative tar- y‘;’
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Background:

— The well-known parameter likelihood l(Z%:k, ey Z{\{k|6) based on target mea-

surements [1] requires centralised processing or joint filtering [2], which are
often not feasible due to the limitations in communication and computational
resources.

— In our distributed fusion paradigm, nodes (or cluster heads) perform local fil-
tering and communicate the filtering distributions with their immediate neigh-
bours (Fig. 1(b)) to improve upon the myopic accuracy [3].

Cooperative sensor self-localisation [6]:

| Conclusions and Future Work I

— E_WP2 investigates scalable fusion, registration and detection strategies for
networks of sensor platforms.

— We have recently proposed a cooperative self-localisation scheme for distributed
fusion networks which exploits measurements from non-cooperative targets [6].

— Another contribution of EZWP2 is a scalable (centralised) scheme for locating
peripheral sensors in bearings-only sensor clusters [7].

— Additional information sources such as received signal strength and GPS will
be introduced into these frameworks as well as other registration unkowns.

— Investigation of decentralised multi-sensor detection is scheduled for 2015.

— We developed a decentralised scheme which exploits non-cooperative targets.
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