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Abstract

Multi-sensor exploitation is a key capability for developing and enhancing situation
awareness. Networks of sensors, however, pose signal and information processing
challenges such as maintaining a scalable, robust operation and a flexible structure in
a changing environment while complying with their resource limitations.

The main theme of this workpackage is distributed processing which overcome
these difficulties by removing the need for a single designated processing centre and
taking resource constraints such as the availability of communication links, limited
communication bandwidth and energy into account in designing strategies.

Objectives

The main objective of E WP2 is to address challenges in detecting and tracking objects
with networked sensor platforms of various modalities:

2.1 Distributed Fusion & Registration: Develop scalable and reliable methods
for sensor fusion and registration that can be realised by a networked system.

2.2 Distributed Detection: Investigate distributed detection in networks of sen-
sors that are comparably less homogenous in their capabilities.

Technical Challenges
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Figure 1 (a) Networked buoys equipped with sonars. (b) A hierarchical network
structure facilitating robust in-network processing: The first tier forms sensor
clusters with processing centres. Decentralised in-network processing among cluster
heads takes place in the second tier.

#26: Sparse, low BW, heterogeneous networks.

#15: (Detection, classification and localisation in) spatially dense sensors with par-
tially correlated acoustic signals.

Sono-buoy challenge: Passive sonar network for tracking underwater targets ( Il-
lustrations by Mike Ralph, DSTL).

Research Themes

Theoretical frameworks useful in addressing such challenges:

– Approximate statistical inference on probabilistic models including point pro-
cess and graphical models facilitating distributed operation.

– Distributed maximum likelihood & optimisation methods.

– Accelerated consensus algorithms, diffusion learning.

Recent Progress

Problem (WP2.1): Estimation of sensor

registration parameters, e.g., sensor loca-
tions and orientations, in distributed fusion
networks by exploiting non-cooperative tar-
gets.

Background:

– The well-known parameter likelihood l(Z1
1:k, ..., Z

N
1:k|θ) based on target mea-

surements [1] requires centralised processing or joint filtering [2], which are
often not feasible due to the limitations in communication and computational
resources.

– In our distributed fusion paradigm, nodes (or cluster heads) perform local fil-
tering and communicate the filtering distributions with their immediate neigh-
bours (Fig. 1(b)) to improve upon the myopic accuracy [3].

Cooperative sensor self-localisation [6]:

– We developed a decentralised scheme which exploits non-cooperative targets.

1. We introduce node-wise separable calibration likelihoods for a pair of sensors
which are recursively updated using only the (multi-object) filtering distribu-
tions exchanged by the neighbouring nodes for distributed fusion and local
measurements.

2. We approximate the centralised parameter posterior p(θ|Z1
1:k, · · · , Z

N
1:k) with

a pairwise Markov Random Field (MRF) p̃ which is Markov with respect to
G = (V, E) and has our separable likelihoods as edge potentials. p̃ enables
cooperative estimation through (Loopy) Belief Propagation [4]:

p̃(θ) ,
∏

i∈V p(θi)
∏

(i,j)∈E l(Z
i
1:k, Z

j
1:k
|θi, θj).

– Our likelihoods use the first-order moments of the filtering distributions which
can be provided by, for example, the filtering algorithms in [5]. This enables us
to handle a wide range of uncertainties related to target measurements (e.g., as-
sociation uncertainties and false alarms) and benefit from the rich source of
multi-target information.

Figure 2 Snapshots from a typical run
of the proposed scheme demonstrating
self-localisation of range-bearing sensors
using noisy target measurements with
PD = 0.97 and false alarms. The highest
error for an ensemble of 200 Monte Carlo
simulations at the end of 150 steps is less
than 7.8m.

Scalable localisation for sensor clusters [7]:

– We consider bearings-only sensor clusters and locating the peripherals with
respect to the fusion centre using only the target measurements.

– We propose a solution that scales with the number of sensors, relaxing the
computational demand at the fusion centre.
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Figure 3 (a) A sensor cluster
which consists of a fusion centre
and peripheral sensors.
(b) A triangulated Markov
Random Field model for the
in-cluster localisation problem.
(c) Corresponding Junction
Tree (JT) over which the
individual results for the
3−cliques are combined using the
JT estimation algorithm.

Conclusions and Future Work

– E WP2 investigates scalable fusion, registration and detection strategies for
networks of sensor platforms.

– We have recently proposed a cooperative self-localisation scheme for distributed
fusion networks which exploits measurements from non-cooperative targets [6].

– Another contribution of E WP2 is a scalable (centralised) scheme for locating
peripheral sensors in bearings-only sensor clusters [7].

– Additional information sources such as received signal strength and GPS will
be introduced into these frameworks as well as other registration unkowns.

– Investigation of decentralised multi-sensor detection is scheduled for 2015.
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[1] O. Cappé, S. J. Godsill, and E. Moulines, “An overview of existing methods and recent advances in sequential

monte carlo, Proceedings of the IEEE, vol. 95, pp. 899–924, 2007.

[2] N.K. Kantas, S.S. Singh, and A. Doucet, “Distributed maximum likelihood for simultaneous self-localization and

tracking in sensor networks,” IEEE Transactions on Signal Processing, vol. 60, no. 10, pp. 5038–5047, 2012.
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