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£ o Pattern recognition
3 SURREY problem variants

=Multiclass pattern recognition

=Detection (two class problem)
=One-class problems (anomaly detection)
=Verification

=Multilabel classification

=Retrieval

1 UNIVERSITY OF

REY Introduction

m Pattern recognition is a branch of signal
processing that focuses on the recognition of
patterns and regularities in data

m Detected regularities (shape, texture, relations)
enable signal classification

m Applications span a vast range of problems auto-
mating human perception in decision making

Biometrics Object detect Target detect Bridge detection
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% SURREY Pattern recognition system
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Sensor

m Broad concept, including

Physical device

m Signal reconstruction and conditioning

Background removal
Registration

= Invariant representation

m Sensor design/development is
application specific

»&ry Example: Image analysis
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Pattern recognition system
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¥ SURREY Training data

Geometric viewpoint of the pattern recognition problem
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sy Overlapping classes

= Probabilistic model required

UNIVERSITY OF

Course topics

=Statistical Pattern Recognition
Pattern generation process
Statistical decision theory
Density function estimation
Basic classifiers

Sparse representation
Similarity based classification
Performance evaluation

= Multiple classifier systems

*Dimensionality reduction
= Feature selection
= Feature extraction

=Support Vector Machines (John Shawe-Taylor)
=Deep Neural Networks (Mark Plumbley)
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Statistical Pattern Recognition:

Classification

UNIVERSITY OF BaSIC. prObab”ity
SURREY relationships

m In Pattern Recognition we are dealing with two
random variables
class w
and pattern (measurement) vector x

m The probability of their joint occurrence can be
expressed in terms of conditional probabilities

ratng condrione® P(x, ) = p(x|w) P(w) = P(w]x)p(x)
probabilities

where P(w|x) ..... aposteriori class probability
p(x) ..... mixture density (measurement distri-
bution), which can be computed as

p(x) =) p(x|w)P(w)




Fe— Probability distribution
SURRE

functions
p(x|w;) P(w;) /X(
p(z) =
P(w;|x)
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Problem formulation

Region I'; associated
with class w;

°° o‘I_Q. °
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RREY  Statistical decision theory

= Given the probabilistic model of a pattern generating process, how
do we decide the class membership of pattern X

= Need to introduce decision costs”ij associated with the assignment
of pattern x, belonging to class w; to class w;

Pii cost of correct decision
= Note . .

Pij cost of incorrect decision

pij 2 0

Pij 2 Pii

» Example: Signature verification

w1 authentic signature
wp forged signature
p21 2 P12

_ UNIVERSITY OF

RREY  Bayes minimum error rule

e For zero-one costs, i.e.
pii =0 Vi
pij =1 Vi,j i
the r.h.s. of the Bayes minimum cost rule
becomes:

m
> pirP(wilx) =1 — P(wg|x)
i=1

and the corresponding decision rule is :

assign X — w; if P(wjlx) = mkax P(wi|x)
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Pdf Pdf of Class 2

Pdf of Class 2

T Feature value
Class 2 errors Class 1 errors

Decision threshold

SURREY Actual decision rule

m Aposteriori class probabilities estimated from
training data set

= Normally, the training data set would be labelled
X = {Xi,’)/i 1= 1, N}
m ~; is a true class label provided by supervisor
(teacher)

m System performance characterisation based on
an independent test data set

XT - {Xi,ﬂi 1= 1, N}

UNIVERSITY OF

Terminology

m The design of a pattern recognition system using
labelled data is referred to as supervised
learning

m If class labels are unavailable, we deal with a
non supervised learning problem

m PR system design involves
= development of practical decision rules
= model inference
= performance evaluation

UNIVERSITY OF

REY Parametric decision rules

Gaussian classifiers

plar) = (05 ] erpf )7 1)

= [4;is the mean vector of class i

= 3, is the covariance matrix of class w;
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Parametric decision rules

S Quadratic
= ey

Ha

¢/ 2

Piecewise linear

Nearest
mean
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O k-nearest neighbour
3 SURREY

decision rules

Let X = {x;,7jl7 = 1,.., N} be a training set
of N labelled patterns

. m
X —wj if kj= I‘Zn_alxkz

k;....# of samples from class i among nearest neighbour (k=1)
the k-nearest neighbours to x
- choice of k

Properties of NN rule:
- intuitive
- suboptimal
- computationally expensive
- dependent on metric used
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S YRRy NN decision rule summary

bl

N
assign X — w; ifé(xp,x) = mind(x;,x) and B, = w;
(]

where §(z, z) is distance between two patterns and g; is
the label of pattern x;

m Intuitively appealing

m Suboptimal performance unless the training set
is edited using the MULTIEDIT algorithm

m Computationally involved, unless data set edited
and condensed

m The choice of metric used for measuring distance
is very important

1 UNIVERSITY OF

Optimal metric

DISTANCE METRICS

d.(x,y) — Euclid dist:
ﬁj\ 7 E(x y) uclidean distance
ag d, (x.y) .
v dp(xy) — Tchebyshev distance
T by de(x.y) - City block distance

deey) = d; (k) + dy (5

distance metric maximising the
validity of the asymptotic assumption

direciion of data projection
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+SURREY Gaussian Mixture models

o Let x;,i =1,..., N be training set samples

K.... a number of Gaussian components
Estimate probability density as

p(x) = Y mi(cl)

f;(x|6;) is a Gaussian component with parameters
0j = (uj, xj) with pj and X; denoting the mean and
covariance matrix of the Gaussian component

o m; is the j-th component weight

P SURREY GMM comments

@ Local minima problem —s different initialisations

o Choice of covariance matrix
o Choice of K

o Optimise a joint criterion measuring fit to data subject to a
model complexity penalty term (Bayesian Information
Criterion)

o Use predictive validation

o Most recent approach based on the Dirichlet process model.
No need to specify the number of components K

UNIVERSITY OF

¥ SURREY GMM estimation

@ Given K, the parameters ; can be estimated using the
Expectation Maximisation algorithm

o Initialise 7}, 6; arbitrarily

o Compute
Plilx:) = Z,RT wx,-lc-fxi:m
= Yooy Pilxe)
i = & T Plilxe)xe @
T = o e Plixe) (xe = i) (xe — )T
T = %
¥ SURREY Dirichlet prior

o Based on the Chinese restaurant metaphor

o Allowing potentially an infinite number of components
K = oo with a prior distribution over these components
defined by a stick braking prior of the Dirichlet process

=] ~ =] i—1
Whm ” 2 () 3)

where random variables v; are drawn from distribution (1, )
@ a > 1 is a hyperparameter influencing the complexity of the
fitted model, can be estimated from data
o mj,i =1,..., K specify the probabilities of the current
components of the mixture and the probability of an
additional component being created

@ Choose a resonably large truncation parameter s
28




Dirichlet prior GMM
estimation

¥ SURREY

o Input: X,a,fB(1,a), s
o Compute 7, and initialise 6;
@ update model components
P — __wifi(xt|6;)
P(ilxe) = S w0
ni = Xlz’rv=1Np(i|xt) (4)
Hi = 5 ey PUilxe)xe
Ti= 2 Yoo Pilxe) (xe — pi)(xe — i)
@ update stick breaking probabilities

i
V= —n
! nita—1+308 0 np (5)

i = vi [T (1 - v5)

Sparse representation

BSURREY  classification (SRC)

o Let X = [xg,...... xy] be training data matrix

o Reconstruct an unknown sample y as

y=Xa (6)
where a is a vector of coefficients

o If dimensionality D < N, a reconstruction solution could be
found using LS, otherwise the solution has to be regularised
by imposing a minimum norm on a

o Premise: for a sample yew;, we would expect the
reconstruction to be constituted by training samples from
class i, i.e. vector a should be sparse (all entries for samples
from other classes should be zero)

30

- SRR SRC

o By imposing sparsity on the reconstruction solution, we should
be able to identify the class of y
o This can be achieved by using /; and solving

argmin|fall;  s.t.y=Xa M

H ............. ‘ =m

¥ SURREY SRC algorithm
@ Solve
argminlalls  s.t.]ly - Xal| < ®

@ Let a; be vector a with all entries associated with samples
from class j # i set to zero, and compute the residual

ri(y) = lly — Xajll2 9)
Q assign y — wj if ri(y) = minjri(y)

o Relationship to the k-NN classifier

o k-NN classifier minimises the distances to y
o in addition, SRC involves pairwise interactions of residual error
vectors

32




% LR Similarity based

C UNIVERSITY OF - - -
e . % SURREY .
classificatan o) Similarity based class
o NN classifier labels patterns based on similarity, gauged in o Characterise objects in terms of their similarity to other
terms of distance objects, rather than by a set of measurements

o Let 0;,i =1,..., N be an exemplar (training) set of objects

o Squared Euclidean distance between x and y is given as and denote by S(o;, o;) the similarity of objects o; and o;

(x—y) (x—y)=x"x—2xTy+yTy (10) o In the similarity based approach to pattern recognition, an
o The distance between x and y minimal when xTy is maximal unknown object o is characterised by vector y defined as
o scalar product xTy gauges similarity y =[5(0,01),5(0,02), ..., S(0,0n)] " (11)
o other notions of similarity can be defined, e.g. cosine o The classification problem is solved in the feature space y
similarity, Gaussian kernel, subjective grading °® o The object measurement space is defined only implicitly
D(w o There is a relationship with the kernel methods
®
° e" o o Similarity function S(o, oj) must be computable
. . 33 34
#SURREY  Performance characterisation ¥ SURREY Multiple classifier systems

CLASSIFICATION ERROR ESTIMATION

m Aim: fuse multiple classifier outputs to improve
performance, combating the effect of
= Particular training set
» Particular classifier choice
m Particular classifier parameters
m Particular feature space

Empirical error count

m Exploiting Ggg\@ 3
Yi R = Multiple modalities - A By :
' estimate = Context “ }g\é
| \

= Quality gauging
= Error correcting coding

Test pattern Consensus diagnosis exploiting
different opinions
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Pl®x,)

Fixed decision
fusion strategies

med x|

voting rule

UNIVERSITY OF

REY Other examples

m Stacked generalisation
(Wolpert)

m Error correcting output
coding (ECOCQC)
(Dietrich)

trai

ring deta
= | dsifer x\

class

Concept Diagram of Stacking
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