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Pattern recognition system 

Pattern representation Pattern recognition problem 
m – number of classes 
x  -  pattern vector 

- priori probability of 
 class  

- measurement distri- 
 bution of patterns in  
 class  Number of measurements  

May be very large! 
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Dimensionality reduction  
by Feature Extraction 
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Feature extraction:Overview 

n  xxx 
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What is PCA 

n  xxx 
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How PCA works 

n  xxx 
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Mapping data to low 
dimensional feature space 

n  Given V=[v1, v2,….vd], the d-dimensional feature 
vector in the PCA space is given by 

                 z = VT x 
n  dimensionality d chosen to retain a certain 

fraction of variance 
n  d<D 
n  d<= N  
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Distribution of 
eigenvalues 

Example of eigenvectors 

Kernelising PCA 

n  xxx 
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Kernelising PCA 

n  xxx 
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Kernelising PCA 

n  xxx 
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Kernel Discriminant Analysis 

n  xxxx 
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KDA 

n  xxx 
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Spectral regression KDA 

n  xxx 
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Multi Kernel Discriminant 
Analysis: Motivation 

n  xxx 
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MKDA optimisation 

n  xxx 
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Regularisation norm effect 

n  Pascal VOC2008 
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Regularisation norm effect 

n  xxx 

17 

Regularisation norm effect 

n  Pascal VOC 2007 
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MKL and kernel denoising 

n  xxx 
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Denoising: Single kernel 

n  xxx 
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Denoising: MKL performance 

n  xxx 
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Summary 

n  xxx 
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Feature selection 

n  Spurious correlation problem 
n  Ex.: measuring max pairwise 

correlation, 50 sample sets, 
1000 simulations (Fan 2010) 

n  Need to impose sparsity (work 
with a subset of original 
measurements)  
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Goal of Feature Selection is to find the set of d 
features out of the set of D orginally measured variables, 
where d<D       (if possible d<<D), so as to maximize (or 
minimize) a chosen criterion.  
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Motivation for 
dimensionality reduction 

 

n  Reduce the complexity of classifiers 
n  Improve performance 

• Ugly duckling theorem (Watanabe) 
• Better generalization 
• Peaking phenomenon 

n  Reduce measurement extraction costs 
n  Assess class separability 
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Which features to exclude?  

n   we exclude those measurements 
n  which do not contain sufficient quantity of relevant 

information  
n  or which are redundant 
n  or completely irrelevant 

n   Remark: 
n  redundancy does not mean  that given feature (sattribute) 

has no information value ! 
n   redundancy is the consequence of strong statistical 

relations among variables 
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Irrelevant, strong, weak, 
and redundant features 

Y1 

Y2 

weak 

irrelevant 

Y2 

Y1 

Y2 

Y1 redundant 
strong 28 

 Redundant features 

Y1 

Y2 

Redundant (a replica) 
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2D  example of FS Ingredients 

n  Feature selection criterion 
n  Feature set optimisation procedure 
n  Required dimensionality 
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31 

FS Evaluation Criteria 

n Error Probability  

n Probabilistic Distance Measures 
n Probabilistic Dependence Measures 

n Entropy Measures 

n  Interclass Distance Measures 
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Example: 2-class 
separability measure 

l  Some class separability measures can be simplified 
analytically when the classes have parametric 
distributions 

l  Mahalanobis distance  
 

l  For instance, for normally distributed classes the divergence 
becomes 

 

●  Divergence JD  
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n  Approaches:Deterministic vs. Non-deterministic  
ü  Deterministic  

(all sequential algorithms) 
ü  Non-deterministic   

Monte Carlo  
Evolutionary approaches (genetic algorithms) 

n  "Filter" vs. “Wrapper” approach 
n  “Filter” approach - evaluating probabilistic measures 
n  “Wrapper” approach -  evaluating classification rate 

Optimisation approaches The Indian Buffet process 

n  Feature selection process modelled on the Indian 
Buffet metaphor 
n  i-th customer (object) samples dishes (features) with a 

probability proportional to their popularity, and 
n  samples a number of new dishes (features) defined by 

a prior  

34 

IBP formulation 

n  nn 

35 

IBP feature selection 

n nn 

36 
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Sequential search algorithms 

n  Forward selection 
n  Start from an empty set and select as first feature the 

individually best measurement 
n  Assume k features have been selected. Then select 

from the remain D-k measurements the one which in 
combination with the existing features gives the best 
set  

n  Backward selection 
n  Start from a complete set of measurements 
n  Remove one at a time (the least effective) 

n  Sequential search with backtracking 
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Plus l Take-Away r (l=2,r=1) 
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Floating search methods  

n  based  on „backtracking“ in both directions 
n  resulting dimensionality in intermediate steps is 

not changing monotonously but is „floating“ 
n  according to the prevailing search direction we 

have: 
n  sequential backward floating search (SBFS) 
n  sequential forward floating search (SFFS) 
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Scheme of SFFS algorithm 

No

NoYes

Yes

Leave out  the
conditionally

excluded feature

Return the condi-
tionally excluded

feature back

Apply
one step of

algorithm
SFS

Conditionally exclude
one feature found

by applying one step
of  algorithmSBS

Let
k =  k +  1

Let
k =  k - 1

k =  d +  δ
Is this the

best -subset
so far ?
(k-1)

STOP
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