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Pattern recognition problem

m — number of classes
X - pattern vector

P(w;) -priori probability of

e\ L Y class Wi
i p(x|w;) -measurement distri-
bution of patterns in
Number of measurements class w;
May be very large! .
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x = [x1, X, X5]T PATTERN REPRESENTATION VECTOR

z=[7;, 2] T Feature vector
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o Kernel methods
o Kernel methods: an overview
o Kernel PCA and Kernel Discriminant Analysis
o Multiple Kernel Discriminant Analysis
o MKL: motivation
o (, regularised Multiple Kernel Discriminant Analysis
o The effect of regularisation norm
o MKL and feature space denoising

o Summary
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What is PCA

@ Principal component analysis (PCA): an orthogonal basis
transformation

o Transform correlated variables into uncorrelated ones
(principal components)
o Can be used for dimensionality reduction

@ Retains as much variance as possible when reducing
dimensionality

¥ SURREY How PCA works

o Given m centred vectors: X =
o X: D x N data matrix
o Eigen decomposition of D x D covariance matrix C = XXT

[x1,%2,- -+, xn]

CV-VA=0 1)

o Diagonal matrix A: eigenvalues
o V = (vi,va,---): eigenvectors (Principal Components)

o Data can now be projected onto orthogonal bases V

o Projecting only onto d < D leading eigenvectors =
dimensionality reduction with minimum variance loss
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Mapping data to Tow
dimensional feature space

Given V=[vy, V,,....V4], the d-dimensional feature
vector in the PCA space is given by

= VT x

dimensionality d chosen to retain a certain
fraction of variance

d<D Distribution of

d<=N eigenvalues

Example of eigenvectors
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Kernelising PCA

o Premultiplying eq (1) by data matrix X7 gives
XXXV —XTVA=0 )

o an eigenvalue problem with eigenvectors U = XT V and the
same eigenvalues

o matrix XTX is N x N

e if N << D, then solving eq (2) is more efficient

o matrix V can be obtained as V = XUA~!

o matrix K = XT X is referred to as kernel matrix

o its element kj = k(x;,x;) measures "similarity” of vectors
Xj, Xj

° k!‘,':XI-TXj




¥ SURREY Kernelising PCA

o the kernel formulation of PCA offers a scope for using
different notions of similarity

o for instance, kj = exp{—||x; — x;j|[>°02}

o other notions of similarity remap x in a nonlinear way into
6(x)

o ¢(x) may be of infinite dimensionality

o ¢(x) is defined implicitly, is unknown, but satisfies
ki = é(xi)T $(x;)

e working with K is like working with data matrix
X =[6(x1), b(x2), -+, d(xn)]

o We have kernelised PCA

¥ SURREY Kernelising PCA
o Note
o V = XUNis not explicitly available: U and A are, but X is
not

o However... we are interested in projection onto basis V/, not
the basis itself

o Projection onto V: XTV = XTXUA! = KUA!
o All K and U and A are available

o A purely rescales the data and can be omitted

5 SURREY Kernel Discriminant Analysis

o Kernel Fisher discriminant analysis: another supervised
learning technique
e Focusing on discriminantion, rather than faithful

representation Jee
o Seeking the projection w maximising Fisher criterion .= »
w’ Sgw ¢
M (5T + Aw &)

@ Sg and St: between class and total scatters

@ \: regularisation parameter

@ The total scatter matrix equals mixture covariance matrix
Sr=XxxT

o Between class scatter Sg can be expressed as Sg = XAXT

@ Block diagonal matrix A contains a constant in block i,
proportional to the number of samples from class i

B SRR KDA

o Expressing w = Xa, and substituting for Sg, we can kernelise
Fisher criterion as
max a"XTXAX  Xa — max a’KAKa )
S ATXT(XXT + M) Xa e aT(KZ+ AK)a

@ The maximisation leads to an eigenvalue problem
AKa — k(K + M)a =0 (5)




S SURREY  Spectral regression KDA

o Instead of solving the eigenvalue problem, eq (5) can be
solved as a linear system

Au=nu
(K4 M)aeu ©)

@ u is an eigenvector of matrix A, 7 its eigenvalue

@ Owing to the structure of A, u can be found by
Gram-Schmidt orthogonalisation
o Expressing K + Al using Cholesky decomposition as

K + A = RTR where R is an upper triangular matrix, the
second linear problem in (6) can be solved as

& SRR Multi Kernel Discriminant

Analysis: Motivation

o ldeal case: learn kernel function (notion of similarity) from
data

o If that is hard, can we learn a good combination of given
kernel matrices: the multiple kernel learning problem

o Given n N x N kernel matrices, Ky,--- , K,
@ Most MKL formulations consider linear combination:
K=Y 6K, £;>0 (6)
j=1

o Goal of MKL: learn the “optimal” weights 3 € R"

(K+M)a=ue | ';;“;v“ @)
¥ SURREY MKDA optimisation HSURREY Regularisation norm effect

o Consider linear combination: K = {K =Y} 7_; BiKi : B > 0}
o 3 must be regularised in order for (7) to be meaningful

o Consider a general £, regularisation for any p > 1:
K={K=X16iKi:B2>0,]8], <1}
@ The £, MKDA problem becomes:
AL, BiKia — k(I BiKi + M)a =0 7
st B0, |/, <1 ™

@ Solve using Semi-Infinite Programming

e What norm £, to use?

o Pascal VOC 2008 development set:
o 20 object classes = 20 binary problems
o Mean average precision (MAP) as performance metric

o £
nanin]
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Figure : Learnt kernel weights with various kernel mixture.
o (7 gives sparse solution and ¢ non-sparse

@ A hypothesis: when most kernels are informative sparsity is a
bad thing and vice versa




Regularisation norm effect
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Figure : MAP vs. number of informative kernels

B SURREY  Regularisation norm effect

m Pascal VOC 2007

o We have seen the behaviour of ¢; and ¢, MKDAs
@ A principle for selecting regularisation norm:

o High intrinsic sparsity in base kernels: use small norm
o Low intrinsic sparsity: use large norm

@ But how do we know the intrinsic sparsity?
o Simple idea: try various norms, choose the best on validation
o Reduce sparsity by kernel denoising

#SURREY ~ MKL and kernel denoising

@ Basic approach: remove certain percentage of kernel variance
o Use kernel PCA for dimensionality reduction (denoising) in
feature space
@ Questions to be answered:
o Can denoising improve single kernel performance?
o Can denoising improve MKL performance?

o How does MKL behaviour differ on original kernels and
denoised kernels?

INIVERSITY OF

#SURREY ~ Denoising: Single kernel

o PASCAL VOCO7 dataset, 20 objects, 33 kernels

g — Validation
— Test

100 20 100

20

40 80 40 60 80
Variance to keep Variance to keep

Figure : AP vs. variance kept in kernel PCA. Two kernels as examples.
@ Choosing denoising level using a validation set = better single

kernel performance (compared to original kernel) for "dining
table” and "cat”
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Table : Comparing £, MK-FDA and fixed norm MK-FDAs

{1 MK-FDA | £, MK-FDA | {o MK-FDA | £, MK-FDA
original kernels 54.85 54.79 54.64 55.61
denoised kernels 54.26 56.06 55.82 56.17

o In general, denoised kernels are better than original ones
o [, is better than fixed norm, on both original and denoised
o Advantage of £, is much smaller with denoised kernels.

¥ SURREY Summary

o Regularisation norm plays an important role in MKL

o £, MKDA allows to learn intrinsic sparsity of base kernels =
better performance than fixed norm MKL

o Feature space denoising is important for KDA and MKDA

o Denoising improves both single kernel and MKL performance
o Linear kernel combination cannot take care of feature space
denoising automatically

UNIVERSITY OF - UNIVERSITY OF Motivation for
¥ SURREY Feature selection ¥ SURR dimensionality reduction
m Spurious correlation problem u m Reduce the complexity of classifiers
m Ex.: measuring max pairwise :z n |mpr0ve performance
correlation, 50 sample sets, - .
1000 simulations (Fan 2010)  : . * Ugly duckling theorem (Watanabe)
= Need to impose sparsity (work  « « Better generalization
with a subset of original 2 - Peaking phenomenon
measurements) 0

0.4 0.5 0.6 0.7 08

Maximum absolute sample correlation

Goal of Feature Selection is to find the set of d
features out of the set of D orginally measured variables,
where d<D (if possible d<<D), so as to maximize (or
minimize) a chosen criterion.

m Reduce measurement extraction costs
m Assess class separability
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correct
classification
rate

Peaking phenomenon

number of
P
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B SURREY  Which features to exclude?

we exclude those measurements

= which do not contain sufficient quantity of relevant
information

= or which are redundant
= or completely irrelevant
Remark:

= redundancy does not mean that given feature (sattribute)
has no information value !

= redundancy is the consequence of strong statistical
relations among variables
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irrelevant

Irrelevant, strong, weak,
and redundant features

"

(4
T e O,
Y1

Y] weak

redundant

strong

Y

27

5 QIRREY Redundant features
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Redundant (a replica)




wmey 2D example of FS
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Ingredients

m Feature selection criterion
m Feature set optimisation procedure
m Required dimensionality

Decision

=

Sensor l

Feature
Selection
System

weigsey  FS Evaluation Criteria

m Error Probability

m Probabilistic Distance Measures
m Probabilistic Dependence Measures

m Entropy Measures

m Interclass Distance Measures

Example: 2-class

h UNIVERSITY OF -1
separability measure
ONEISNE %o 7 = [Inekon) ~ (o)l < L

For instance, for normally distributed classes the divergence
becomes

Some class separability measures can be simplified
analytically when the classes have parametric
distributions - —
Jp= 3o —p)T[=71 + 55 (u2 — 1)+
+itr[Eriss + 35515 - 21

Mahalanobis distance 1 =Xp=2X

I = (p2 — ) = (o — 1)

2




SURREY  Optimisation approaches

= Approaches:Deterministic vs. Non-deterministic
v Deterministic
(all sequential algorithms)
v Non-deterministic
Monte Carlo
Evolutionary approaches (genetic algorithms)
"Filter" vs. “Wrapper” approach
“Filter” approach - evaluating probabilistic measures
“Wrapper” approach - evaluating classification rate
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»SURREY  The Indian Buffet process

m Feature selection process modelled on the Indian
Buffet metaphor
= i-th customer (object) samples dishes (features) with a
probability proportional to their popularity, and

= samples a number of new dishes (features) defined by
a prior
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IBP formulation

o N.... number of objects, and K.... a number of features
o Let N x K matrix Z

z-1. ] (10)

be a binary indicator matrix with z; = 1 denoting that
feature j has been selected by object i
o The problem of feature selection can be formulated as

max J(X|Z) (11)

where J(X|Z) is a feature selection criterion

UNIVERSITY OF

REY IBP feature selection

o Inference of Z by Markov Chain Monte Carlo sampling from
posterior P(Z|X) as
P(zik| X, Z—(iy) < J(X|Z)P(zik = 1|1Z_(ixy) (12)
o P(zi = 1|Z_(jy) -....a prior controlling features selected
P(alX, Z-) = (13)
with p_ ;) denoting the number of objects selecting feature
k, and « is a meta parameter
@ Gibbs sampling algorithm
o Choose a binary matrix Z at random
o For each column k, if p_(i) > 0, set zx = 1 with probability
p—’,\(,ﬂ. Otherwise, delete the column.

o Add Poisson(§;) new columns with ones in the i-th row
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T SURREY  Sequential search algorithms

= Forward selection

= Start from an empty set and select as first feature the
individually best measurement

= Assume k features have been selected. Then select
from the remain D-k measurements the one which in
combination with the existing features gives the best
set
m Backward selection
= Start from a complete set of measurements
= Remove one at a time (the least effective)

m Sequential search with backtracking
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RREY  Floating search methods

based on ,backtracking® in both directions

resulting dimensionality in intermediate steps is
not changing monotonously but is ,floating“

according to the prevailing search direction we
have:

m sequential backward floating search (SBFS)
m sequential forward floating search (SFFS)

Let
k=0
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Scheme of SFFS algorithm

Apply
one step of
SFS

algorithm

-

Let
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