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Abstract—In this article, we propose a novel algorithm for
the recognition of complex activities in multimedia streams. The
algorithm consists of a discriminative feature classifier based on
random forests and a generative classifier, for which we use the
hierarchical hidden Markov model. The discriminative feature
classifier checks the existence or absence of the steps required for
the execution of an activity, while the generative classifier encodes
the ordering of these steps. The parameters of the classifier are
learned automatically from expert labelled data. The classification
output is a label indicating, for an input multimedia stream
illustrating a complex activity, the type of the activity performed
in the stream and whether this activity was performed in a correct
or incorrect/anomalous manner.

Results for the publicly available bridge design dataset show
that our algorithm offers higher accuracy in activity recognition
than other leading methods.
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den Markov model.

I. INTRODUCTION

The recognition of human activities in multimedia streams
is an important research topic, with many applications in the
fields of surveillance, security and digital media. Most of the
work previously carried out in this area focuses on short,
everyday tasks with relatively small action vocabulary and
activities that can be performed in a limited number of ways.
In this article, we propose a new algorithm for the recognition
of long activities in tasks which can be executed in a variety
of ways. Our algorithm can also detect erroneous executions
in such tasks, which can be considered as anomalies.

An activity is typically represented as a sequence of its
constituent actions [1]. There are currently five approaches to
activity modelling:

Grammar-driven representations, such as context-free
grammars [2] and stochastic context-free grammars [3] which
model activities with sets of production rules that describe all
possible executions. These methods cannot be applied when
the structure of the activity is not known a priori.

Vector space models, e.g. [4], where an activity is repre-
sented as a vector of its constituent actions. The drawback of
the approaches of this category is that they lack a facility to
model temporal dependencies between actions.
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Local event statistic methods, which capture neighbour-
ing temporal relations between an activity’s constituent actions,
such as n-grams [1], suffix trees [5] and augmented bags-
of-words [6]. In noisy datasets these neighbouring relations
sometimes become less characteristic of the performed activity.

Statistical graphical models, such as the hidden Markov
model (HMM) [7] and the variable length Markov model
[8]. Although they are capable of encoding the temporal
dependencies between actions efficiently, they cannot represent
the natural hierarchical structure of complex activities [9].

Extensions of statistical graphical models in a hierar-
chical manner, e.g. the hierarchical hidden Markov model
(HHMM) [10], [9] and the layered hidden Markov model [11].
These models can capture complex hierarchy but sometimes
prove to be sensitive to noise.

In this paper, we propose a new algorithm for activity
recognition which addresses the shortcomings of previous
approaches. It can model activities whose exact structure is not
previously known. It is capable of efficiently representing the
natural hierarchy of complex activities and encode the temporal
relations between their constituent actions. Our algorithm
combines a discriminative feature classifier based on random
forests (RF) [12] and a generative classifier for temporal
analysis, for which we use a HHMM. The discriminative
feature facility checks the existence or absence of the steps
required for the execution of an activity, while the generative
model encodes the ordering of these steps. Our algorithm can
be applied as it stands to any task which involves complex
activities, as all of its components are learned automatically
from training data.

The proposed algorithm can be used to detect erroneous
or anomalous activity executions. When such executions are
present in the training dataset, this is achieved by building
separate sub-models corresponding to erroneous executions. In
the absence of such data, our algorithm can detect anomalies
by assessing the confidence scores assigned to various activity
executions during the classification process.

We evaluate our algorithm’s performance for the bridge
design dataset [13] and compare it with several state of the art
algorithms. The results show that our algorithm offers higher
accuracy in activity recognition than other leading methods.

The remainder of the paper is structured as follows. Sec-
tion II describes the proposed activity recognition algorithm.
Experimental results are presented in Section III; the paper is
concluded in Section IV.



II. COMBINING DISCRIMINATIVE AND GENERATIVE
CLASSIFIERS

In this section we present a methodology to analyse ac-
tivities using a classifier which combines the discriminative
capabilities of RFs and the efficiency of HHMMs in encoding
complex temporal relations between an activity’s constituent
actions. Classification is performed in a supervised manner: a
model is first learned automatically using a set of labelled
sequences; this model is then used to analyse novel input
sequences (i.e. sequences not present in the training dataset).

We assume that the action sequences illustrating activities
are pre-extracted from the multimedia streams. This can be
achieved, for example, as described in [13], [3].

A. Model training

Consider a set Utr of Ntr labelled action sequences, Utr =
{Utr,i = (Si, ci)} where Si ∈ S is an action sequence and
ci ∈ C is the sequence’s class label. The set Utr will be used
to train the model. The classifier comprises two parts, a RF
classifier and a HHMM classifier which are trained separately.

1) RF Classifier Training (discriminative classifier): An
ensemble RF classifier comprising N independent decision
trees is built. The nth tree of the classifier is denoted by
fn(Si, θn) : S → C mapping each element of the sample
space S to a label in the label space, C. θn is a random
vector containing the tree’s stochastic elements (e.g. the ran-
domly subsampled training set or selected random tests at
the tree’s decision nodes). We denote the entire forest by
F = {f1, ..., fN}.

Each tree is grown as follows: a bootstrapped sample of
the training dataset, Uβ = {Uβ,j = (Sj , cj)} is taken for the
tree. For each non-leaf node of the tree a split function has
to be defined, which provides the optimal separation of the
training sequences:

fΦ(Uβ,j) ∈ {0, 1} (1)

where Φ is the set of parameters of the split function. The
function evaluates one or more features of sequence Uβ,i and
decides about whether it will be sent to the left (fΦ(Uβ,j) = 0)
or right child (fΦ(Uβ,j) = 1) of the node. The parameters Φ
are optimised during the training process, which is summarised
in the following paragraphs.

The algorithm starts at the root node of the tree with the
training set Uβ = Unode. A random set of parameters, Φ =
{φk} is generated and the training set Unode is divided into
two subsets, UL and UR, ∀φ ∈ Φ as follows:

UL(φ) = {Uβ,j ∈ Unode|fφ(Uβ,j) = 0} (2)

UR(φ) = {Uβ,j ∈ Unode|fφ(Uβ,j) = 1} (3)

The split parameters φ∗ are selected so that they optimise
a gain function g:

φ∗ = arg max
φ∈Φ

g(φ,Unode) (4)

where the gain function g is given in the equation:

g(φ,Unode) = H(Unode)−
∑

M∈{L,R}

|UM (φ)|
|Unode|

H(UM (φ)).

(5)

The function H measures the gain of the classification ac-
curacy of the children nodes in comparison to the current
node. The following entropy-based classification function H
is proposed in [14]:

H(Unode) = −
∑
c

p(c|Unode)log(p(c|Unode)) (6)

where the class probability, p(c|Unode), can be calculated from
the equation

p(c|Unode) =
|Unodec | · rc∑

c
(|Unodec | · rc)

(7)

with Unodec the set of sequences with class label c reaching
the studied node after training and

rc =
|Utr|
|Uc|

(8)

where Uc the set of sequences with class label c within the
whole training set, Utr.

If the stopping criteria are not satisfied, the tree continues
to grow using the subsets UL and UR. Else a leaf node is
created which stores the statistics of the training data Unode.
The class probability p(c|L) at leaf L can be estimated with
the equation:

p(c|L) =
|ULc | · rc∑

c
(|ULc | · rc)

. (9)

2) Feature selection: One of the advantages of using RF
is that they integrate a variable importance facility which
assesses the significance of each feature participating in the
classification process [12]. We evaluate the proposed algorithm
both with and without taking into account this facility.

To assess the importance of the variables, the algorithm
predicts for every tree in the forest the classification of the
out-of-bag (OOB) samples of the training set and estimates
the misclassification rate. The OOBn samples for a tree n are
defined as the training samples not used during the construction
of n. The misclassification rate is defined as the tree’s out-of-
bag error.

The values of every variable in the tree are permuted and
the out-of-bag error is estimated. By comparing this error to the



Fig. 1: The generic three-level HHMM topology used by our
algorithm to encode temporal dependencies between an activity’s
constituent actions. Two sample activities are represented, c1 and c2.

misclassification rate of the tree an indication of the variable’s
importance is obtained. The increase of misclassification rate
is defined as the variable’s importance measure for the tree.

Out-of-bag errors and importance measures from all trees
in the forest are then aggregated to obtain the overall out-of-
bag error rate and variable importance measures.

3) HHMM Training (generative classifier): Having se-
lected the important features using the Variable Importance
assessment method, non-important features are removed from
the original training sequences. Therefore, a filtered training
dataset U ′tr of Ntr labelled action sequences is obtained. The
filtered dataset is used to train the HHMM. When working
without the variable importance facility, we train the HHMM
with the unfiltered dataset, Utr.

We briefly present the HHMM, following [10]. The task
vocabulary, containing all possible actions in the studied task
is denoted by Σ. An activity can be represented as a sequence
S = {s1, s2 . . . sT } = s1:T where T the length of the
sequence. Each state of the HHMM is denoted by qdi , d ∈
{1, . . . , D} with i the state index and d the hierarchy index (for
the root it is d = 1, for production states d = D). The number
of substates of an internal state qdi is denoted by |qdi |. The state
index will be omitted in cases where it is clear from the context
and thus a state at level d will be denoted by qd. Each level,
excluding the root level has an ending state, qdend. The state
transition probabilities between the internal states at level d+1

are given by the matrix Aq
d

= (aq
d

ij ) with aq
d

ij = P (qd+1
j |qd+1

i )
the probability of transitioning from state i to j within level
d + 1. The initial distribution over the substates of qd is
given by the vector Πqd = {πqd(qd+1

i )} = {P (qd+1
i |qd)}.

Note that P (qd+1
i |qd) is the probability that parent state qd

will initially activate substate qd+1
i . The production states, qD

emit actions as specified by their output probability vector
Bq

D

= {bqD (k)}. In this case, bq
D

(k) = P (σk|qD) is the
probability that qD will produce action σk ∈ Σ. The set of pa-
rameters for the HHMM is denoted by λ = {λqd}d∈{1,...,D} =

{{Aqd}d∈{1,...,D−1}, {Πqd}d∈{1,...,D−1}, {Bq
D}}.

Learning the HHMM from the training dataset U ′tr of
Ntr labelled action sequences is now discussed. Previous
approaches using HHMM for activity recognition (e.g. [9])

have used a manually specified model topology. Here, the
topology is automatically learned from training data, building
on the generic three-level hierarchy of Fig. 1. Specifically,
the first level of the HHMM is the root. The second level
represents activities and consists of a number of nodes equal
to the number of different activities performed in the studied
dataset. The third level represents actions and comprises, for
each node of the second level, a number of nodes equal to the
number of different actions in the dataset. The parameters of
the model are then estimated by discovering the most probable
set of parameters, λ∗ with λ∗ = arg max

λ
P ({St}|λ). This

is achieved with the generalised Baum-Welch algorithm [10].
The only information that the algorithm requires is the training
dataset U ′tr of Ntr labelled action sequences. For more details
about the Baum-Welch algorithm please see [10].

B. Activity recognition and anomaly detection

Consider the task of classifying a test dataset, Ute =
{Ute,i = (Si, ci)} of Nte labelled action sequences not
included in the training dataset Utr. The process is as follows:

1) Discriminative classification (RF): Non-important ele-
ments detected during the training process are removed from
the test dataset and thus the filtered test dataset, U ′te is obtained.
When working without the variable importance facility, we
simply use the unfiltered dataset, Ute.

The filtered test dataset U ′te is passed to the RF classifier.
For the nth tree tree of the forest, each sequence Si of the
dataset will fall into a leaf. We can calculate the probability
for predicting class c for a sample with the equation

p(c|Si) =
1

N

N∑
n=1

pn(c|Si), (10)

in which pn(c|Si) is the estimated density of class labels of the
leaf of the nth tree where Si falls with pn(c|Si) = pn(c|L).
The class probability at leaf L, pn(c|L) can be directly
estimated from Eqn. 9. Note that, as illustrated by its derivation
Eqn. 10 is obtained in a data-driven fashion; it does not require
knowledge of the forms of underlying probability distributions.
Therefore its classification accuracy (as reflected in the results)
depends on the representativeness of the data used for training,
which in our case is the filtered training dataset U ′tr consisting
of Ntr labelled action sequences. The forest’s multi-class
decision function is given by the equation:

C(Si) = arg max
c∈C

p(c|Si). (11)

Assuming that the training dataset includes erroneous activ-
ity executions, classification using Eqn. 11 results in mapping
the elements of U ′te to classes corresponding to correctly
executed activities U ′te,corr and erroneously executed activities
U ′te,err. If the training dataset does not contain erroneous
executions, the classes corresponding to erroneously executed
activities are not present. In this case, anomalies can be de-
tected by assessing the confidence scores assigned to U ′te,corr
during the classification process.



HMM SVM RF RF+HHMM
Corr. Anom. Avg. Corr. Anom. Avg. Corr. Anom. Avg. Corr. Anom. Avg.

No feature selection 72 61 67 86 58 72 81 78 80 81 89 85
SVM Variable Importance 72 61 67 86 58 72 81 78 80 - - -
RF Variable Importance 78 61 70 83 64 74 81 81 81 81 89 85

TABLE I: Classification results for the bridge dataset in terms of percent classification accuracy.

2) Generative classification (HHMM): Sequences of sets
U ′te,corr are passed to the HHMM. Inference is performed with
the generalised Viterbi algorithm [10]. For more details about
this algorithm please see [10]. It requires only the set U ′te,corr
and assigns a class to each sample of the sets.

3) Activity characterisation: The class assigned to each of
these sequences of set U ′te,corr by the HHMM is the output of
the combined RF+HHMM algorithm.

The sequences of the set U ′te,err retain the class label
assigned to them by the RF classifier.

We consider as anomalies all sequences classified into
classes corresponding to erroneously executed activities by
either the discriminative or the generative classifier.

III. EXPERIMENTAL RESULTS

The framework is assessed on the ‘bridge design’ dataset
[13]. The dataset consists of 136 sequences of length 5-15
minutes each, in which humans execute one of three complex
tasks: evaluate soil condition, estimate transient loads and
evaluate bridge cost. We use the partition of the dataset into
testing and training data recommended in [13].

We apply our combined generative and discriminative
model with and without feature selection. To select impor-
tant features we apply the random forest variable importance
(RFVI) facility, described in Section II-A2, on the training
dataset. We repeat the process 10 times and estimate the
average importance for all features. We consider features with
negative importance as redundant and remove them.

The results are shown on Table I. The proposed algorithm,
RF+HHMM which combines a discriminative and a generative
classifier achieves the highest accuracy in anomaly detection
and on average, significantly outperforming the performance
of the baseline classifiers reported in [13]. The application of
RFVI feature selection algorithm does not increase the clas-
sification accuracy of our algorithm. This could be attributed
to the fact that the impact of unimportant features is mitigated
in the first stage of the proposed algorithm (discriminative
classification with RF).

IV. CONCLUSION

We have presented an algorithm for activity recognition
and anomaly detection of complex activities in multimedia
streams. The algorithm consists of a discriminative feature
facility based on random forests and a generative model, for
which we use the hierarchical hidden Markov model. The
discriminative feature facility checks the existence or absence
of the steps required for the execution of an activity, while the
generative model encodes the ordering of these steps.

Results for the publicly available bridge design dataset
show that our approach offers higher accuracy in activity
recognition than the other leading methods.
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